blob: ec0cb66631ed146071bf56cf2d49c30e84a86177 [file] [log] [blame]
/*
Implementation of std.regex IR, an intermediate representation
of a regular expression pattern.
This is a common ground between frontend regex component (parser)
and backend components - generators, matchers and other "filters".
*/
module std.regex.internal.ir;
package(std.regex):
import std.exception, std.meta, std.range.primitives, std.traits, std.uni;
debug(std_regex_parser) import std.stdio;
// just a common trait, may be moved elsewhere
alias BasicElementOf(Range) = Unqual!(ElementEncodingType!Range);
enum privateUseStart = '\U000F0000', privateUseEnd ='\U000FFFFD';
// heuristic value determines maximum CodepointSet length suitable for linear search
enum maxCharsetUsed = 6;
// another variable to tweak behavior of caching generated Tries for character classes
enum maxCachedMatchers = 8;
alias Trie = CodepointSetTrie!(13, 8);
alias makeTrie = codepointSetTrie!(13, 8);
CharMatcher[CodepointSet] matcherCache;
//accessor with caching
@trusted CharMatcher getMatcher(CodepointSet set)
{
// almost all properties of AA are not @safe
// https://issues.dlang.org/show_bug.cgi?id=6357
if (__ctfe || maxCachedMatchers == 0)
return CharMatcher(set);
else
{
auto p = set in matcherCache;
if (p)
return *p;
if (matcherCache.length == maxCachedMatchers)
{
// flush enmatchers in trieCache
matcherCache = null;
}
return (matcherCache[set] = CharMatcher(set));
}
}
@property ref wordMatcher()()
{
static immutable CharMatcher matcher = CharMatcher(wordCharacter);
return matcher;
}
// some special Unicode white space characters
private enum NEL = '\u0085', LS = '\u2028', PS = '\u2029';
//Regular expression engine/parser options:
// global - search all nonoverlapping matches in input
// casefold - case insensitive matching, do casefolding on match in unicode mode
// freeform - ignore whitespace in pattern, to match space use [ ] or \s
// multiline - switch ^, $ detect start and end of linesinstead of just start and end of input
enum RegexOption: uint {
global = 0x1,
casefold = 0x2,
freeform = 0x4,
nonunicode = 0x8,
multiline = 0x10,
singleline = 0x20
}
//do not reorder this list
alias RegexOptionNames = AliasSeq!('g', 'i', 'x', 'U', 'm', 's');
static assert( RegexOption.max < 0x80);
package(std) string regexOptionsToString()(uint flags) nothrow pure @safe
{
flags &= (RegexOption.max << 1) - 1;
if (!flags)
return "";
char[RegexOptionNames.length] buffer = void;
size_t pos = 0;
foreach (i, flag; __traits(allMembers, RegexOption))
if (flags & __traits(getMember, RegexOption, flag))
buffer[pos++] = RegexOptionNames[i];
return buffer[0 .. pos].idup;
}
// flags that allow guide execution of engine
enum RegexInfo : uint { oneShot = 0x80 }
// IR bit pattern: 0b1_xxxxx_yy
// where yy indicates class of instruction, xxxxx for actual operation code
// 00: atom, a normal instruction
// 01: open, opening of a group, has length of contained IR in the low bits
// 10: close, closing of a group, has length of contained IR in the low bits
// 11 unused
//
// Loops with Q (non-greedy, with ? mark) must have the same size / other properties as non Q version
// Possible changes:
//* merge group, option, infinite/repeat start (to never copy during parsing of (a|b){1,2})
//* reorganize groups to make n args easier to find, or simplify the check for groups of similar ops
// (like lookaround), or make it easier to identify hotspots.
enum IR:uint {
Char = 0b1_00000_00, //a character
Any = 0b1_00001_00, //any character
CodepointSet = 0b1_00010_00, //a most generic CodepointSet [...]
Trie = 0b1_00011_00, //CodepointSet implemented as Trie
//match with any of a consecutive OrChar's in this sequence
//(used for case insensitive match)
//OrChar holds in upper two bits of data total number of OrChars in this _sequence_
//the drawback of this representation is that it is difficult
// to detect a jump in the middle of it
OrChar = 0b1_00100_00,
Nop = 0b1_00101_00, //no operation (padding)
End = 0b1_00110_00, //end of program
Bol = 0b1_00111_00, //beginning of a line ^
Eol = 0b1_01000_00, //end of a line $
Wordboundary = 0b1_01001_00, //boundary of a word
Notwordboundary = 0b1_01010_00, //not a word boundary
Backref = 0b1_01011_00, //backreference to a group (that has to be pinned, i.e. locally unique) (group index)
GroupStart = 0b1_01100_00, //start of a group (x) (groupIndex+groupPinning(1bit))
GroupEnd = 0b1_01101_00, //end of a group (x) (groupIndex+groupPinning(1bit))
Option = 0b1_01110_00, //start of an option within an alternation x | y (length)
GotoEndOr = 0b1_01111_00, //end of an option (length of the rest)
Bof = 0b1_10000_00, //begining of "file" (string) ^
Eof = 0b1_10001_00, //end of "file" (string) $
//... any additional atoms here
OrStart = 0b1_00000_01, //start of alternation group (length)
OrEnd = 0b1_00000_10, //end of the or group (length,mergeIndex)
//with this instruction order
//bit mask 0b1_00001_00 could be used to test/set greediness
InfiniteStart = 0b1_00001_01, //start of an infinite repetition x* (length)
InfiniteEnd = 0b1_00001_10, //end of infinite repetition x* (length,mergeIndex)
InfiniteQStart = 0b1_00010_01, //start of a non eager infinite repetition x*? (length)
InfiniteQEnd = 0b1_00010_10, //end of non eager infinite repetition x*? (length,mergeIndex)
InfiniteBloomStart = 0b1_00011_01, //start of an filtered infinite repetition x* (length)
InfiniteBloomEnd = 0b1_00011_10, //end of filtered infinite repetition x* (length,mergeIndex)
RepeatStart = 0b1_00100_01, //start of a {n,m} repetition (length)
RepeatEnd = 0b1_00100_10, //end of x{n,m} repetition (length,step,minRep,maxRep)
RepeatQStart = 0b1_00101_01, //start of a non eager x{n,m}? repetition (length)
RepeatQEnd = 0b1_00101_10, //end of non eager x{n,m}? repetition (length,step,minRep,maxRep)
//
LookaheadStart = 0b1_00110_01, //begin of the lookahead group (length)
LookaheadEnd = 0b1_00110_10, //end of a lookahead group (length)
NeglookaheadStart = 0b1_00111_01, //start of a negative lookahead (length)
NeglookaheadEnd = 0b1_00111_10, //end of a negative lookahead (length)
LookbehindStart = 0b1_01000_01, //start of a lookbehind (length)
LookbehindEnd = 0b1_01000_10, //end of a lookbehind (length)
NeglookbehindStart = 0b1_01001_01, //start of a negative lookbehind (length)
NeglookbehindEnd = 0b1_01001_10, //end of negative lookbehind (length)
}
//a shorthand for IR length - full length of specific opcode evaluated at compile time
template IRL(IR code)
{
enum uint IRL = lengthOfIR(code);
}
static assert(IRL!(IR.LookaheadStart) == 3);
//how many parameters follow the IR, should be optimized fixing some IR bits
int immediateParamsIR(IR i) @safe pure nothrow @nogc
{
switch (i)
{
case IR.OrEnd,IR.InfiniteEnd,IR.InfiniteQEnd:
return 1; // merge table index
case IR.InfiniteBloomEnd:
return 2; // bloom filter index + merge table index
case IR.RepeatEnd, IR.RepeatQEnd:
return 4;
case IR.LookaheadStart, IR.NeglookaheadStart, IR.LookbehindStart, IR.NeglookbehindStart:
return 2; // start-end of captures used
default:
return 0;
}
}
//full length of IR instruction inlcuding all parameters that might follow it
int lengthOfIR(IR i) @safe pure nothrow @nogc
{
return 1 + immediateParamsIR(i);
}
//full length of the paired IR instruction inlcuding all parameters that might follow it
int lengthOfPairedIR(IR i) @safe pure nothrow @nogc
{
return 1 + immediateParamsIR(pairedIR(i));
}
//if the operation has a merge point (this relies on the order of the ops)
bool hasMerge(IR i) @safe pure nothrow @nogc
{
return (i&0b11)==0b10 && i <= IR.RepeatQEnd;
}
//is an IR that opens a "group"
bool isStartIR(IR i) @safe pure nothrow @nogc
{
return (i&0b11)==0b01;
}
//is an IR that ends a "group"
bool isEndIR(IR i) @safe pure nothrow @nogc
{
return (i&0b11)==0b10;
}
//is a standalone IR
bool isAtomIR(IR i) @safe pure nothrow @nogc
{
return (i&0b11)==0b00;
}
//makes respective pair out of IR i, swapping start/end bits of instruction
IR pairedIR(IR i) @safe pure nothrow @nogc
{
assert(isStartIR(i) || isEndIR(i));
return cast(IR) (i ^ 0b11);
}
//encoded IR instruction
@safe pure
struct Bytecode
{
uint raw;
//natural constraints
enum maxSequence = 2+4;
enum maxData = 1 << 22;
enum maxRaw = 1 << 31;
@safe pure:
this(IR code, uint data)
{
assert(data < (1 << 22) && code < 256);
raw = code << 24 | data;
}
this(IR code, uint data, uint seq)
{
assert(data < (1 << 22) && code < 256 );
assert(seq >= 2 && seq < maxSequence);
raw = code << 24 | (seq - 2)<<22 | data;
}
//store raw data
static Bytecode fromRaw(uint data)
{
Bytecode t;
t.raw = data;
return t;
}
// bit twiddling helpers
// 0-arg template due to https://issues.dlang.org/show_bug.cgi?id=10985
@property uint data()() const { return raw & 0x003f_ffff; }
@property void data()(uint val)
{
raw = (raw & ~0x003f_ffff) | (val & 0x003f_ffff);
}
// ditto
// 0-arg template due to https://issues.dlang.org/show_bug.cgi?id=10985
@property uint sequence()() const { return 2 + (raw >> 22 & 0x3); }
// ditto
// 0-arg template due to https://issues.dlang.org/show_bug.cgi?id=10985
@property IR code()() const { return cast(IR)(raw >> 24); }
//ditto
@property bool hotspot() const { return hasMerge(code); }
//test the class of this instruction
@property bool isAtom() const { return isAtomIR(code); }
//ditto
@property bool isStart() const { return isStartIR(code); }
//ditto
@property bool isEnd() const { return isEndIR(code); }
//number of arguments for this instruction
@property int args() const { return immediateParamsIR(code); }
//mark this GroupStart or GroupEnd as referenced in backreference
void setBackrefence()
{
assert(code == IR.GroupStart || code == IR.GroupEnd);
raw = raw | 1 << 23;
}
//is referenced
@property bool backreference() const
{
assert(code == IR.GroupStart || code == IR.GroupEnd);
return cast(bool)(raw & 1 << 23);
}
//mark as local reference (for backrefs in lookarounds)
void setLocalRef()
{
assert(code == IR.Backref);
raw = raw | 1 << 23;
}
//is a local ref
@property bool localRef() const
{
assert(code == IR.Backref);
return cast(bool)(raw & 1 << 23);
}
//human readable name of instruction
@trusted @property string mnemonic()() const
{//@@@BUG@@@ to is @system
import std.conv : to;
return to!string(code);
}
//full length of instruction
@property uint length() const
{
return lengthOfIR(code);
}
//full length of respective start/end of this instruction
@property uint pairedLength() const
{
return lengthOfPairedIR(code);
}
//returns bytecode of paired instruction (assuming this one is start or end)
@property Bytecode paired() const
{//depends on bit and struct layout order
assert(isStart || isEnd);
return Bytecode.fromRaw(raw ^ 0b11 << 24);
}
//gets an index into IR block of the respective pair
uint indexOfPair(uint pc) const
{
assert(isStart || isEnd);
return isStart ? pc + data + length : pc - data - lengthOfPairedIR(code);
}
}
static assert(Bytecode.sizeof == 4);
//index entry structure for name --> number of submatch
struct NamedGroup
{
string name;
uint group;
}
//holds pair of start-end markers for a submatch
struct Group(DataIndex)
{
DataIndex begin = DataIndex.max;
DataIndex end = DataIndex.min;
bool opCast(T : bool)() const
{
return begin <= end;
}
@trusted string toString()() const
{
if (begin < end)
return "(unmatched)";
import std.array : appender;
import std.format.write : formattedWrite;
auto a = appender!string();
formattedWrite(a, "%s..%s", begin, end);
return a.data;
}
}
//debugging tool, prints out instruction along with opcodes
@trusted string disassemble(in Bytecode[] irb, uint pc, in NamedGroup[] dict=[])
{
import std.array : appender;
import std.format.write : formattedWrite;
auto output = appender!string();
formattedWrite(output,"%s", irb[pc].mnemonic);
switch (irb[pc].code)
{
case IR.Char:
formattedWrite(output, " %s (0x%x)",cast(dchar) irb[pc].data, irb[pc].data);
break;
case IR.OrChar:
formattedWrite(output, " %s (0x%x) seq=%d", cast(dchar) irb[pc].data, irb[pc].data, irb[pc].sequence);
break;
case IR.RepeatStart, IR.InfiniteStart, IR.InfiniteBloomStart,
IR.Option, IR.GotoEndOr, IR.OrStart:
//forward-jump instructions
uint len = irb[pc].data;
formattedWrite(output, " pc=>%u", pc+len+IRL!(IR.RepeatStart));
break;
case IR.RepeatEnd, IR.RepeatQEnd: //backward-jump instructions
uint len = irb[pc].data;
formattedWrite(output, " pc=>%u min=%u max=%u step=%u",
pc - len, irb[pc + 3].raw, irb[pc + 4].raw, irb[pc + 2].raw);
break;
case IR.InfiniteEnd, IR.InfiniteQEnd, IR.InfiniteBloomEnd, IR.OrEnd: //ditto
uint len = irb[pc].data;
formattedWrite(output, " pc=>%u", pc-len);
break;
case IR.LookaheadEnd, IR.NeglookaheadEnd: //ditto
uint len = irb[pc].data;
formattedWrite(output, " pc=>%u", pc-len);
break;
case IR.GroupStart, IR.GroupEnd:
uint n = irb[pc].data;
string name;
foreach (v;dict)
if (v.group == n)
{
name = "'"~v.name~"'";
break;
}
formattedWrite(output, " %s #%u " ~ (irb[pc].backreference ? "referenced" : ""),
name, n);
break;
case IR.LookaheadStart, IR.NeglookaheadStart, IR.LookbehindStart, IR.NeglookbehindStart:
uint len = irb[pc].data;
uint start = irb[pc+1].raw, end = irb[pc+2].raw;
formattedWrite(output, " pc=>%u [%u..%u]", pc + len + IRL!(IR.LookaheadStart), start, end);
break;
case IR.Backref: case IR.CodepointSet: case IR.Trie:
uint n = irb[pc].data;
formattedWrite(output, " %u", n);
if (irb[pc].code == IR.Backref)
formattedWrite(output, " %s", irb[pc].localRef ? "local" : "global");
break;
default://all data-free instructions
}
if (irb[pc].hotspot)
formattedWrite(output, " Hotspot %u", irb[pc+1].raw);
return output.data;
}
//disassemble the whole chunk
@trusted void printBytecode()(in Bytecode[] slice, in NamedGroup[] dict=[])
{
import std.stdio : writeln;
for (uint pc=0; pc<slice.length; pc += slice[pc].length)
writeln("\t", disassemble(slice, pc, dict));
}
// Encapsulates memory management, explicit ref counting
// and the exact type of engine created
// there is a single instance per engine combination type x Char
// In future may also maintain a (TLS?) cache of memory
interface MatcherFactory(Char)
{
@safe:
Matcher!Char create(const ref Regex!Char, in Char[] input) const;
Matcher!Char dup(Matcher!Char m, in Char[] input) const;
size_t incRef(Matcher!Char m) const;
size_t decRef(Matcher!Char m) const;
}
// Only memory management, no compile-time vs run-time specialities
abstract class GenericFactory(alias EngineType, Char) : MatcherFactory!Char
{
import core.memory : pureFree;
import std.internal.memory : enforceMalloc;
import core.memory : GC;
// round up to next multiple of size_t for alignment purposes
enum classSize = (__traits(classInstanceSize, EngineType!Char) + size_t.sizeof - 1) & ~(size_t.sizeof - 1);
EngineType!Char construct(const ref Regex!Char re, in Char[] input, void[] memory) const;
override EngineType!Char create(const ref Regex!Char re, in Char[] input) const @trusted
{
immutable size = EngineType!Char.initialMemory(re) + classSize;
auto memory = enforceMalloc(size)[0 .. size];
scope(failure) pureFree(memory.ptr);
GC.addRange(memory.ptr, classSize);
auto engine = construct(re, input, memory);
assert(engine.refCount == 1);
assert(cast(void*) engine == memory.ptr);
return engine;
}
override EngineType!Char dup(Matcher!Char engine, in Char[] input) const @trusted
{
immutable size = EngineType!Char.initialMemory(engine.pattern) + classSize;
auto memory = enforceMalloc(size)[0 .. size];
scope(failure) pureFree(memory.ptr);
auto copy = construct(engine.pattern, input, memory);
GC.addRange(memory.ptr, classSize);
engine.dupTo(copy, memory[classSize .. size]);
assert(copy.refCount == 1);
return copy;
}
override size_t incRef(Matcher!Char m) const
{
return ++m.refCount;
}
override size_t decRef(Matcher!Char m) const @trusted
{
assert(m.refCount != 0);
auto cnt = --m.refCount;
if (cnt == 0)
{
void* ptr = cast(void*) m;
GC.removeRange(ptr);
pureFree(ptr);
}
return cnt;
}
}
// A factory for run-time engines
class RuntimeFactory(alias EngineType, Char) : GenericFactory!(EngineType, Char)
{
override EngineType!Char construct(const ref Regex!Char re, in Char[] input, void[] memory) const
{
import core.lifetime : emplace;
return emplace!(EngineType!Char)(memory[0 .. classSize],
re, Input!Char(input), memory[classSize .. $]);
}
}
// A factory for compile-time engine
class CtfeFactory(alias EngineType, Char, alias func) : GenericFactory!(EngineType, Char)
{
override EngineType!Char construct(const ref Regex!Char re, in Char[] input, void[] memory) const
{
import core.lifetime : emplace;
return emplace!(EngineType!Char)(memory[0 .. classSize],
re, &func, Input!Char(input), memory[classSize .. $]);
}
}
private auto defaultFactoryImpl(Char)(const ref Regex!Char re)
{
import std.regex.internal.backtracking : BacktrackingMatcher;
import std.regex.internal.thompson : ThompsonMatcher;
import std.algorithm.searching : canFind;
static MatcherFactory!Char backtrackingFactory;
static MatcherFactory!Char thompsonFactory;
if (re.backrefed.canFind!"a != 0")
{
if (backtrackingFactory is null)
backtrackingFactory = new RuntimeFactory!(BacktrackingMatcher, Char);
return backtrackingFactory;
}
else
{
if (thompsonFactory is null)
thompsonFactory = new RuntimeFactory!(ThompsonMatcher, Char);
return thompsonFactory;
}
}
// Used to generate a pure wrapper for defaultFactoryImpl. Based on the example in
// the std.traits.SetFunctionAttributes documentation.
auto assumePureFunction(T)(T t)
if (isFunctionPointer!T)
{
enum attrs = functionAttributes!T | FunctionAttribute.pure_;
return cast(SetFunctionAttributes!(T, functionLinkage!T, attrs)) t;
}
// A workaround for R-T enum re = regex(...)
template defaultFactory(Char)
{
// defaultFactory is constructed as a safe, pure wrapper over defaultFactoryImpl.
// It can be faked as pure because the static mutable variables are used to cache
// the key and character matcher. The technique used avoids delegates and GC.
@property MatcherFactory!Char defaultFactory(const ref Regex!Char re) @safe pure
{
static auto impl(const ref Regex!Char re)
{
return defaultFactoryImpl(re);
}
static auto pureImpl(const ref Regex!Char re) @trusted
{
auto p = assumePureFunction(&impl);
return p(re);
}
return pureImpl(re);
}
}
// Defining it as an interface has the undesired side-effect:
// casting any class to an interface silently adjusts pointer to point to a nested vtbl
abstract class Matcher(Char)
{
abstract:
// Get a (next) match
int match(Group!size_t[] matches) pure;
// This only maintains internal ref-count,
// deallocation happens inside MatcherFactory
@property ref size_t refCount() @safe;
// Copy internal state to another engine, using memory arena 'memory'
void dupTo(Matcher!Char m, void[] memory);
// The pattern loaded
@property ref const(Regex!Char) pattern() @safe;
// Re-arm the engine with new Input
Matcher rearm(in Char[] stream);
}
/++
`Regex` object holds regular expression pattern in compiled form.
Instances of this object are constructed via calls to `regex`.
This is an intended form for caching and storage of frequently
used regular expressions.
+/
struct Regex(Char)
{
//temporary workaround for identifier lookup
CodepointSet[] charsets; //
Bytecode[] ir; //compiled bytecode of pattern
@safe @property bool empty() const nothrow { return ir is null; }
/++
`namedCaptures` returns a range of all named captures in a given regular expression.
+/
@safe @property auto namedCaptures()
{
static struct NamedGroupRange
{
private:
const(NamedGroup)[] groups;
size_t start;
size_t end;
public:
this(const(NamedGroup)[] g, size_t s, size_t e)
{
assert(s <= e);
assert(e <= g.length);
groups = g;
start = s;
end = e;
}
@property string front() { return groups[start].name; }
@property string back() { return groups[end-1].name; }
@property bool empty() { return start >= end; }
@property size_t length() { return end - start; }
alias opDollar = length;
@property NamedGroupRange save()
{
return NamedGroupRange(groups, start, end);
}
void popFront() { assert(!empty); start++; }
void popBack() { assert(!empty); end--; }
string opIndex()(size_t i)
{
assert(start + i < end,
"Requested named group is out of range.");
return groups[start+i].name;
}
NamedGroupRange opSlice(size_t low, size_t high) {
assert(low <= high);
assert(start + high <= end);
return NamedGroupRange(groups, start + low, start + high);
}
NamedGroupRange opSlice() { return this.save; }
}
return NamedGroupRange(dict, 0, dict.length);
}
package(std.regex):
import std.regex.internal.kickstart : Kickstart; //TODO: get rid of this dependency
const(NamedGroup)[] dict; // maps name -> user group number
uint ngroup; // number of internal groups
uint maxCounterDepth; // max depth of nested {n,m} repetitions
uint hotspotTableSize; // number of entries in merge table
uint threadCount; // upper bound on number of Thompson VM threads
uint flags; // global regex flags
public const(CharMatcher)[] matchers; // tables that represent character sets
public const(BitTable)[] filters; // bloom filters for conditional loops
uint[] backrefed; // bit array of backreferenced submatches
Kickstart!Char kickstart;
MatcherFactory!Char factory; // produces optimal matcher for this pattern
immutable(Char)[] pattern; // copy of pattern to serve as cache key
const(Regex) withFactory(MatcherFactory!Char factory) pure const @trusted
{
auto r = cast() this;
r.factory = factory;
return r;
}
const(Regex) withFlags(uint newFlags) pure const @trusted
{
auto r = cast() this;
r.flags = newFlags;
return r;
}
const(Regex) withCode(const(Bytecode)[] code) pure const @trusted
{
auto r = cast() this;
r.ir = code.dup; // TODO: sidestep const instead?
return r;
}
const(Regex) withNGroup(uint nGroup) pure const @trusted
{
auto r = cast() this;
r.ngroup = nGroup;
return r;
}
//bit access helper
uint isBackref(uint n)
{
if (n/32 >= backrefed.length)
return 0;
return backrefed[n / 32] & (1 << (n & 31));
}
//check if searching is not needed
void checkIfOneShot()
{
L_CheckLoop:
for (uint i = 0; i < ir.length; i += ir[i].length)
{
switch (ir[i].code)
{
case IR.Bof:
flags |= RegexInfo.oneShot;
break L_CheckLoop;
case IR.GroupStart, IR.GroupEnd, IR.Bol, IR.Eol, IR.Eof,
IR.Wordboundary, IR.Notwordboundary:
break;
default:
break L_CheckLoop;
}
}
}
//print out disassembly a program's IR
@trusted debug(std_regex_parser) void print() const
{//@@@BUG@@@ write is system
for (uint i = 0; i < ir.length; i += ir[i].length)
{
writefln("%d\t%s ", i, disassemble(ir, i, dict));
}
writeln("Total merge table size: ", hotspotTableSize);
writeln("Max counter nesting depth: ", maxCounterDepth);
}
public string toString()() const
{
import std.format : format;
static if (is(typeof(pattern) : string))
alias patternString = pattern;
else
{
import std.conv : to;
auto patternString = conv.to!string(pattern);
}
auto quotedEscapedPattern = format("%(%s %)", [patternString]);
auto flagString = regexOptionsToString(flags);
return "Regex!" ~ Char.stringof ~ "(" ~ quotedEscapedPattern ~ ", \"" ~ flagString ~ "\")";
}
}
// The stuff below this point is temporarrily part of IR module
// but may need better place in the future (all internals)
package(std.regex):
//Simple UTF-string abstraction compatible with stream interface
struct Input(Char)
if (is(Char :dchar))
{
import std.utf : decode;
alias DataIndex = size_t;
enum bool isLoopback = false;
alias String = const(Char)[];
String _origin;
size_t _index;
//constructs Input object out of plain string
this(String input, size_t idx = 0)
{
_origin = input;
_index = idx;
}
//codepoint at current stream position
pragma(inline, true) bool nextChar(ref dchar res, ref size_t pos)
{
pos = _index;
// DMD's inliner hates multiple return functions
// but can live with single statement if/else bodies
bool n = !(_index == _origin.length);
if (n)
res = decode(_origin, _index);
return n;
}
@property bool atEnd(){
return _index == _origin.length;
}
bool search(Kickstart)(ref const Kickstart kick, ref dchar res, ref size_t pos)
{
size_t idx = kick.search(_origin, _index);
_index = idx;
return nextChar(res, pos);
}
//index of at End position
@property size_t lastIndex(){ return _origin.length; }
//support for backtracker engine, might not be present
void reset(size_t index){ _index = index; }
String opSlice(size_t start, size_t end){ return _origin[start .. end]; }
auto loopBack(size_t index){ return BackLooper!Input(this, index); }
}
struct BackLooperImpl(Input)
{
import std.utf : strideBack;
alias DataIndex = size_t;
alias String = Input.String;
enum bool isLoopback = true;
String _origin;
size_t _index;
this(Input input, size_t index)
{
_origin = input._origin;
_index = index;
}
this(String input)
{
_origin = input;
_index = input.length;
}
@trusted bool nextChar(ref dchar res,ref size_t pos)
{
pos = _index;
if (_index == 0)
return false;
res = _origin[0.._index].back;
_index -= strideBack(_origin, _index);
return true;
}
@property atEnd(){ return _index == 0 || _index == strideBack(_origin, _index); }
auto loopBack(size_t index){ return Input(_origin, index); }
//support for backtracker engine, might not be present
//void reset(size_t index){ _index = index ? index-std.utf.strideBack(_origin, index) : 0; }
void reset(size_t index){ _index = index; }
String opSlice(size_t start, size_t end){ return _origin[end .. start]; }
//index of at End position
@property size_t lastIndex(){ return 0; }
}
template BackLooper(E)
{
static if (is(E : BackLooperImpl!U, U))
{
alias BackLooper = U;
}
else
{
alias BackLooper = BackLooperImpl!E;
}
}
//both helpers below are internal, on its own are quite "explosive"
//unsafe, no initialization of elements
@system pure T[] mallocArray(T)(size_t len)
{
import core.memory : pureMalloc;
return (cast(T*) pureMalloc(len * T.sizeof))[0 .. len];
}
//very unsafe, no initialization
@system T[] arrayInChunk(T)(size_t len, ref void[] chunk)
{
auto ret = (cast(T*) chunk.ptr)[0 .. len];
chunk = chunk[len * T.sizeof .. $];
return ret;
}
//
@trusted uint lookupNamedGroup(String)(const(NamedGroup)[] dict, String name)
{//equal is @system?
import std.algorithm.comparison : equal;
import std.algorithm.iteration : map;
import std.conv : text;
import std.range : assumeSorted;
auto fnd = assumeSorted!"cmp(a,b) < 0"(map!"a.name"(dict)).lowerBound(name).length;
enforce(fnd < dict.length && equal(dict[fnd].name, name),
text("no submatch named ", name));
return dict[fnd].group;
}
// whether ch is one of unicode newline sequences
// 0-arg template due to https://issues.dlang.org/show_bug.cgi?id=10985
bool endOfLine()(dchar front, bool seenCr)
{
return ((front == '\n') ^ seenCr) || front == '\r'
|| front == NEL || front == LS || front == PS;
}
// 0-arg template due to https://issues.dlang.org/show_bug.cgi?id=10985
bool startOfLine()(dchar back, bool seenNl)
{
return ((back == '\r') ^ seenNl) || back == '\n'
|| back == NEL || back == LS || back == PS;
}
///Exception object thrown in case of errors during regex compilation.
public class RegexException : Exception
{
mixin basicExceptionCtors;
}
// simple 128-entry bit-table used with a hash function
struct BitTable {
uint[4] filter;
this(CodepointSet set){
foreach (iv; set.byInterval)
{
foreach (v; iv.a .. iv.b)
add(v);
}
}
void add()(dchar ch){
immutable i = index(ch);
filter[i >> 5] |= 1<<(i & 31);
}
// non-zero -> might be present, 0 -> absent
bool opIndex()(dchar ch) const{
immutable i = index(ch);
return (filter[i >> 5]>>(i & 31)) & 1;
}
static uint index()(dchar ch){
return ((ch >> 7) ^ ch) & 0x7F;
}
}
struct CharMatcher {
BitTable ascii; // fast path for ASCII
Trie trie; // slow path for Unicode
this(CodepointSet set)
{
auto asciiSet = set & unicode.ASCII;
ascii = BitTable(asciiSet);
trie = makeTrie(set);
}
bool opIndex()(dchar ch) const
{
if (ch < 0x80)
return ascii[ch];
else
return trie[ch];
}
}
// Internal non-resizeble array, switches between inline storage and CoW
// POD-only
struct SmallFixedArray(T, uint SMALL=3)
if (!hasElaborateDestructor!T)
{
import std.internal.memory : enforceMalloc;
import core.memory : pureFree;
static struct Payload
{
size_t refcount;
T[0] placeholder;
inout(T)* ptr() inout { return placeholder.ptr; }
}
static assert(Payload.sizeof == size_t.sizeof);
union
{
Payload* big;
T[SMALL] small;
}
size_t _sizeMask;
enum BIG_MASK = size_t(1)<<(8*size_t.sizeof-1);
enum SIZE_MASK = ~BIG_MASK;
@property bool isBig() const { return (_sizeMask & BIG_MASK) != 0; }
@property size_t length() const { return _sizeMask & SIZE_MASK; }
this(size_t size)
{
if (size <= SMALL)
{
small[] = T.init;
_sizeMask = size;
}
else
{
big = cast(Payload*) enforceMalloc(Payload.sizeof + T.sizeof*size);
big.refcount = 1;
_sizeMask = size | BIG_MASK;
}
}
private @trusted @property inout(T)[] internalSlice() inout
{
return isBig ? big.ptr[0 .. length] : small[0 .. length];
}
this(this)
{
if (isBig)
{
big.refcount++;
}
}
bool opEquals(SmallFixedArray a)
{
return internalSlice[] == a.internalSlice[];
}
size_t toHash() const
{
return hashOf(internalSlice[]);
}
ref inout(T) opIndex(size_t idx) inout
{
return internalSlice[idx];
}
// accesses big to test self-referencing so not @safe
@trusted ref opAssign(SmallFixedArray arr)
{
if (isBig)
{
if (arr.isBig)
{
if (big is arr.big) return this; // self-assign
else
{
abandonRef();
_sizeMask = arr._sizeMask;
big = arr.big;
big.refcount++;
}
}
else
{
abandonRef();
_sizeMask = arr._sizeMask;
small = arr.small;
}
}
else
{
if (arr.isBig)
{
_sizeMask = arr._sizeMask;
big = arr.big;
big.refcount++;
}
else
{
_sizeMask = arr._sizeMask;
small = arr.small;
}
}
return this;
}
void mutate(scope void delegate(T[]) pure filler)
{
if (isBig && big.refcount != 1) // copy on write
{
auto oldSizeMask = _sizeMask;
auto newbig = cast(Payload*) enforceMalloc(Payload.sizeof + T.sizeof*length);
newbig.refcount = 1;
abandonRef();
big = newbig;
_sizeMask = oldSizeMask;
}
filler(internalSlice);
}
~this()
{
if (isBig)
{
abandonRef();
}
}
@trusted private void abandonRef()
{
assert(isBig);
if (--big.refcount == 0)
{
pureFree(big);
_sizeMask = 0;
assert(!isBig);
}
}
}
@system unittest
{
alias SA = SmallFixedArray!(int, 2);
SA create(int[] data)
{
SA a = SA(data.length);
a.mutate((slice) { slice[] = data[]; });
assert(a.internalSlice == data);
return a;
}
{
SA a;
a = SA(1);
assert(a.length == 1);
a = SA.init;
assert(a.length == 0);
}
{
SA a, b, c, d;
assert(a.length == 0);
assert(a.internalSlice == b.internalSlice);
a = create([1]);
assert(a.internalSlice == [1]);
b = create([2, 3]);
assert(b.internalSlice == [2, 3]);
c = create([3, 4, 5]);
d = create([5, 6, 7, 8]);
assert(c.isBig);
a = c;
assert(a.isBig);
assert(a.big is c.big);
assert(a.big.refcount == 2);
assert(a.internalSlice == [3, 4, 5]);
assert(c.internalSlice == [3, 4, 5]);
a = b;
assert(!a.isBig);
assert(a.internalSlice == [2, 3]);
assert(c.big.refcount == 1);
a = c;
assert(c.big.refcount == 2);
// mutate copies on write if ref-count is not 1
a.mutate((slice){ slice[] = 1; });
assert(a.internalSlice == [1, 1, 1]);
assert(c.internalSlice == [3, 4, 5]);
assert(a.isBig && c.isBig);
assert(a.big.refcount == 1);
assert(c.big.refcount == 1);
auto e = d;
assert(e.big.refcount == 2);
auto f = d;
f = a;
assert(f.isBig);
assert(f.internalSlice == [1, 1, 1]);
assert(f.big.refcount == 2); // a & f
assert(e.big.refcount == 2); // d & e
a = c;
assert(f.big.refcount == 1); // f
assert(e.big.refcount == 2); // d & e
a = a;
a = a;
a = a;
assert(a.big.refcount == 2); // a & c
}
}