| // Written in the D programming language. |
| |
| /** This module contains the $(LREF Complex) type, which is used to represent |
| complex numbers, along with related mathematical operations and functions. |
| |
| $(LREF Complex) will eventually |
| $(DDLINK deprecate, Deprecated Features, replace) |
| the built-in types `cfloat`, `cdouble`, `creal`, `ifloat`, |
| `idouble`, and `ireal`. |
| |
| Macros: |
| TABLE_SV = <table border="1" cellpadding="4" cellspacing="0"> |
| <caption>Special Values</caption> |
| $0</table> |
| PLUSMN = ± |
| NAN = $(RED NAN) |
| INFIN = ∞ |
| PI = π |
| |
| Authors: Lars Tandle Kyllingstad, Don Clugston |
| Copyright: Copyright (c) 2010, Lars T. Kyllingstad. |
| License: $(HTTP boost.org/LICENSE_1_0.txt, Boost License 1.0) |
| Source: $(PHOBOSSRC std/complex.d) |
| */ |
| module std.complex; |
| |
| import std.traits; |
| |
| /** Helper function that returns a complex number with the specified |
| real and imaginary parts. |
| |
| Params: |
| R = (template parameter) type of real part of complex number |
| I = (template parameter) type of imaginary part of complex number |
| |
| re = real part of complex number to be constructed |
| im = (optional) imaginary part of complex number, 0 if omitted. |
| |
| Returns: |
| `Complex` instance with real and imaginary parts set |
| to the values provided as input. If neither `re` nor |
| `im` are floating-point numbers, the return type will |
| be `Complex!double`. Otherwise, the return type is |
| deduced using $(D std.traits.CommonType!(R, I)). |
| */ |
| auto complex(R)(const R re) @safe pure nothrow @nogc |
| if (is(R : double)) |
| { |
| static if (isFloatingPoint!R) |
| return Complex!R(re, 0); |
| else |
| return Complex!double(re, 0); |
| } |
| |
| /// ditto |
| auto complex(R, I)(const R re, const I im) @safe pure nothrow @nogc |
| if (is(R : double) && is(I : double)) |
| { |
| static if (isFloatingPoint!R || isFloatingPoint!I) |
| return Complex!(CommonType!(R, I))(re, im); |
| else |
| return Complex!double(re, im); |
| } |
| |
| /// |
| @safe pure nothrow unittest |
| { |
| auto a = complex(1.0); |
| static assert(is(typeof(a) == Complex!double)); |
| assert(a.re == 1.0); |
| assert(a.im == 0.0); |
| |
| auto b = complex(2.0L); |
| static assert(is(typeof(b) == Complex!real)); |
| assert(b.re == 2.0L); |
| assert(b.im == 0.0L); |
| |
| auto c = complex(1.0, 2.0); |
| static assert(is(typeof(c) == Complex!double)); |
| assert(c.re == 1.0); |
| assert(c.im == 2.0); |
| |
| auto d = complex(3.0, 4.0L); |
| static assert(is(typeof(d) == Complex!real)); |
| assert(d.re == 3.0); |
| assert(d.im == 4.0L); |
| |
| auto e = complex(1); |
| static assert(is(typeof(e) == Complex!double)); |
| assert(e.re == 1); |
| assert(e.im == 0); |
| |
| auto f = complex(1L, 2); |
| static assert(is(typeof(f) == Complex!double)); |
| assert(f.re == 1L); |
| assert(f.im == 2); |
| |
| auto g = complex(3, 4.0L); |
| static assert(is(typeof(g) == Complex!real)); |
| assert(g.re == 3); |
| assert(g.im == 4.0L); |
| } |
| |
| |
| /** A complex number parametrised by a type `T`, which must be either |
| `float`, `double` or `real`. |
| */ |
| struct Complex(T) |
| if (isFloatingPoint!T) |
| { |
| import std.format.spec : FormatSpec; |
| import std.range.primitives : isOutputRange; |
| |
| /** The real part of the number. */ |
| T re; |
| |
| /** The imaginary part of the number. */ |
| T im; |
| |
| /** Converts the complex number to a string representation. |
| |
| The second form of this function is usually not called directly; |
| instead, it is used via $(REF format, std,string), as shown in the examples |
| below. Supported format characters are 'e', 'f', 'g', 'a', and 's'. |
| |
| See the $(MREF std, format) and $(REF format, std,string) |
| documentation for more information. |
| */ |
| string toString() const @safe /* TODO: pure nothrow */ |
| { |
| import std.exception : assumeUnique; |
| char[] buf; |
| buf.reserve(100); |
| auto fmt = FormatSpec!char("%s"); |
| toString((const(char)[] s) { buf ~= s; }, fmt); |
| static trustedAssumeUnique(T)(T t) @trusted { return assumeUnique(t); } |
| return trustedAssumeUnique(buf); |
| } |
| |
| static if (is(T == double)) |
| /// |
| @safe unittest |
| { |
| auto c = complex(1.2, 3.4); |
| |
| // Vanilla toString formatting: |
| assert(c.toString() == "1.2+3.4i"); |
| |
| // Formatting with std.string.format specs: the precision and width |
| // specifiers apply to both the real and imaginary parts of the |
| // complex number. |
| import std.format : format; |
| assert(format("%.2f", c) == "1.20+3.40i"); |
| assert(format("%4.1f", c) == " 1.2+ 3.4i"); |
| } |
| |
| /// ditto |
| void toString(Writer, Char)(scope Writer w, scope const ref FormatSpec!Char formatSpec) const |
| if (isOutputRange!(Writer, const(Char)[])) |
| { |
| import std.format.write : formatValue; |
| import std.math.traits : signbit; |
| import std.range.primitives : put; |
| formatValue(w, re, formatSpec); |
| if (signbit(im) == 0) |
| put(w, "+"); |
| formatValue(w, im, formatSpec); |
| put(w, "i"); |
| } |
| |
| @safe pure nothrow @nogc: |
| |
| /** Construct a complex number with the specified real and |
| imaginary parts. In the case where a single argument is passed |
| that is not complex, the imaginary part of the result will be |
| zero. |
| */ |
| this(R : T)(Complex!R z) |
| { |
| re = z.re; |
| im = z.im; |
| } |
| |
| /// ditto |
| this(Rx : T, Ry : T)(const Rx x, const Ry y) |
| { |
| re = x; |
| im = y; |
| } |
| |
| /// ditto |
| this(R : T)(const R r) |
| { |
| re = r; |
| im = 0; |
| } |
| |
| // ASSIGNMENT OPERATORS |
| |
| // this = complex |
| ref Complex opAssign(R : T)(Complex!R z) |
| { |
| re = z.re; |
| im = z.im; |
| return this; |
| } |
| |
| // this = numeric |
| ref Complex opAssign(R : T)(const R r) |
| { |
| re = r; |
| im = 0; |
| return this; |
| } |
| |
| // COMPARISON OPERATORS |
| |
| // this == complex |
| bool opEquals(R : T)(Complex!R z) const |
| { |
| return re == z.re && im == z.im; |
| } |
| |
| // this == numeric |
| bool opEquals(R : T)(const R r) const |
| { |
| return re == r && im == 0; |
| } |
| |
| // UNARY OPERATORS |
| |
| // +complex |
| Complex opUnary(string op)() const |
| if (op == "+") |
| { |
| return this; |
| } |
| |
| // -complex |
| Complex opUnary(string op)() const |
| if (op == "-") |
| { |
| return Complex(-re, -im); |
| } |
| |
| // BINARY OPERATORS |
| |
| // complex op complex |
| Complex!(CommonType!(T,R)) opBinary(string op, R)(Complex!R z) const |
| { |
| alias C = typeof(return); |
| auto w = C(this.re, this.im); |
| return w.opOpAssign!(op)(z); |
| } |
| |
| // complex op numeric |
| Complex!(CommonType!(T,R)) opBinary(string op, R)(const R r) const |
| if (isNumeric!R) |
| { |
| alias C = typeof(return); |
| auto w = C(this.re, this.im); |
| return w.opOpAssign!(op)(r); |
| } |
| |
| // numeric + complex, numeric * complex |
| Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(const R r) const |
| if ((op == "+" || op == "*") && (isNumeric!R)) |
| { |
| return opBinary!(op)(r); |
| } |
| |
| // numeric - complex |
| Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(const R r) const |
| if (op == "-" && isNumeric!R) |
| { |
| return Complex(r - re, -im); |
| } |
| |
| // numeric / complex |
| Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(const R r) const |
| if (op == "/" && isNumeric!R) |
| { |
| version (FastMath) |
| { |
| // Compute norm(this) |
| immutable norm = re * re + im * im; |
| // Compute r * conj(this) |
| immutable prod_re = r * re; |
| immutable prod_im = r * -im; |
| // Divide the product by the norm |
| typeof(return) w = void; |
| w.re = prod_re / norm; |
| w.im = prod_im / norm; |
| return w; |
| } |
| else |
| { |
| import core.math : fabs; |
| typeof(return) w = void; |
| if (fabs(re) < fabs(im)) |
| { |
| immutable ratio = re/im; |
| immutable rdivd = r/(re*ratio + im); |
| |
| w.re = rdivd*ratio; |
| w.im = -rdivd; |
| } |
| else |
| { |
| immutable ratio = im/re; |
| immutable rdivd = r/(re + im*ratio); |
| |
| w.re = rdivd; |
| w.im = -rdivd*ratio; |
| } |
| |
| return w; |
| } |
| } |
| |
| // numeric ^^ complex |
| Complex!(CommonType!(T, R)) opBinaryRight(string op, R)(const R lhs) const |
| if (op == "^^" && isNumeric!R) |
| { |
| import core.math : cos, sin; |
| import std.math.exponential : exp, log; |
| import std.math.constants : PI; |
| Unqual!(CommonType!(T, R)) ab = void, ar = void; |
| |
| if (lhs >= 0) |
| { |
| // r = lhs |
| // theta = 0 |
| ab = lhs ^^ this.re; |
| ar = log(lhs) * this.im; |
| } |
| else |
| { |
| // r = -lhs |
| // theta = PI |
| ab = (-lhs) ^^ this.re * exp(-PI * this.im); |
| ar = PI * this.re + log(-lhs) * this.im; |
| } |
| |
| return typeof(return)(ab * cos(ar), ab * sin(ar)); |
| } |
| |
| // OP-ASSIGN OPERATORS |
| |
| // complex += complex, complex -= complex |
| ref Complex opOpAssign(string op, C)(const C z) |
| if ((op == "+" || op == "-") && is(C R == Complex!R)) |
| { |
| mixin ("re "~op~"= z.re;"); |
| mixin ("im "~op~"= z.im;"); |
| return this; |
| } |
| |
| // complex *= complex |
| ref Complex opOpAssign(string op, C)(const C z) |
| if (op == "*" && is(C R == Complex!R)) |
| { |
| auto temp = re*z.re - im*z.im; |
| im = im*z.re + re*z.im; |
| re = temp; |
| return this; |
| } |
| |
| // complex /= complex |
| ref Complex opOpAssign(string op, C)(const C z) |
| if (op == "/" && is(C R == Complex!R)) |
| { |
| version (FastMath) |
| { |
| // Compute norm(z) |
| immutable norm = z.re * z.re + z.im * z.im; |
| // Compute this * conj(z) |
| immutable prod_re = re * z.re - im * -z.im; |
| immutable prod_im = im * z.re + re * -z.im; |
| // Divide the product by the norm |
| re = prod_re / norm; |
| im = prod_im / norm; |
| return this; |
| } |
| else |
| { |
| import core.math : fabs; |
| if (fabs(z.re) < fabs(z.im)) |
| { |
| immutable ratio = z.re/z.im; |
| immutable denom = z.re*ratio + z.im; |
| |
| immutable temp = (re*ratio + im)/denom; |
| im = (im*ratio - re)/denom; |
| re = temp; |
| } |
| else |
| { |
| immutable ratio = z.im/z.re; |
| immutable denom = z.re + z.im*ratio; |
| |
| immutable temp = (re + im*ratio)/denom; |
| im = (im - re*ratio)/denom; |
| re = temp; |
| } |
| return this; |
| } |
| } |
| |
| // complex ^^= complex |
| ref Complex opOpAssign(string op, C)(const C z) |
| if (op == "^^" && is(C R == Complex!R)) |
| { |
| import core.math : cos, sin; |
| import std.math.exponential : exp, log; |
| immutable r = abs(this); |
| immutable t = arg(this); |
| immutable ab = r^^z.re * exp(-t*z.im); |
| immutable ar = t*z.re + log(r)*z.im; |
| |
| re = ab*cos(ar); |
| im = ab*sin(ar); |
| return this; |
| } |
| |
| // complex += numeric, complex -= numeric |
| ref Complex opOpAssign(string op, U : T)(const U a) |
| if (op == "+" || op == "-") |
| { |
| mixin ("re "~op~"= a;"); |
| return this; |
| } |
| |
| // complex *= numeric, complex /= numeric |
| ref Complex opOpAssign(string op, U : T)(const U a) |
| if (op == "*" || op == "/") |
| { |
| mixin ("re "~op~"= a;"); |
| mixin ("im "~op~"= a;"); |
| return this; |
| } |
| |
| // complex ^^= real |
| ref Complex opOpAssign(string op, R)(const R r) |
| if (op == "^^" && isFloatingPoint!R) |
| { |
| import core.math : cos, sin; |
| immutable ab = abs(this)^^r; |
| immutable ar = arg(this)*r; |
| re = ab*cos(ar); |
| im = ab*sin(ar); |
| return this; |
| } |
| |
| // complex ^^= int |
| ref Complex opOpAssign(string op, U)(const U i) |
| if (op == "^^" && isIntegral!U) |
| { |
| switch (i) |
| { |
| case 0: |
| re = 1.0; |
| im = 0.0; |
| break; |
| case 1: |
| // identity; do nothing |
| break; |
| case 2: |
| this *= this; |
| break; |
| case 3: |
| auto z = this; |
| this *= z; |
| this *= z; |
| break; |
| default: |
| this ^^= cast(real) i; |
| } |
| return this; |
| } |
| } |
| |
| @safe pure nothrow unittest |
| { |
| import std.complex; |
| static import core.math; |
| import std.math; |
| |
| enum EPS = double.epsilon; |
| auto c1 = complex(1.0, 1.0); |
| |
| // Check unary operations. |
| auto c2 = Complex!double(0.5, 2.0); |
| |
| assert(c2 == +c2); |
| |
| assert((-c2).re == -(c2.re)); |
| assert((-c2).im == -(c2.im)); |
| assert(c2 == -(-c2)); |
| |
| // Check complex-complex operations. |
| auto cpc = c1 + c2; |
| assert(cpc.re == c1.re + c2.re); |
| assert(cpc.im == c1.im + c2.im); |
| |
| auto cmc = c1 - c2; |
| assert(cmc.re == c1.re - c2.re); |
| assert(cmc.im == c1.im - c2.im); |
| |
| auto ctc = c1 * c2; |
| assert(isClose(abs(ctc), abs(c1)*abs(c2), EPS)); |
| assert(isClose(arg(ctc), arg(c1)+arg(c2), EPS)); |
| |
| auto cdc = c1 / c2; |
| assert(isClose(abs(cdc), abs(c1)/abs(c2), EPS)); |
| assert(isClose(arg(cdc), arg(c1)-arg(c2), EPS)); |
| |
| auto cec = c1^^c2; |
| assert(isClose(cec.re, 0.1152413197994, 1e-12)); |
| assert(isClose(cec.im, 0.2187079045274, 1e-12)); |
| |
| // Check complex-real operations. |
| double a = 123.456; |
| |
| auto cpr = c1 + a; |
| assert(cpr.re == c1.re + a); |
| assert(cpr.im == c1.im); |
| |
| auto cmr = c1 - a; |
| assert(cmr.re == c1.re - a); |
| assert(cmr.im == c1.im); |
| |
| auto ctr = c1 * a; |
| assert(ctr.re == c1.re*a); |
| assert(ctr.im == c1.im*a); |
| |
| auto cdr = c1 / a; |
| assert(isClose(abs(cdr), abs(c1)/a, EPS)); |
| assert(isClose(arg(cdr), arg(c1), EPS)); |
| |
| auto cer = c1^^3.0; |
| assert(isClose(abs(cer), abs(c1)^^3, EPS)); |
| assert(isClose(arg(cer), arg(c1)*3, EPS)); |
| |
| auto rpc = a + c1; |
| assert(rpc == cpr); |
| |
| auto rmc = a - c1; |
| assert(rmc.re == a-c1.re); |
| assert(rmc.im == -c1.im); |
| |
| auto rtc = a * c1; |
| assert(rtc == ctr); |
| |
| auto rdc = a / c1; |
| assert(isClose(abs(rdc), a/abs(c1), EPS)); |
| assert(isClose(arg(rdc), -arg(c1), EPS)); |
| |
| rdc = a / c2; |
| assert(isClose(abs(rdc), a/abs(c2), EPS)); |
| assert(isClose(arg(rdc), -arg(c2), EPS)); |
| |
| auto rec1a = 1.0 ^^ c1; |
| assert(rec1a.re == 1.0); |
| assert(rec1a.im == 0.0); |
| |
| auto rec2a = 1.0 ^^ c2; |
| assert(rec2a.re == 1.0); |
| assert(rec2a.im == 0.0); |
| |
| auto rec1b = (-1.0) ^^ c1; |
| assert(isClose(abs(rec1b), std.math.exp(-PI * c1.im), EPS)); |
| auto arg1b = arg(rec1b); |
| /* The argument _should_ be PI, but floating-point rounding error |
| * means that in fact the imaginary part is very slightly negative. |
| */ |
| assert(isClose(arg1b, PI, EPS) || isClose(arg1b, -PI, EPS)); |
| |
| auto rec2b = (-1.0) ^^ c2; |
| assert(isClose(abs(rec2b), std.math.exp(-2 * PI), EPS)); |
| assert(isClose(arg(rec2b), PI_2, EPS)); |
| |
| auto rec3a = 0.79 ^^ complex(6.8, 5.7); |
| auto rec3b = complex(0.79, 0.0) ^^ complex(6.8, 5.7); |
| assert(isClose(rec3a.re, rec3b.re, 1e-14)); |
| assert(isClose(rec3a.im, rec3b.im, 1e-14)); |
| |
| auto rec4a = (-0.79) ^^ complex(6.8, 5.7); |
| auto rec4b = complex(-0.79, 0.0) ^^ complex(6.8, 5.7); |
| assert(isClose(rec4a.re, rec4b.re, 1e-14)); |
| assert(isClose(rec4a.im, rec4b.im, 1e-14)); |
| |
| auto rer = a ^^ complex(2.0, 0.0); |
| auto rcheck = a ^^ 2.0; |
| static assert(is(typeof(rcheck) == double)); |
| assert(feqrel(rer.re, rcheck) == double.mant_dig); |
| assert(isIdentical(rer.re, rcheck)); |
| assert(rer.im == 0.0); |
| |
| auto rer2 = (-a) ^^ complex(2.0, 0.0); |
| rcheck = (-a) ^^ 2.0; |
| assert(feqrel(rer2.re, rcheck) == double.mant_dig); |
| assert(isIdentical(rer2.re, rcheck)); |
| assert(isClose(rer2.im, 0.0, 0.0, 1e-10)); |
| |
| auto rer3 = (-a) ^^ complex(-2.0, 0.0); |
| rcheck = (-a) ^^ (-2.0); |
| assert(feqrel(rer3.re, rcheck) == double.mant_dig); |
| assert(isIdentical(rer3.re, rcheck)); |
| assert(isClose(rer3.im, 0.0, 0.0, EPS)); |
| |
| auto rer4 = a ^^ complex(-2.0, 0.0); |
| rcheck = a ^^ (-2.0); |
| assert(feqrel(rer4.re, rcheck) == double.mant_dig); |
| assert(isIdentical(rer4.re, rcheck)); |
| assert(rer4.im == 0.0); |
| |
| // Check Complex-int operations. |
| foreach (i; 0 .. 6) |
| { |
| auto cei = c1^^i; |
| assert(isClose(abs(cei), abs(c1)^^i, 1e-14)); |
| // Use cos() here to deal with arguments that go outside |
| // the (-pi,pi] interval (only an issue for i>3). |
| assert(isClose(core.math.cos(arg(cei)), core.math.cos(arg(c1)*i), 1e-14)); |
| } |
| |
| // Check operations between different complex types. |
| auto cf = Complex!float(1.0, 1.0); |
| auto cr = Complex!real(1.0, 1.0); |
| auto c1pcf = c1 + cf; |
| auto c1pcr = c1 + cr; |
| static assert(is(typeof(c1pcf) == Complex!double)); |
| static assert(is(typeof(c1pcr) == Complex!real)); |
| assert(c1pcf.re == c1pcr.re); |
| assert(c1pcf.im == c1pcr.im); |
| |
| auto c1c = c1; |
| auto c2c = c2; |
| |
| c1c /= c1; |
| assert(isClose(c1c.re, 1.0, EPS)); |
| assert(isClose(c1c.im, 0.0, 0.0, EPS)); |
| |
| c1c = c1; |
| c1c /= c2; |
| assert(isClose(c1c.re, 0.5882352941177, 1e-12)); |
| assert(isClose(c1c.im, -0.3529411764706, 1e-12)); |
| |
| c2c /= c1; |
| assert(isClose(c2c.re, 1.25, EPS)); |
| assert(isClose(c2c.im, 0.75, EPS)); |
| |
| c2c = c2; |
| c2c /= c2; |
| assert(isClose(c2c.re, 1.0, EPS)); |
| assert(isClose(c2c.im, 0.0, 0.0, EPS)); |
| } |
| |
| @safe pure nothrow unittest |
| { |
| // Initialization |
| Complex!double a = 1; |
| assert(a.re == 1 && a.im == 0); |
| Complex!double b = 1.0; |
| assert(b.re == 1.0 && b.im == 0); |
| Complex!double c = Complex!real(1.0, 2); |
| assert(c.re == 1.0 && c.im == 2); |
| } |
| |
| @safe pure nothrow unittest |
| { |
| // Assignments and comparisons |
| Complex!double z; |
| |
| z = 1; |
| assert(z == 1); |
| assert(z.re == 1.0 && z.im == 0.0); |
| |
| z = 2.0; |
| assert(z == 2.0); |
| assert(z.re == 2.0 && z.im == 0.0); |
| |
| z = 1.0L; |
| assert(z == 1.0L); |
| assert(z.re == 1.0 && z.im == 0.0); |
| |
| auto w = Complex!real(1.0, 1.0); |
| z = w; |
| assert(z == w); |
| assert(z.re == 1.0 && z.im == 1.0); |
| |
| auto c = Complex!float(2.0, 2.0); |
| z = c; |
| assert(z == c); |
| assert(z.re == 2.0 && z.im == 2.0); |
| } |
| |
| |
| /* Makes Complex!(Complex!T) fold to Complex!T. |
| |
| The rationale for this is that just like the real line is a |
| subspace of the complex plane, the complex plane is a subspace |
| of itself. Example of usage: |
| --- |
| Complex!T addI(T)(T x) |
| { |
| return x + Complex!T(0.0, 1.0); |
| } |
| --- |
| The above will work if T is both real and complex. |
| */ |
| template Complex(T) |
| if (is(T R == Complex!R)) |
| { |
| alias Complex = T; |
| } |
| |
| @safe pure nothrow unittest |
| { |
| static assert(is(Complex!(Complex!real) == Complex!real)); |
| |
| Complex!T addI(T)(T x) |
| { |
| return x + Complex!T(0.0, 1.0); |
| } |
| |
| auto z1 = addI(1.0); |
| assert(z1.re == 1.0 && z1.im == 1.0); |
| |
| enum one = Complex!double(1.0, 0.0); |
| auto z2 = addI(one); |
| assert(z1 == z2); |
| } |
| |
| |
| /** |
| Params: z = A complex number. |
| Returns: The absolute value (or modulus) of `z`. |
| */ |
| T abs(T)(Complex!T z) @safe pure nothrow @nogc |
| { |
| import std.math.algebraic : hypot; |
| return hypot(z.re, z.im); |
| } |
| |
| /// |
| @safe pure nothrow unittest |
| { |
| static import core.math; |
| assert(abs(complex(1.0)) == 1.0); |
| assert(abs(complex(0.0, 1.0)) == 1.0); |
| assert(abs(complex(1.0L, -2.0L)) == core.math.sqrt(5.0L)); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| static import core.math; |
| assert(abs(complex(0.0L, -3.2L)) == 3.2L); |
| assert(abs(complex(0.0L, 71.6L)) == 71.6L); |
| assert(abs(complex(-1.0L, 1.0L)) == core.math.sqrt(2.0L)); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| import std.meta : AliasSeq; |
| static foreach (T; AliasSeq!(float, double, real)) |
| {{ |
| static import std.math; |
| Complex!T a = complex(T(-12), T(3)); |
| T b = std.math.hypot(a.re, a.im); |
| assert(std.math.isClose(abs(a), b)); |
| assert(std.math.isClose(abs(-a), b)); |
| }} |
| } |
| |
| /++ |
| Params: |
| z = A complex number. |
| x = A real number. |
| Returns: The squared modulus of `z`. |
| For genericity, if called on a real number, returns its square. |
| +/ |
| T sqAbs(T)(Complex!T z) @safe pure nothrow @nogc |
| { |
| return z.re*z.re + z.im*z.im; |
| } |
| |
| /// |
| @safe pure nothrow unittest |
| { |
| import std.math.operations : isClose; |
| assert(sqAbs(complex(0.0)) == 0.0); |
| assert(sqAbs(complex(1.0)) == 1.0); |
| assert(sqAbs(complex(0.0, 1.0)) == 1.0); |
| assert(isClose(sqAbs(complex(1.0L, -2.0L)), 5.0L)); |
| assert(isClose(sqAbs(complex(-3.0L, 1.0L)), 10.0L)); |
| assert(isClose(sqAbs(complex(1.0f,-1.0f)), 2.0f)); |
| } |
| |
| /// ditto |
| T sqAbs(T)(const T x) @safe pure nothrow @nogc |
| if (isFloatingPoint!T) |
| { |
| return x*x; |
| } |
| |
| @safe pure nothrow unittest |
| { |
| import std.math.operations : isClose; |
| assert(sqAbs(0.0) == 0.0); |
| assert(sqAbs(-1.0) == 1.0); |
| assert(isClose(sqAbs(-3.0L), 9.0L)); |
| assert(isClose(sqAbs(-5.0f), 25.0f)); |
| } |
| |
| |
| /** |
| Params: z = A complex number. |
| Returns: The argument (or phase) of `z`. |
| */ |
| T arg(T)(Complex!T z) @safe pure nothrow @nogc |
| { |
| import std.math.trigonometry : atan2; |
| return atan2(z.im, z.re); |
| } |
| |
| /// |
| @safe pure nothrow unittest |
| { |
| import std.math.constants : PI_2, PI_4; |
| assert(arg(complex(1.0)) == 0.0); |
| assert(arg(complex(0.0L, 1.0L)) == PI_2); |
| assert(arg(complex(1.0L, 1.0L)) == PI_4); |
| } |
| |
| |
| /** |
| * Extracts the norm of a complex number. |
| * Params: |
| * z = A complex number |
| * Returns: |
| * The squared magnitude of `z`. |
| */ |
| T norm(T)(Complex!T z) @safe pure nothrow @nogc |
| { |
| return z.re * z.re + z.im * z.im; |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| import std.math.operations : isClose; |
| import std.math.constants : PI; |
| assert(norm(complex(3.0, 4.0)) == 25.0); |
| assert(norm(fromPolar(5.0, 0.0)) == 25.0); |
| assert(isClose(norm(fromPolar(5.0L, PI / 6)), 25.0L)); |
| assert(isClose(norm(fromPolar(5.0L, 13 * PI / 6)), 25.0L)); |
| } |
| |
| |
| /** |
| Params: z = A complex number. |
| Returns: The complex conjugate of `z`. |
| */ |
| Complex!T conj(T)(Complex!T z) @safe pure nothrow @nogc |
| { |
| return Complex!T(z.re, -z.im); |
| } |
| |
| /// |
| @safe pure nothrow unittest |
| { |
| assert(conj(complex(1.0)) == complex(1.0)); |
| assert(conj(complex(1.0, 2.0)) == complex(1.0, -2.0)); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| import std.meta : AliasSeq; |
| static foreach (T; AliasSeq!(float, double, real)) |
| {{ |
| auto c = Complex!T(7, 3L); |
| assert(conj(c) == Complex!T(7, -3L)); |
| auto z = Complex!T(0, -3.2L); |
| assert(conj(z) == -z); |
| }} |
| } |
| |
| /** |
| * Returns the projection of `z` onto the Riemann sphere. |
| * Params: |
| * z = A complex number |
| * Returns: |
| * The projection of `z` onto the Riemann sphere. |
| */ |
| Complex!T proj(T)(Complex!T z) |
| { |
| static import std.math; |
| |
| if (std.math.isInfinity(z.re) || std.math.isInfinity(z.im)) |
| return Complex!T(T.infinity, std.math.copysign(0.0, z.im)); |
| |
| return z; |
| } |
| |
| /// |
| @safe pure nothrow unittest |
| { |
| assert(proj(complex(1.0)) == complex(1.0)); |
| assert(proj(complex(double.infinity, 5.0)) == complex(double.infinity, 0.0)); |
| assert(proj(complex(5.0, -double.infinity)) == complex(double.infinity, -0.0)); |
| } |
| |
| |
| /** |
| Constructs a complex number given its absolute value and argument. |
| Params: |
| modulus = The modulus |
| argument = The argument |
| Returns: The complex number with the given modulus and argument. |
| */ |
| Complex!(CommonType!(T, U)) fromPolar(T, U)(const T modulus, const U argument) |
| @safe pure nothrow @nogc |
| { |
| import core.math : sin, cos; |
| return Complex!(CommonType!(T,U)) |
| (modulus*cos(argument), modulus*sin(argument)); |
| } |
| |
| /// |
| @safe pure nothrow unittest |
| { |
| import core.math; |
| import std.math.operations : isClose; |
| import std.math.algebraic : sqrt; |
| import std.math.constants : PI_4; |
| auto z = fromPolar(core.math.sqrt(2.0), PI_4); |
| assert(isClose(z.re, 1.0L)); |
| assert(isClose(z.im, 1.0L)); |
| } |
| |
| version (StdUnittest) |
| { |
| // Helper function for comparing two Complex numbers. |
| int ceqrel(T)(const Complex!T x, const Complex!T y) @safe pure nothrow @nogc |
| { |
| import std.math.operations : feqrel; |
| const r = feqrel(x.re, y.re); |
| const i = feqrel(x.im, y.im); |
| return r < i ? r : i; |
| } |
| } |
| |
| /** |
| Trigonometric functions on complex numbers. |
| |
| Params: z = A complex number. |
| Returns: The sine, cosine and tangent of `z`, respectively. |
| */ |
| Complex!T sin(T)(Complex!T z) @safe pure nothrow @nogc |
| { |
| auto cs = expi(z.re); |
| auto csh = coshisinh(z.im); |
| return typeof(return)(cs.im * csh.re, cs.re * csh.im); |
| } |
| |
| /// |
| @safe pure nothrow unittest |
| { |
| static import core.math; |
| assert(sin(complex(0.0)) == 0.0); |
| assert(sin(complex(2.0, 0)) == core.math.sin(2.0)); |
| } |
| |
| @safe pure nothrow unittest |
| { |
| static import core.math; |
| assert(ceqrel(sin(complex(2.0L, 0)), complex(core.math.sin(2.0L))) >= real.mant_dig - 1); |
| } |
| |
| /// ditto |
| Complex!T cos(T)(Complex!T z) @safe pure nothrow @nogc |
| { |
| auto cs = expi(z.re); |
| auto csh = coshisinh(z.im); |
| return typeof(return)(cs.re * csh.re, - cs.im * csh.im); |
| } |
| |
| /// |
| @safe pure nothrow unittest |
| { |
| static import core.math; |
| static import std.math; |
| assert(cos(complex(0.0)) == 1.0); |
| assert(cos(complex(1.3, 0.0)) == core.math.cos(1.3)); |
| assert(cos(complex(0.0, 5.2)) == std.math.cosh(5.2)); |
| } |
| |
| @safe pure nothrow unittest |
| { |
| static import core.math; |
| static import std.math; |
| assert(ceqrel(cos(complex(0, 5.2L)), complex(std.math.cosh(5.2L), 0.0L)) >= real.mant_dig - 1); |
| assert(ceqrel(cos(complex(1.3L)), complex(core.math.cos(1.3L))) >= real.mant_dig - 1); |
| } |
| |
| /// ditto |
| Complex!T tan(T)(Complex!T z) @safe pure nothrow @nogc |
| { |
| return sin(z) / cos(z); |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| static import std.math; |
| |
| int ceqrel(T)(const Complex!T x, const Complex!T y) @safe pure nothrow @nogc |
| { |
| import std.math.operations : feqrel; |
| const r = feqrel(x.re, y.re); |
| const i = feqrel(x.im, y.im); |
| return r < i ? r : i; |
| } |
| assert(ceqrel(tan(complex(1.0, 0.0)), complex(std.math.tan(1.0), 0.0)) >= double.mant_dig - 2); |
| assert(ceqrel(tan(complex(0.0, 1.0)), complex(0.0, std.math.tanh(1.0))) >= double.mant_dig - 2); |
| } |
| |
| /** |
| Inverse trigonometric functions on complex numbers. |
| |
| Params: z = A complex number. |
| Returns: The arcsine, arccosine and arctangent of `z`, respectively. |
| */ |
| Complex!T asin(T)(Complex!T z) @safe pure nothrow @nogc |
| { |
| auto ash = asinh(Complex!T(-z.im, z.re)); |
| return Complex!T(ash.im, -ash.re); |
| } |
| |
| /// |
| @safe pure nothrow unittest |
| { |
| import std.math.operations : isClose; |
| import std.math.constants : PI; |
| assert(asin(complex(0.0)) == 0.0); |
| assert(isClose(asin(complex(0.5L)), PI / 6)); |
| } |
| |
| @safe pure nothrow unittest |
| { |
| import std.math.operations : isClose; |
| import std.math.constants : PI; |
| version (DigitalMars) {} else // Disabled because of issue 21376 |
| assert(isClose(asin(complex(0.5f)), float(PI) / 6)); |
| } |
| |
| /// ditto |
| Complex!T acos(T)(Complex!T z) @safe pure nothrow @nogc |
| { |
| static import std.math; |
| auto as = asin(z); |
| return Complex!T(T(std.math.PI_2) - as.re, as.im); |
| } |
| |
| /// |
| @safe pure nothrow unittest |
| { |
| import std.math.operations : isClose; |
| import std.math.constants : PI; |
| import std.math.trigonometry : std_math_acos = acos; |
| assert(acos(complex(0.0)) == std_math_acos(0.0)); |
| assert(isClose(acos(complex(0.5L)), PI / 3)); |
| } |
| |
| @safe pure nothrow unittest |
| { |
| import std.math.operations : isClose; |
| import std.math.constants : PI; |
| version (DigitalMars) {} else // Disabled because of issue 21376 |
| assert(isClose(acos(complex(0.5f)), float(PI) / 3)); |
| } |
| |
| /// ditto |
| Complex!T atan(T)(Complex!T z) @safe pure nothrow @nogc |
| { |
| static import std.math; |
| const T re2 = z.re * z.re; |
| const T x = 1 - re2 - z.im * z.im; |
| |
| T num = z.im + 1; |
| T den = z.im - 1; |
| |
| num = re2 + num * num; |
| den = re2 + den * den; |
| |
| return Complex!T(T(0.5) * std.math.atan2(2 * z.re, x), |
| T(0.25) * std.math.log(num / den)); |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| import std.math.operations : isClose; |
| import std.math.constants : PI; |
| assert(atan(complex(0.0)) == 0.0); |
| assert(isClose(atan(sqrt(complex(3.0L))), PI / 3)); |
| assert(isClose(atan(sqrt(complex(3.0f))), float(PI) / 3)); |
| } |
| |
| /** |
| Hyperbolic trigonometric functions on complex numbers. |
| |
| Params: z = A complex number. |
| Returns: The hyperbolic sine, cosine and tangent of `z`, respectively. |
| */ |
| Complex!T sinh(T)(Complex!T z) @safe pure nothrow @nogc |
| { |
| static import core.math, std.math; |
| return Complex!T(std.math.sinh(z.re) * core.math.cos(z.im), |
| std.math.cosh(z.re) * core.math.sin(z.im)); |
| } |
| |
| /// |
| @safe pure nothrow unittest |
| { |
| static import std.math; |
| assert(sinh(complex(0.0)) == 0.0); |
| assert(sinh(complex(1.0L)) == std.math.sinh(1.0L)); |
| assert(sinh(complex(1.0f)) == std.math.sinh(1.0f)); |
| } |
| |
| /// ditto |
| Complex!T cosh(T)(Complex!T z) @safe pure nothrow @nogc |
| { |
| static import core.math, std.math; |
| return Complex!T(std.math.cosh(z.re) * core.math.cos(z.im), |
| std.math.sinh(z.re) * core.math.sin(z.im)); |
| } |
| |
| /// |
| @safe pure nothrow unittest |
| { |
| static import std.math; |
| assert(cosh(complex(0.0)) == 1.0); |
| assert(cosh(complex(1.0L)) == std.math.cosh(1.0L)); |
| assert(cosh(complex(1.0f)) == std.math.cosh(1.0f)); |
| } |
| |
| /// ditto |
| Complex!T tanh(T)(Complex!T z) @safe pure nothrow @nogc |
| { |
| return sinh(z) / cosh(z); |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| import std.math.operations : isClose; |
| import std.math.trigonometry : std_math_tanh = tanh; |
| assert(tanh(complex(0.0)) == 0.0); |
| assert(isClose(tanh(complex(1.0L)), std_math_tanh(1.0L))); |
| assert(isClose(tanh(complex(1.0f)), std_math_tanh(1.0f))); |
| } |
| |
| /** |
| Inverse hyperbolic trigonometric functions on complex numbers. |
| |
| Params: z = A complex number. |
| Returns: The hyperbolic arcsine, arccosine and arctangent of `z`, respectively. |
| */ |
| Complex!T asinh(T)(Complex!T z) @safe pure nothrow @nogc |
| { |
| auto t = Complex!T((z.re - z.im) * (z.re + z.im) + 1, 2 * z.re * z.im); |
| return log(sqrt(t) + z); |
| } |
| |
| /// |
| @safe pure nothrow unittest |
| { |
| import std.math.operations : isClose; |
| import std.math.trigonometry : std_math_asinh = asinh; |
| assert(asinh(complex(0.0)) == 0.0); |
| assert(isClose(asinh(complex(1.0L)), std_math_asinh(1.0L))); |
| assert(isClose(asinh(complex(1.0f)), std_math_asinh(1.0f))); |
| } |
| |
| /// ditto |
| Complex!T acosh(T)(Complex!T z) @safe pure nothrow @nogc |
| { |
| return 2 * log(sqrt(T(0.5) * (z + 1)) + sqrt(T(0.5) * (z - 1))); |
| } |
| |
| /// |
| @safe pure nothrow unittest |
| { |
| import std.math.operations : isClose; |
| import std.math.trigonometry : std_math_acosh = acosh; |
| assert(acosh(complex(1.0)) == 0.0); |
| assert(isClose(acosh(complex(3.0L)), std_math_acosh(3.0L))); |
| assert(isClose(acosh(complex(3.0f)), std_math_acosh(3.0f))); |
| } |
| |
| /// ditto |
| Complex!T atanh(T)(Complex!T z) @safe pure nothrow @nogc |
| { |
| static import std.math; |
| const T im2 = z.im * z.im; |
| const T x = 1 - im2 - z.re * z.re; |
| |
| T num = 1 + z.re; |
| T den = 1 - z.re; |
| |
| num = im2 + num * num; |
| den = im2 + den * den; |
| |
| return Complex!T(T(0.25) * (std.math.log(num) - std.math.log(den)), |
| T(0.5) * std.math.atan2(2 * z.im, x)); |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| import std.math.operations : isClose; |
| import std.math.trigonometry : std_math_atanh = atanh; |
| assert(atanh(complex(0.0)) == 0.0); |
| assert(isClose(atanh(complex(0.5L)), std_math_atanh(0.5L))); |
| assert(isClose(atanh(complex(0.5f)), std_math_atanh(0.5f))); |
| } |
| |
| /** |
| Params: y = A real number. |
| Returns: The value of cos(y) + i sin(y). |
| |
| Note: |
| `expi` is included here for convenience and for easy migration of code. |
| */ |
| Complex!real expi(real y) @trusted pure nothrow @nogc |
| { |
| import core.math : cos, sin; |
| return Complex!real(cos(y), sin(y)); |
| } |
| |
| /// |
| @safe pure nothrow unittest |
| { |
| import core.math : cos, sin; |
| assert(expi(0.0L) == 1.0L); |
| assert(expi(1.3e5L) == complex(cos(1.3e5L), sin(1.3e5L))); |
| } |
| |
| /** |
| Params: y = A real number. |
| Returns: The value of cosh(y) + i sinh(y) |
| |
| Note: |
| `coshisinh` is included here for convenience and for easy migration of code. |
| */ |
| Complex!real coshisinh(real y) @safe pure nothrow @nogc |
| { |
| static import core.math; |
| static import std.math; |
| if (core.math.fabs(y) <= 0.5) |
| return Complex!real(std.math.cosh(y), std.math.sinh(y)); |
| else |
| { |
| auto z = std.math.exp(y); |
| auto zi = 0.5 / z; |
| z = 0.5 * z; |
| return Complex!real(z + zi, z - zi); |
| } |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| import std.math.trigonometry : cosh, sinh; |
| assert(coshisinh(3.0L) == complex(cosh(3.0L), sinh(3.0L))); |
| } |
| |
| /** |
| Params: z = A complex number. |
| Returns: The square root of `z`. |
| */ |
| Complex!T sqrt(T)(Complex!T z) @safe pure nothrow @nogc |
| { |
| static import core.math; |
| typeof(return) c; |
| real x,y,w,r; |
| |
| if (z == 0) |
| { |
| c = typeof(return)(0, 0); |
| } |
| else |
| { |
| real z_re = z.re; |
| real z_im = z.im; |
| |
| x = core.math.fabs(z_re); |
| y = core.math.fabs(z_im); |
| if (x >= y) |
| { |
| r = y / x; |
| w = core.math.sqrt(x) |
| * core.math.sqrt(0.5 * (1 + core.math.sqrt(1 + r * r))); |
| } |
| else |
| { |
| r = x / y; |
| w = core.math.sqrt(y) |
| * core.math.sqrt(0.5 * (r + core.math.sqrt(1 + r * r))); |
| } |
| |
| if (z_re >= 0) |
| { |
| c = typeof(return)(w, z_im / (w + w)); |
| } |
| else |
| { |
| if (z_im < 0) |
| w = -w; |
| c = typeof(return)(z_im / (w + w), w); |
| } |
| } |
| return c; |
| } |
| |
| /// |
| @safe pure nothrow unittest |
| { |
| static import core.math; |
| assert(sqrt(complex(0.0)) == 0.0); |
| assert(sqrt(complex(1.0L, 0)) == core.math.sqrt(1.0L)); |
| assert(sqrt(complex(-1.0L, 0)) == complex(0, 1.0L)); |
| assert(sqrt(complex(-8.0, -6.0)) == complex(1.0, -3.0)); |
| } |
| |
| @safe pure nothrow unittest |
| { |
| import std.math.operations : isClose; |
| |
| auto c1 = complex(1.0, 1.0); |
| auto c2 = Complex!double(0.5, 2.0); |
| |
| auto c1s = sqrt(c1); |
| assert(isClose(c1s.re, 1.09868411347)); |
| assert(isClose(c1s.im, 0.455089860562)); |
| |
| auto c2s = sqrt(c2); |
| assert(isClose(c2s.re, 1.13171392428)); |
| assert(isClose(c2s.im, 0.883615530876)); |
| } |
| |
| // support %f formatting of complex numbers |
| // https://issues.dlang.org/show_bug.cgi?id=10881 |
| @safe unittest |
| { |
| import std.format : format; |
| |
| auto x = complex(1.2, 3.4); |
| assert(format("%.2f", x) == "1.20+3.40i"); |
| |
| auto y = complex(1.2, -3.4); |
| assert(format("%.2f", y) == "1.20-3.40i"); |
| } |
| |
| @safe unittest |
| { |
| // Test wide string formatting |
| import std.format.write : formattedWrite; |
| wstring wformat(T)(string format, Complex!T c) |
| { |
| import std.array : appender; |
| auto w = appender!wstring(); |
| auto n = formattedWrite(w, format, c); |
| return w.data; |
| } |
| |
| auto x = complex(1.2, 3.4); |
| assert(wformat("%.2f", x) == "1.20+3.40i"w); |
| } |
| |
| @safe unittest |
| { |
| // Test ease of use (vanilla toString() should be supported) |
| assert(complex(1.2, 3.4).toString() == "1.2+3.4i"); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| auto c = complex(3.0L, 4.0L); |
| c = sqrt(c); |
| assert(c.re == 2.0L); |
| assert(c.im == 1.0L); |
| } |
| |
| /** |
| * Calculates e$(SUPERSCRIPT x). |
| * Params: |
| * x = A complex number |
| * Returns: |
| * The complex base e exponential of `x` |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH exp(x))) |
| * $(TR $(TD ($(PLUSMN)0, +0)) $(TD (1, +0))) |
| * $(TR $(TD (any, +$(INFIN))) $(TD ($(NAN), $(NAN)))) |
| * $(TR $(TD (any, $(NAN)) $(TD ($(NAN), $(NAN))))) |
| * $(TR $(TD (+$(INFIN), +0)) $(TD (+$(INFIN), +0))) |
| * $(TR $(TD (-$(INFIN), any)) $(TD ($(PLUSMN)0, cis(x.im)))) |
| * $(TR $(TD (+$(INFIN), any)) $(TD ($(PLUSMN)$(INFIN), cis(x.im)))) |
| * $(TR $(TD (-$(INFIN), +$(INFIN))) $(TD ($(PLUSMN)0, $(PLUSMN)0))) |
| * $(TR $(TD (+$(INFIN), +$(INFIN))) $(TD ($(PLUSMN)$(INFIN), $(NAN)))) |
| * $(TR $(TD (-$(INFIN), $(NAN))) $(TD ($(PLUSMN)0, $(PLUSMN)0))) |
| * $(TR $(TD (+$(INFIN), $(NAN))) $(TD ($(PLUSMN)$(INFIN), $(NAN)))) |
| * $(TR $(TD ($(NAN), +0)) $(TD ($(NAN), +0))) |
| * $(TR $(TD ($(NAN), any)) $(TD ($(NAN), $(NAN)))) |
| * $(TR $(TD ($(NAN), $(NAN))) $(TD ($(NAN), $(NAN)))) |
| * ) |
| */ |
| Complex!T exp(T)(Complex!T x) @trusted pure nothrow @nogc // TODO: @safe |
| { |
| static import std.math; |
| |
| // Handle special cases explicitly here, as fromPolar will otherwise |
| // cause them to return Complex!T(NaN, NaN), or with the wrong sign. |
| if (std.math.isInfinity(x.re)) |
| { |
| if (std.math.isNaN(x.im)) |
| { |
| if (std.math.signbit(x.re)) |
| return Complex!T(0, std.math.copysign(0, x.im)); |
| else |
| return x; |
| } |
| if (std.math.isInfinity(x.im)) |
| { |
| if (std.math.signbit(x.re)) |
| return Complex!T(0, std.math.copysign(0, x.im)); |
| else |
| return Complex!T(T.infinity, -T.nan); |
| } |
| if (x.im == 0.0) |
| { |
| if (std.math.signbit(x.re)) |
| return Complex!T(0.0); |
| else |
| return Complex!T(T.infinity); |
| } |
| } |
| if (std.math.isNaN(x.re)) |
| { |
| if (std.math.isNaN(x.im) || std.math.isInfinity(x.im)) |
| return Complex!T(T.nan, T.nan); |
| if (x.im == 0.0) |
| return x; |
| } |
| if (x.re == 0.0) |
| { |
| if (std.math.isNaN(x.im) || std.math.isInfinity(x.im)) |
| return Complex!T(T.nan, T.nan); |
| if (x.im == 0.0) |
| return Complex!T(1.0, 0.0); |
| } |
| |
| return fromPolar!(T, T)(std.math.exp(x.re), x.im); |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| import std.math.operations : isClose; |
| import std.math.constants : PI; |
| |
| assert(exp(complex(0.0, 0.0)) == complex(1.0, 0.0)); |
| |
| auto a = complex(2.0, 1.0); |
| assert(exp(conj(a)) == conj(exp(a))); |
| |
| auto b = exp(complex(0.0L, 1.0L) * PI); |
| assert(isClose(b, -1.0L, 0.0, 1e-15)); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| import std.math.traits : isNaN, isInfinity; |
| |
| auto a = exp(complex(0.0, double.infinity)); |
| assert(a.re.isNaN && a.im.isNaN); |
| auto b = exp(complex(0.0, double.infinity)); |
| assert(b.re.isNaN && b.im.isNaN); |
| auto c = exp(complex(0.0, double.nan)); |
| assert(c.re.isNaN && c.im.isNaN); |
| |
| auto d = exp(complex(+double.infinity, 0.0)); |
| assert(d == complex(double.infinity, 0.0)); |
| auto e = exp(complex(-double.infinity, 0.0)); |
| assert(e == complex(0.0)); |
| auto f = exp(complex(-double.infinity, 1.0)); |
| assert(f == complex(0.0)); |
| auto g = exp(complex(+double.infinity, 1.0)); |
| assert(g == complex(double.infinity, double.infinity)); |
| auto h = exp(complex(-double.infinity, +double.infinity)); |
| assert(h == complex(0.0)); |
| auto i = exp(complex(+double.infinity, +double.infinity)); |
| assert(i.re.isInfinity && i.im.isNaN); |
| auto j = exp(complex(-double.infinity, double.nan)); |
| assert(j == complex(0.0)); |
| auto k = exp(complex(+double.infinity, double.nan)); |
| assert(k.re.isInfinity && k.im.isNaN); |
| |
| auto l = exp(complex(double.nan, 0)); |
| assert(l.re.isNaN && l.im == 0.0); |
| auto m = exp(complex(double.nan, 1)); |
| assert(m.re.isNaN && m.im.isNaN); |
| auto n = exp(complex(double.nan, double.nan)); |
| assert(n.re.isNaN && n.im.isNaN); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| import std.math.constants : PI; |
| import std.math.operations : isClose; |
| |
| auto a = exp(complex(0.0, -PI)); |
| assert(isClose(a, -1.0, 0.0, 1e-15)); |
| |
| auto b = exp(complex(0.0, -2.0 * PI / 3.0)); |
| assert(isClose(b, complex(-0.5L, -0.866025403784438646763L))); |
| |
| auto c = exp(complex(0.0, PI / 3.0)); |
| assert(isClose(c, complex(0.5L, 0.866025403784438646763L))); |
| |
| auto d = exp(complex(0.0, 2.0 * PI / 3.0)); |
| assert(isClose(d, complex(-0.5L, 0.866025403784438646763L))); |
| |
| auto e = exp(complex(0.0, PI)); |
| assert(isClose(e, -1.0, 0.0, 1e-15)); |
| } |
| |
| /** |
| * Calculate the natural logarithm of x. |
| * The branch cut is along the negative axis. |
| * Params: |
| * x = A complex number |
| * Returns: |
| * The complex natural logarithm of `x` |
| * |
| * $(TABLE_SV |
| * $(TR $(TH x) $(TH log(x))) |
| * $(TR $(TD (-0, +0)) $(TD (-$(INFIN), $(PI)))) |
| * $(TR $(TD (+0, +0)) $(TD (-$(INFIN), +0))) |
| * $(TR $(TD (any, +$(INFIN))) $(TD (+$(INFIN), $(PI)/2))) |
| * $(TR $(TD (any, $(NAN))) $(TD ($(NAN), $(NAN)))) |
| * $(TR $(TD (-$(INFIN), any)) $(TD (+$(INFIN), $(PI)))) |
| * $(TR $(TD (+$(INFIN), any)) $(TD (+$(INFIN), +0))) |
| * $(TR $(TD (-$(INFIN), +$(INFIN))) $(TD (+$(INFIN), 3$(PI)/4))) |
| * $(TR $(TD (+$(INFIN), +$(INFIN))) $(TD (+$(INFIN), $(PI)/4))) |
| * $(TR $(TD ($(PLUSMN)$(INFIN), $(NAN))) $(TD (+$(INFIN), $(NAN)))) |
| * $(TR $(TD ($(NAN), any)) $(TD ($(NAN), $(NAN)))) |
| * $(TR $(TD ($(NAN), +$(INFIN))) $(TD (+$(INFIN), $(NAN)))) |
| * $(TR $(TD ($(NAN), $(NAN))) $(TD ($(NAN), $(NAN)))) |
| * ) |
| */ |
| Complex!T log(T)(Complex!T x) @safe pure nothrow @nogc |
| { |
| static import std.math; |
| |
| // Handle special cases explicitly here for better accuracy. |
| // The order here is important, so that the correct path is chosen. |
| if (std.math.isNaN(x.re)) |
| { |
| if (std.math.isInfinity(x.im)) |
| return Complex!T(T.infinity, T.nan); |
| else |
| return Complex!T(T.nan, T.nan); |
| } |
| if (std.math.isInfinity(x.re)) |
| { |
| if (std.math.isNaN(x.im)) |
| return Complex!T(T.infinity, T.nan); |
| else if (std.math.isInfinity(x.im)) |
| { |
| if (std.math.signbit(x.re)) |
| return Complex!T(T.infinity, std.math.copysign(3.0 * std.math.PI_4, x.im)); |
| else |
| return Complex!T(T.infinity, std.math.copysign(std.math.PI_4, x.im)); |
| } |
| else |
| { |
| if (std.math.signbit(x.re)) |
| return Complex!T(T.infinity, std.math.copysign(std.math.PI, x.im)); |
| else |
| return Complex!T(T.infinity, std.math.copysign(0.0, x.im)); |
| } |
| } |
| if (std.math.isNaN(x.im)) |
| return Complex!T(T.nan, T.nan); |
| if (std.math.isInfinity(x.im)) |
| return Complex!T(T.infinity, std.math.copysign(std.math.PI_2, x.im)); |
| if (x.re == 0.0 && x.im == 0.0) |
| { |
| if (std.math.signbit(x.re)) |
| return Complex!T(-T.infinity, std.math.copysign(std.math.PI, x.im)); |
| else |
| return Complex!T(-T.infinity, std.math.copysign(0.0, x.im)); |
| } |
| |
| return Complex!T(std.math.log(abs(x)), arg(x)); |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| import core.math : sqrt; |
| import std.math.constants : PI; |
| import std.math.operations : isClose; |
| |
| auto a = complex(2.0, 1.0); |
| assert(log(conj(a)) == conj(log(a))); |
| |
| auto b = 2.0 * log10(complex(0.0, 1.0)); |
| auto c = 4.0 * log10(complex(sqrt(2.0) / 2, sqrt(2.0) / 2)); |
| assert(isClose(b, c, 0.0, 1e-15)); |
| |
| assert(log(complex(-1.0L, 0.0L)) == complex(0.0L, PI)); |
| assert(log(complex(-1.0L, -0.0L)) == complex(0.0L, -PI)); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| import std.math.traits : isNaN, isInfinity; |
| import std.math.constants : PI, PI_2, PI_4; |
| |
| auto a = log(complex(-0.0L, 0.0L)); |
| assert(a == complex(-real.infinity, PI)); |
| auto b = log(complex(0.0L, 0.0L)); |
| assert(b == complex(-real.infinity, +0.0L)); |
| auto c = log(complex(1.0L, real.infinity)); |
| assert(c == complex(real.infinity, PI_2)); |
| auto d = log(complex(1.0L, real.nan)); |
| assert(d.re.isNaN && d.im.isNaN); |
| |
| auto e = log(complex(-real.infinity, 1.0L)); |
| assert(e == complex(real.infinity, PI)); |
| auto f = log(complex(real.infinity, 1.0L)); |
| assert(f == complex(real.infinity, 0.0L)); |
| auto g = log(complex(-real.infinity, real.infinity)); |
| assert(g == complex(real.infinity, 3.0 * PI_4)); |
| auto h = log(complex(real.infinity, real.infinity)); |
| assert(h == complex(real.infinity, PI_4)); |
| auto i = log(complex(real.infinity, real.nan)); |
| assert(i.re.isInfinity && i.im.isNaN); |
| |
| auto j = log(complex(real.nan, 1.0L)); |
| assert(j.re.isNaN && j.im.isNaN); |
| auto k = log(complex(real.nan, real.infinity)); |
| assert(k.re.isInfinity && k.im.isNaN); |
| auto l = log(complex(real.nan, real.nan)); |
| assert(l.re.isNaN && l.im.isNaN); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| import std.math.constants : PI; |
| import std.math.operations : isClose; |
| |
| auto a = log(fromPolar(1.0, PI / 6.0)); |
| assert(isClose(a, complex(0.0L, 0.523598775598298873077L), 0.0, 1e-15)); |
| |
| auto b = log(fromPolar(1.0, PI / 3.0)); |
| assert(isClose(b, complex(0.0L, 1.04719755119659774615L), 0.0, 1e-15)); |
| |
| auto c = log(fromPolar(1.0, PI / 2.0)); |
| assert(isClose(c, complex(0.0L, 1.57079632679489661923L), 0.0, 1e-15)); |
| |
| auto d = log(fromPolar(1.0, 2.0 * PI / 3.0)); |
| assert(isClose(d, complex(0.0L, 2.09439510239319549230L), 0.0, 1e-15)); |
| |
| auto e = log(fromPolar(1.0, 5.0 * PI / 6.0)); |
| assert(isClose(e, complex(0.0L, 2.61799387799149436538L), 0.0, 1e-15)); |
| |
| auto f = log(complex(-1.0L, 0.0L)); |
| assert(isClose(f, complex(0.0L, PI), 0.0, 1e-15)); |
| } |
| |
| /** |
| * Calculate the base-10 logarithm of x. |
| * Params: |
| * x = A complex number |
| * Returns: |
| * The complex base 10 logarithm of `x` |
| */ |
| Complex!T log10(T)(Complex!T x) @safe pure nothrow @nogc |
| { |
| static import std.math; |
| |
| return log(x) / Complex!T(std.math.log(10.0)); |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| import core.math : sqrt; |
| import std.math.constants : LN10, PI; |
| import std.math.operations : isClose; |
| |
| auto a = complex(2.0, 1.0); |
| assert(log10(a) == log(a) / log(complex(10.0))); |
| |
| auto b = log10(complex(0.0, 1.0)) * 2.0; |
| auto c = log10(complex(sqrt(2.0) / 2, sqrt(2.0) / 2)) * 4.0; |
| assert(isClose(b, c, 0.0, 1e-15)); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| import std.math.constants : LN10, PI; |
| import std.math.operations : isClose; |
| |
| auto a = log10(fromPolar(1.0, PI / 6.0)); |
| assert(isClose(a, complex(0.0L, 0.227396058973640224580L), 0.0, 1e-15)); |
| |
| auto b = log10(fromPolar(1.0, PI / 3.0)); |
| assert(isClose(b, complex(0.0L, 0.454792117947280449161L), 0.0, 1e-15)); |
| |
| auto c = log10(fromPolar(1.0, PI / 2.0)); |
| assert(isClose(c, complex(0.0L, 0.682188176920920673742L), 0.0, 1e-15)); |
| |
| auto d = log10(fromPolar(1.0, 2.0 * PI / 3.0)); |
| assert(isClose(d, complex(0.0L, 0.909584235894560898323L), 0.0, 1e-15)); |
| |
| auto e = log10(fromPolar(1.0, 5.0 * PI / 6.0)); |
| assert(isClose(e, complex(0.0L, 1.13698029486820112290L), 0.0, 1e-15)); |
| |
| auto f = log10(complex(-1.0L, 0.0L)); |
| assert(isClose(f, complex(0.0L, 1.36437635384184134748L), 0.0, 1e-15)); |
| |
| assert(ceqrel(log10(complex(-100.0L, 0.0L)), complex(2.0L, PI / LN10)) >= real.mant_dig - 1); |
| assert(ceqrel(log10(complex(-100.0L, -0.0L)), complex(2.0L, -PI / LN10)) >= real.mant_dig - 1); |
| } |
| |
| /** |
| * Calculates x$(SUPERSCRIPT n). |
| * The branch cut is on the negative axis. |
| * Params: |
| * x = base |
| * n = exponent |
| * Returns: |
| * `x` raised to the power of `n` |
| */ |
| Complex!T pow(T, Int)(Complex!T x, const Int n) @safe pure nothrow @nogc |
| if (isIntegral!Int) |
| { |
| alias UInt = Unsigned!(Unqual!Int); |
| |
| UInt m = (n < 0) ? -cast(UInt) n : n; |
| Complex!T y = (m % 2) ? x : Complex!T(1); |
| |
| while (m >>= 1) |
| { |
| x *= x; |
| if (m % 2) |
| y *= x; |
| } |
| |
| return (n < 0) ? Complex!T(1) / y : y; |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| import std.math.operations : isClose; |
| |
| auto a = complex(1.0, 2.0); |
| assert(pow(a, 2) == a * a); |
| assert(pow(a, 3) == a * a * a); |
| assert(pow(a, -2) == 1.0 / (a * a)); |
| assert(isClose(pow(a, -3), 1.0 / (a * a * a))); |
| } |
| |
| /// ditto |
| Complex!T pow(T)(Complex!T x, const T n) @trusted pure nothrow @nogc |
| { |
| static import std.math; |
| |
| if (x == 0.0) |
| return Complex!T(0.0); |
| |
| if (x.im == 0 && x.re > 0.0) |
| return Complex!T(std.math.pow(x.re, n)); |
| |
| Complex!T t = log(x); |
| return fromPolar!(T, T)(std.math.exp(n * t.re), n * t.im); |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| import std.math.operations : isClose; |
| assert(pow(complex(0.0), 2.0) == complex(0.0)); |
| assert(pow(complex(5.0), 2.0) == complex(25.0)); |
| |
| auto a = pow(complex(-1.0, 0.0), 0.5); |
| assert(isClose(a, complex(0.0, +1.0), 0.0, 1e-16)); |
| |
| auto b = pow(complex(-1.0, -0.0), 0.5); |
| assert(isClose(b, complex(0.0, -1.0), 0.0, 1e-16)); |
| } |
| |
| /// ditto |
| Complex!T pow(T)(Complex!T x, Complex!T y) @trusted pure nothrow @nogc |
| { |
| return (x == 0) ? Complex!T(0) : exp(y * log(x)); |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| import std.math.operations : isClose; |
| import std.math.exponential : exp; |
| import std.math.constants : PI; |
| auto a = complex(0.0); |
| auto b = complex(2.0); |
| assert(pow(a, b) == complex(0.0)); |
| |
| auto c = complex(0.0L, 1.0L); |
| assert(isClose(pow(c, c), exp((-PI) / 2))); |
| } |
| |
| /// ditto |
| Complex!T pow(T)(const T x, Complex!T n) @trusted pure nothrow @nogc |
| { |
| static import std.math; |
| |
| return (x > 0.0) |
| ? fromPolar!(T, T)(std.math.pow(x, n.re), n.im * std.math.log(x)) |
| : pow(Complex!T(x), n); |
| } |
| |
| /// |
| @safe pure nothrow @nogc unittest |
| { |
| import std.math.operations : isClose; |
| assert(pow(2.0, complex(0.0)) == complex(1.0)); |
| assert(pow(2.0, complex(5.0)) == complex(32.0)); |
| |
| auto a = pow(-2.0, complex(-1.0)); |
| assert(isClose(a, complex(-0.5), 0.0, 1e-16)); |
| |
| auto b = pow(-0.5, complex(-1.0)); |
| assert(isClose(b, complex(-2.0), 0.0, 1e-15)); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| import std.math.constants : PI; |
| import std.math.operations : isClose; |
| |
| auto a = pow(complex(3.0, 4.0), 2); |
| assert(isClose(a, complex(-7.0, 24.0))); |
| |
| auto b = pow(complex(3.0, 4.0), PI); |
| assert(ceqrel(b, complex(-152.91512205297134, 35.547499631917738)) >= double.mant_dig - 3); |
| |
| auto c = pow(complex(3.0, 4.0), complex(-2.0, 1.0)); |
| assert(ceqrel(c, complex(0.015351734187477306, -0.0038407695456661503)) >= double.mant_dig - 3); |
| |
| auto d = pow(PI, complex(2.0, -1.0)); |
| assert(ceqrel(d, complex(4.0790296880118296, -8.9872469554541869)) >= double.mant_dig - 1); |
| |
| auto e = complex(2.0); |
| assert(ceqrel(pow(e, 3), exp(3 * log(e))) >= double.mant_dig - 1); |
| } |
| |
| @safe pure nothrow @nogc unittest |
| { |
| import std.meta : AliasSeq; |
| import std.math : RealFormat, floatTraits; |
| static foreach (T; AliasSeq!(float, double, real)) |
| {{ |
| static if (floatTraits!T.realFormat == RealFormat.ibmExtended) |
| { |
| /* For IBM real, epsilon is too small (since 1.0 plus any double is |
| representable) to be able to expect results within epsilon * 100. */ |
| } |
| else |
| { |
| T eps = T.epsilon * 100; |
| |
| T a = -1.0; |
| T b = 0.5; |
| Complex!T ref1 = pow(complex(a), complex(b)); |
| Complex!T res1 = pow(a, complex(b)); |
| Complex!T res2 = pow(complex(a), b); |
| assert(abs(ref1 - res1) < eps); |
| assert(abs(ref1 - res2) < eps); |
| assert(abs(res1 - res2) < eps); |
| |
| T c = -3.2; |
| T d = 1.4; |
| Complex!T ref2 = pow(complex(a), complex(b)); |
| Complex!T res3 = pow(a, complex(b)); |
| Complex!T res4 = pow(complex(a), b); |
| assert(abs(ref2 - res3) < eps); |
| assert(abs(ref2 - res4) < eps); |
| assert(abs(res3 - res4) < eps); |
| } |
| }} |
| } |