blob: 237e91c236461cddf1bac9eeca111af318d8a173 [file] [log] [blame]
/* Implementation of collective subroutines minmax.
Copyright (C) 2020 Free Software Foundation, Inc.
Contributed by Thomas Koenig <tkoenig@gcc.gnu.org>.
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#if defined (HAVE_GFC_UINTEGER_4)
#include <string.h>
#include "../caf_shared/libcoarraynative.h"
#include "../caf_shared/collective_subroutine.h"
#if 4 == 4
/* Compare wide character types, which are handled internally as
unsigned 4-byte integers. */
static inline int
memcmp4 (const void *a, const void *b, size_t len)
{
const GFC_UINTEGER_4 *pa = a;
const GFC_UINTEGER_4 *pb = b;
while (len-- > 0)
{
if (*pa != *pb)
return *pa < *pb ? -1 : 1;
pa ++;
pb ++;
}
return 0;
}
#endif
void cas_collsub_max_scalar_s4 (GFC_UINTEGER_4 *obj, int *result_image,
int *stat, char *errmsg, index_type char_len, index_type errmsg_len);
export_proto(cas_collsub_max_scalar_s4);
void
cas_collsub_max_scalar_s4 (GFC_UINTEGER_4 *obj, int *result_image,
int *stat __attribute__ ((unused)),
char *errmsg __attribute__ ((unused)),
index_type char_len,
index_type errmsg_len __attribute__ ((unused)))
{
int cbit = 0;
int imoffset;
GFC_UINTEGER_4 *a, *b;
GFC_UINTEGER_4 *buffer, *this_image_buf;
collsub_iface *ci;
index_type type_size;
STAT_ERRMSG_ENTRY_CHECK(stat, errmsg, errmsg_len);
error_on_missing_images();
ci = &local->ci;
type_size = char_len * sizeof (GFC_UINTEGER_4);
buffer = get_collsub_buf (ci, type_size * local->total_num_images);
this_image_buf = buffer + this_image.image_num * char_len;
memcpy (this_image_buf, obj, type_size);
collsub_sync (ci);
for (; ((this_image.image_num >> cbit) & 1) == 0
&& (local->total_num_images >> cbit) != 0; cbit++)
{
imoffset = 1 << cbit;
if (this_image.image_num + imoffset < local->total_num_images)
{
a = this_image_buf;
b = this_image_buf + imoffset * char_len;
if (memcmp4 (b, a, char_len) > 0)
memcpy (a, b, type_size);
}
collsub_sync (ci);
}
/* All images have to execute the same number of collsub_sync, otherwise
some images will hang. Here, we execute the missing ones for images
that are not needed anymore in the main loop. */
for ( ; (local->total_num_images >> cbit) != 0; cbit++)
collsub_sync (ci);
if (!result_image || (*result_image - 1) == this_image.image_num)
memcpy (obj, buffer, type_size);
/* We need one barrier (it could be either before or after the collsub) that
prevents one image from starting a new collsub before the old one has
finished. */
finish_collective_subroutine (ci);
}
void cas_collsub_min_scalar_s4 (GFC_UINTEGER_4 *obj, int *result_image,
int *stat, char *errmsg, index_type char_len, index_type errmsg_len);
export_proto(cas_collsub_min_scalar_s4);
void
cas_collsub_min_scalar_s4 (GFC_UINTEGER_4 *obj, int *result_image,
int *stat __attribute__ ((unused)),
char *errmsg __attribute__ ((unused)),
index_type char_len,
index_type errmsg_len __attribute__ ((unused)))
{
int cbit = 0;
int imoffset;
GFC_UINTEGER_4 *a, *b;
GFC_UINTEGER_4 *buffer, *this_image_buf;
collsub_iface *ci;
index_type type_size;
STAT_ERRMSG_ENTRY_CHECK(stat, errmsg, errmsg_len);
error_on_missing_images();
ci = &local->ci;
type_size = char_len * sizeof (GFC_UINTEGER_4);
buffer = get_collsub_buf (ci, type_size * local->total_num_images);
this_image_buf = buffer + this_image.image_num * char_len;
memcpy (this_image_buf, obj, type_size);
collsub_sync (ci);
for (; ((this_image.image_num >> cbit) & 1) == 0
&& (local->total_num_images >> cbit) != 0; cbit++)
{
imoffset = 1 << cbit;
if (this_image.image_num + imoffset < local->total_num_images)
{
a = this_image_buf;
b = this_image_buf + imoffset * char_len;
if (memcmp4 (b, a, char_len) < 0)
memcpy (a, b, type_size);
}
collsub_sync (ci);
}
/* All images have to execute the same number of collsub_sync, otherwise
some images will hang. Here, we execute the missing ones for images
that are not needed anymore in the main loop. */
for ( ; (local->total_num_images >> cbit) != 0; cbit++)
collsub_sync (ci);
if (!result_image || (*result_image - 1) == this_image.image_num)
memcpy (obj, buffer, type_size);
/* We need one barrier (it could be either before or after the collsub) that
prevents one image from starting a new collsub before the old one has
finished. */
finish_collective_subroutine (ci);
}
void cas_collsub_max_array_s4 (gfc_array_s4 * restrict array, int *result_image,
int *stat, char *errmsg, index_type char_len,
index_type errmsg_len);
export_proto (cas_collsub_max_array_s4);
void
cas_collsub_max_array_s4 (gfc_array_s4 * restrict array, int *result_image,
int *stat, char *errmsg, index_type char_len,
index_type errmsg_len)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS]; /* Store byte-based strides here. */
index_type extent[GFC_MAX_DIMENSIONS];
char *this_shared_ptr; /* Points to the shared memory allocated to this image. */
char *buffer;
index_type dim;
bool packed;
index_type span;
index_type ssize, num_elems;
int cbit = 0;
int imoffset;
index_type type_size;
collsub_iface *ci;
STAT_ERRMSG_ENTRY_CHECK(stat, errmsg, errmsg_len);
error_on_missing_images();
ci = &local->ci;
type_size = char_len * sizeof (GFC_UINTEGER_4);
dim = GFC_DESCRIPTOR_RANK (array);
num_elems = 1;
packed = true;
span = array->span != 0 ? array->span : type_size;
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE (array, n) * span;
extent[n] = GFC_DESCRIPTOR_EXTENT (array, n);
/* No-op for an empty array. */
if (extent[n] <= 0)
return;
if (num_elems != GFC_DESCRIPTOR_STRIDE (array,n))
packed = false;
num_elems *= extent[n];
}
ssize = num_elems * type_size;
buffer = get_collsub_buf (ci, ssize * local->total_num_images);
this_shared_ptr = buffer + this_image.image_num * ssize;
if (packed)
memcpy (this_shared_ptr, array->base_addr, ssize);
else
{
char *src = (char *) array->base_addr;
char *restrict dest = this_shared_ptr;
index_type stride0 = stride[0];
while (src)
{
/* Copy the data. */
memcpy (dest, src, type_size);
dest += type_size;
src += stride0;
count[0] ++;
/* Advance to the next source element. */
for (index_type n = 0; count[n] == extent[n] ; )
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
src -= stride[n] * extent[n];
n++;
if (n == dim)
{
src = NULL;
break;
}
else
{
count[n]++;
src += stride[n];
}
}
}
}
collsub_sync (ci);
/* Reduce the array to image zero. Here the general scheme:
abababababab
a_b_a_b_a_b_
a___b___a___
a_______b___
r___________
*/
for (; ((this_image.image_num >> cbit) & 1) == 0
&& (local->total_num_images >> cbit) != 0; cbit++)
{
imoffset = 1 << cbit;
if (this_image.image_num + imoffset < local->total_num_images)
{
char *other_shared_ptr; /* Points to the shared memory
allocated to another image. */
GFC_UINTEGER_4 *a;
GFC_UINTEGER_4 *b;
other_shared_ptr = this_shared_ptr + imoffset * ssize;
for (index_type i = 0; i < num_elems; i++)
{
a = (GFC_UINTEGER_4 *) (this_shared_ptr + i * type_size);
b = (GFC_UINTEGER_4 *) (other_shared_ptr + i * type_size);
if (memcmp4 (b, a, char_len) > 0)
memcpy (a, b, type_size);
}
}
collsub_sync (ci);
}
for ( ; (local->total_num_images >> cbit) != 0; cbit++)
collsub_sync (ci);
if (!result_image || (*result_image - 1) == this_image.image_num)
{
if (packed)
memcpy (array->base_addr, buffer, ssize);
else
{
char *src = buffer;
char *restrict dest = (char *) array->base_addr;
index_type stride0 = stride[0];
memset (count, 0, sizeof (index_type) * dim);
while (dest)
{
memcpy (dest, src, type_size);
src += span;
dest += stride0;
count[0] ++;
for (index_type n = 0; count[n] == extent[n] ;)
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
}
finish_collective_subroutine (ci);
}
void cas_collsub_min_array_s4 (gfc_array_s4 * restrict array, int *result_image,
int *stat, char *errmsg, index_type char_len,
index_type errmsg_len);
export_proto (cas_collsub_min_array_s4);
void
cas_collsub_min_array_s4 (gfc_array_s4 * restrict array, int *result_image,
int *stat, char *errmsg, index_type char_len,
index_type errmsg_len)
{
index_type count[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS]; /* Store byte-based strides here. */
index_type extent[GFC_MAX_DIMENSIONS];
char *this_shared_ptr; /* Points to the shared memory allocated to this image. */
char *buffer;
index_type dim;
bool packed;
index_type span;
index_type ssize, num_elems;
int cbit = 0;
int imoffset;
index_type type_size;
collsub_iface *ci;
STAT_ERRMSG_ENTRY_CHECK(stat, errmsg, errmsg_len);
error_on_missing_images();
ci = &local->ci;
type_size = char_len * sizeof (GFC_UINTEGER_4);
dim = GFC_DESCRIPTOR_RANK (array);
num_elems = 1;
packed = true;
span = array->span != 0 ? array->span : type_size;
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE (array, n) * span;
extent[n] = GFC_DESCRIPTOR_EXTENT (array, n);
/* No-op for an empty array. */
if (extent[n] <= 0)
return;
if (num_elems != GFC_DESCRIPTOR_STRIDE (array,n))
packed = false;
num_elems *= extent[n];
}
ssize = num_elems * type_size;
buffer = get_collsub_buf (ci, ssize * local->total_num_images);
this_shared_ptr = buffer + this_image.image_num * ssize;
if (packed)
memcpy (this_shared_ptr, array->base_addr, ssize);
else
{
char *src = (char *) array->base_addr;
char *restrict dest = this_shared_ptr;
index_type stride0 = stride[0];
while (src)
{
/* Copy the data. */
memcpy (dest, src, type_size);
dest += type_size;
src += stride0;
count[0] ++;
/* Advance to the next source element. */
for (index_type n = 0; count[n] == extent[n] ; )
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
src -= stride[n] * extent[n];
n++;
if (n == dim)
{
src = NULL;
break;
}
else
{
count[n]++;
src += stride[n];
}
}
}
}
collsub_sync (ci);
/* Reduce the array to image zero. Here the general scheme:
abababababab
a_b_a_b_a_b_
a___b___a___
a_______b___
r___________
*/
for (; ((this_image.image_num >> cbit) & 1) == 0
&& (local->total_num_images >> cbit) != 0; cbit++)
{
imoffset = 1 << cbit;
if (this_image.image_num + imoffset < local->total_num_images)
{
char *other_shared_ptr; /* Points to the shared memory
allocated to another image. */
GFC_UINTEGER_4 *a;
GFC_UINTEGER_4 *b;
other_shared_ptr = this_shared_ptr + imoffset * ssize;
for (index_type i = 0; i < num_elems; i++)
{
a = (GFC_UINTEGER_4 *) (this_shared_ptr + i * type_size);
b = (GFC_UINTEGER_4 *) (other_shared_ptr + i * type_size);
if (memcmp4 (b, a, char_len) < 0)
memcpy (a, b, type_size);
}
}
collsub_sync (ci);
}
for ( ; (local->total_num_images >> cbit) != 0; cbit++)
collsub_sync (ci);
if (!result_image || (*result_image - 1) == this_image.image_num)
{
if (packed)
memcpy (array->base_addr, buffer, ssize);
else
{
char *src = buffer;
char *restrict dest = (char *) array->base_addr;
index_type stride0 = stride[0];
memset (count, 0, sizeof (index_type) * dim);
while (dest)
{
memcpy (dest, src, type_size);
src += span;
dest += stride0;
count[0] ++;
for (index_type n = 0; count[n] == extent[n] ;)
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
dest -= stride[n] * extent[n];
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n];
}
}
}
}
}
finish_collective_subroutine (ci);
}
#endif