blob: ee6b09969a12e82bc936cd8c546566071551231e [file] [log] [blame]
/* Implementation of collective subroutines minmax.
Copyright (C) 2020 Free Software Foundation, Inc.
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>.
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#if defined (HAVE_GFC_INTEGER_8)
#include <string.h>
#include "../caf_shared/libcoarraynative.h"
#include "../caf_shared/collective_subroutine.h"
void cas_collsub_max_scalar_i8 (GFC_INTEGER_8 *obj, int *result_image,
int *stat, char *errmsg, index_type errmsg_len);
export_proto(cas_collsub_max_scalar_i8);
void
cas_collsub_max_scalar_i8 (GFC_INTEGER_8 *obj, int *result_image,
int *stat, char *errmsg, index_type errmsg_len)
{
int cbit = 0;
int imoffset;
GFC_INTEGER_8 *a, *b;
GFC_INTEGER_8 *buffer, *this_image_buf;
collsub_iface *ci;
STAT_ERRMSG_ENTRY_CHECK(stat, errmsg, errmsg_len);
error_on_missing_images();
ci = &local->ci;
buffer = get_collsub_buf (ci, sizeof(GFC_INTEGER_8) * local->total_num_images);
this_image_buf = buffer + this_image.image_num;
*this_image_buf = *obj;
collsub_sync (ci);
for (; ((this_image.image_num >> cbit) & 1) == 0 && (local->total_num_images >> cbit) != 0; cbit++)
{
imoffset = 1 << cbit;
if (this_image.image_num + imoffset < local->total_num_images)
{
a = this_image_buf;
b = this_image_buf + imoffset;
if (*b > *a)
*a = *b;
}
collsub_sync (ci);
}
for ( ; (local->total_num_images >> cbit) != 0; cbit++)
collsub_sync (ci);
if (!result_image || (*result_image - 1) == this_image.image_num)
*obj = *buffer;
finish_collective_subroutine (ci);
}
void cas_collsub_min_scalar_i8 (GFC_INTEGER_8 *obj, int *result_image,
int *stat, char *errmsg, index_type errmsg_len);
export_proto(cas_collsub_min_scalar_i8);
void
cas_collsub_min_scalar_i8 (GFC_INTEGER_8 *obj, int *result_image,
int *stat, char *errmsg, index_type errmsg_len)
{
int cbit = 0;
int imoffset;
GFC_INTEGER_8 *a, *b;
GFC_INTEGER_8 *buffer, *this_image_buf;
collsub_iface *ci;
STAT_ERRMSG_ENTRY_CHECK(stat, errmsg, errmsg_len);
error_on_missing_images();
ci = &local->ci;
buffer = get_collsub_buf (ci, sizeof(GFC_INTEGER_8) * local->total_num_images);
this_image_buf = buffer + this_image.image_num;
*this_image_buf = *obj;
collsub_sync (ci);
for (; ((this_image.image_num >> cbit) & 1) == 0 && (local->total_num_images >> cbit) != 0; cbit++)
{
imoffset = 1 << cbit;
if (this_image.image_num + imoffset < local->total_num_images)
{
a = this_image_buf;
b = this_image_buf + imoffset;
if (*b < *a)
*a = *b;
}
collsub_sync (ci);
}
for ( ; (local->total_num_images >> cbit) != 0; cbit++)
collsub_sync (ci);
if (!result_image || (*result_image - 1) == this_image.image_num)
*obj = *buffer;
finish_collective_subroutine (ci);
}
void cas_collsub_sum_scalar_i8 (GFC_INTEGER_8 *obj, int *result_image,
int *stat, char *errmsg, index_type errmsg_len);
export_proto(cas_collsub_sum_scalar_i8);
void
cas_collsub_sum_scalar_i8 (GFC_INTEGER_8 *obj, int *result_image,
int *stat, char *errmsg, index_type errmsg_len)
{
int cbit = 0;
int imoffset;
GFC_INTEGER_8 *a, *b;
GFC_INTEGER_8 *buffer, *this_image_buf;
collsub_iface *ci;
STAT_ERRMSG_ENTRY_CHECK(stat, errmsg, errmsg_len);
error_on_missing_images();
ci = &local->ci;
buffer = get_collsub_buf (ci, sizeof(GFC_INTEGER_8) * local->total_num_images);
this_image_buf = buffer + this_image.image_num;
*this_image_buf = *obj;
collsub_sync (ci);
for (; ((this_image.image_num >> cbit) & 1) == 0 && (local->total_num_images >> cbit) != 0; cbit++)
{
imoffset = 1 << cbit;
if (this_image.image_num + imoffset < local->total_num_images)
{
a = this_image_buf;
b = this_image_buf + imoffset;
*a += *b;
}
collsub_sync (ci);
}
for ( ; (local->total_num_images >> cbit) != 0; cbit++)
collsub_sync (ci);
if (!result_image || (*result_image - 1) == this_image.image_num)
*obj = *buffer;
finish_collective_subroutine (ci);
}
void cas_collsub_max_array_i8 (gfc_array_i8 * restrict array, int *result_image,
int *stat, char *errmsg, index_type errmsg_len);
export_proto (cas_collsub_max_array_i8);
void
cas_collsub_max_array_i8 (gfc_array_i8 * restrict array, int *result_image,
int *stat, char *errmsg, index_type errmsg_len)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
GFC_INTEGER_8 *this_shared_ptr; /* Points to the shared memory allocated to this image. */
GFC_INTEGER_8 *buffer;
index_type dim;
bool packed;
index_type span;
index_type ssize, num_elems;
int cbit = 0;
int imoffset;
collsub_iface *ci;
STAT_ERRMSG_ENTRY_CHECK(stat, errmsg, errmsg_len);
error_on_missing_images();
ci = &local->ci;
dim = GFC_DESCRIPTOR_RANK (array);
ssize = sizeof (GFC_INTEGER_8);
packed = true;
span = array->span != 0 ? array->span : (index_type) sizeof (GFC_INTEGER_8);
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE (array, n) * span;
extent[n] = GFC_DESCRIPTOR_EXTENT (array, n);
/* No-op for an empty array. */
if (extent[n] <= 0)
return;
if (ssize != stride[n])
packed = false;
ssize *= extent[n];
}
num_elems = ssize / sizeof (GFC_INTEGER_8);
buffer = get_collsub_buf (ci, ssize * local->total_num_images);
this_shared_ptr = buffer + this_image.image_num * num_elems;
if (packed)
memcpy (this_shared_ptr, array->base_addr, ssize);
else
{
char *src = (char *) array->base_addr;
GFC_INTEGER_8 *restrict dest = this_shared_ptr;
index_type stride0 = stride[0];
while (src)
{
/* Copy the data. */
*(dest++) = *((GFC_INTEGER_8 *) src);
src += stride0;
count[0] ++;
/* Advance to the next source element. */
for (index_type n = 0; count[n] == extent[n] ; )
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
src -= stride[n] * extent[n];
n++;
if (n == dim)
{
src = NULL;
break;
}
else
{
count[n]++;
src += stride[n];
}
}
}
}
collsub_sync (ci);
/* Reduce the array to image zero. Here the general scheme:
abababababab
a_b_a_b_a_b_
a___b___a___
a_______b___
r___________
*/
for (; ((this_image.image_num >> cbit) & 1) == 0 && (local->total_num_images >> cbit) != 0; cbit++)
{
imoffset = 1 << cbit;
if (this_image.image_num + imoffset < local->total_num_images)
{
GFC_INTEGER_8 * other_shared_ptr; /* Points to the shared memory
allocated to another image. */
GFC_INTEGER_8 *a;
GFC_INTEGER_8 *b;
other_shared_ptr = this_shared_ptr + num_elems * imoffset;
for (index_type i = 0; i < num_elems; i++)
{
a = this_shared_ptr + i;
b = other_shared_ptr + i;
if (*b > *a)
*a = *b;
}
}
collsub_sync (ci);
}
for ( ; (local->total_num_images >> cbit) != 0; cbit++)
collsub_sync (ci);
if (!result_image || (*result_image - 1) == this_image.image_num)
{
if (packed)
memcpy (array->base_addr, buffer, ssize);
else
{
GFC_INTEGER_8 *src = buffer;
char * restrict dest = (char *) array->base_addr;
index_type stride0 = stride[0];
memset (count, 0, sizeof(index_type) * dim);
while (dest)
{
*((GFC_INTEGER_8 * ) dest) = *src++;
dest += stride0;
count[0] ++;
for (index_type n = 0; count[n] == extent[n] ;)
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
}
finish_collective_subroutine (ci);
}
void cas_collsub_min_array_i8 (gfc_array_i8 * restrict array, int *result_image,
int *stat, char *errmsg, index_type errmsg_len);
export_proto (cas_collsub_min_array_i8);
void
cas_collsub_min_array_i8 (gfc_array_i8 * restrict array, int *result_image,
int *stat, char *errmsg, index_type errmsg_len)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
GFC_INTEGER_8 *this_shared_ptr; /* Points to the shared memory allocated to this image. */
GFC_INTEGER_8 *buffer;
index_type dim;
bool packed;
index_type span;
index_type ssize, num_elems;
int cbit = 0;
int imoffset;
collsub_iface *ci;
STAT_ERRMSG_ENTRY_CHECK(stat, errmsg, errmsg_len);
error_on_missing_images();
ci = &local->ci;
dim = GFC_DESCRIPTOR_RANK (array);
ssize = sizeof (GFC_INTEGER_8);
packed = true;
span = array->span != 0 ? array->span : (index_type) sizeof (GFC_INTEGER_8);
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE (array, n) * span;
extent[n] = GFC_DESCRIPTOR_EXTENT (array, n);
/* No-op for an empty array. */
if (extent[n] <= 0)
return;
if (ssize != stride[n])
packed = false;
ssize *= extent[n];
}
num_elems = ssize / sizeof (GFC_INTEGER_8);
buffer = get_collsub_buf (ci, ssize * local->total_num_images);
this_shared_ptr = buffer + this_image.image_num * num_elems;
if (packed)
memcpy (this_shared_ptr, array->base_addr, ssize);
else
{
char *src = (char *) array->base_addr;
GFC_INTEGER_8 *restrict dest = this_shared_ptr;
index_type stride0 = stride[0];
while (src)
{
/* Copy the data. */
*(dest++) = *((GFC_INTEGER_8 *) src);
src += stride0;
count[0] ++;
/* Advance to the next source element. */
for (index_type n = 0; count[n] == extent[n] ; )
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
src -= stride[n] * extent[n];
n++;
if (n == dim)
{
src = NULL;
break;
}
else
{
count[n]++;
src += stride[n];
}
}
}
}
collsub_sync (ci);
/* Reduce the array to image zero. Here the general scheme:
abababababab
a_b_a_b_a_b_
a___b___a___
a_______b___
r___________
*/
for (; ((this_image.image_num >> cbit) & 1) == 0 && (local->total_num_images >> cbit) != 0; cbit++)
{
imoffset = 1 << cbit;
if (this_image.image_num + imoffset < local->total_num_images)
{
GFC_INTEGER_8 * other_shared_ptr; /* Points to the shared memory
allocated to another image. */
GFC_INTEGER_8 *a;
GFC_INTEGER_8 *b;
other_shared_ptr = this_shared_ptr + num_elems * imoffset;
for (index_type i = 0; i < num_elems; i++)
{
a = this_shared_ptr + i;
b = other_shared_ptr + i;
if (*b < *a)
*a = *b;
}
}
collsub_sync (ci);
}
for ( ; (local->total_num_images >> cbit) != 0; cbit++)
collsub_sync (ci);
if (!result_image || (*result_image - 1) == this_image.image_num)
{
if (packed)
memcpy (array->base_addr, buffer, ssize);
else
{
GFC_INTEGER_8 *src = buffer;
char * restrict dest = (char *) array->base_addr;
index_type stride0 = stride[0];
memset (count, 0, sizeof(index_type) * dim);
while (dest)
{
*((GFC_INTEGER_8 * ) dest) = *src++;
dest += stride0;
count[0] ++;
for (index_type n = 0; count[n] == extent[n] ;)
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
}
finish_collective_subroutine (ci);
}
void cas_collsub_sum_array_i8 (gfc_array_i8 * restrict array, int *result_image,
int *stat, char *errmsg, index_type errmsg_len);
export_proto (cas_collsub_sum_array_i8);
void
cas_collsub_sum_array_i8 (gfc_array_i8 * restrict array, int *result_image,
int *stat, char *errmsg, index_type errmsg_len)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
GFC_INTEGER_8 *this_shared_ptr; /* Points to the shared memory allocated to this image. */
GFC_INTEGER_8 *buffer;
index_type dim;
bool packed;
index_type span;
index_type ssize, num_elems;
int cbit = 0;
int imoffset;
collsub_iface *ci;
STAT_ERRMSG_ENTRY_CHECK(stat, errmsg, errmsg_len);
error_on_missing_images();
ci = &local->ci;
dim = GFC_DESCRIPTOR_RANK (array);
ssize = sizeof (GFC_INTEGER_8);
packed = true;
span = array->span != 0 ? array->span : (index_type) sizeof (GFC_INTEGER_8);
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE (array, n) * span;
extent[n] = GFC_DESCRIPTOR_EXTENT (array, n);
/* No-op for an empty array. */
if (extent[n] <= 0)
return;
if (ssize != stride[n])
packed = false;
ssize *= extent[n];
}
num_elems = ssize / sizeof (GFC_INTEGER_8);
buffer = get_collsub_buf (ci, ssize * local->total_num_images);
this_shared_ptr = buffer + this_image.image_num * num_elems;
if (packed)
memcpy (this_shared_ptr, array->base_addr, ssize);
else
{
char *src = (char *) array->base_addr;
GFC_INTEGER_8 *restrict dest = this_shared_ptr;
index_type stride0 = stride[0];
while (src)
{
/* Copy the data. */
*(dest++) = *((GFC_INTEGER_8 *) src);
src += stride0;
count[0] ++;
/* Advance to the next source element. */
for (index_type n = 0; count[n] == extent[n] ; )
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
src -= stride[n] * extent[n];
n++;
if (n == dim)
{
src = NULL;
break;
}
else
{
count[n]++;
src += stride[n];
}
}
}
}
collsub_sync (ci);
/* Reduce the array to image zero. Here the general scheme:
abababababab
a_b_a_b_a_b_
a___b___a___
a_______b___
r___________
*/
for (; ((this_image.image_num >> cbit) & 1) == 0 && (local->total_num_images >> cbit) != 0; cbit++)
{
imoffset = 1 << cbit;
if (this_image.image_num + imoffset < local->total_num_images)
{
GFC_INTEGER_8 * other_shared_ptr; /* Points to the shared memory
allocated to another image. */
GFC_INTEGER_8 *a;
GFC_INTEGER_8 *b;
other_shared_ptr = this_shared_ptr + num_elems * imoffset;
for (index_type i = 0; i < num_elems; i++)
{
a = this_shared_ptr + i;
b = other_shared_ptr + i;
*a += *b;
}
}
collsub_sync (ci);
}
for ( ; (local->total_num_images >> cbit) != 0; cbit++)
collsub_sync (ci);
if (!result_image || (*result_image - 1) == this_image.image_num)
{
if (packed)
memcpy (array->base_addr, buffer, ssize);
else
{
GFC_INTEGER_8 *src = buffer;
char * restrict dest = (char *) array->base_addr;
index_type stride0 = stride[0];
memset (count, 0, sizeof(index_type) * dim);
while (dest)
{
*((GFC_INTEGER_8 * ) dest) = *src++;
dest += stride0;
count[0] ++;
for (index_type n = 0; count[n] == extent[n] ;)
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
}
finish_collective_subroutine (ci);
}
#endif