| /* cbrtq.c |
| * |
| * Cube root, long double precision |
| * |
| * |
| * |
| * SYNOPSIS: |
| * |
| * long double x, y, cbrtq(); |
| * |
| * y = cbrtq( x ); |
| * |
| * |
| * |
| * DESCRIPTION: |
| * |
| * Returns the cube root of the argument, which may be negative. |
| * |
| * Range reduction involves determining the power of 2 of |
| * the argument. A polynomial of degree 2 applied to the |
| * mantissa, and multiplication by the cube root of 1, 2, or 4 |
| * approximates the root to within about 0.1%. Then Newton's |
| * iteration is used three times to converge to an accurate |
| * result. |
| * |
| * |
| * |
| * ACCURACY: |
| * |
| * Relative error: |
| * arithmetic domain # trials peak rms |
| * IEEE -8,8 100000 1.3e-34 3.9e-35 |
| * IEEE exp(+-707) 100000 1.3e-34 4.3e-35 |
| * |
| */ |
| |
| /* |
| Cephes Math Library Release 2.2: January, 1991 |
| Copyright 1984, 1991 by Stephen L. Moshier |
| Adapted for glibc October, 2001. |
| |
| This library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| This library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with this library; if not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "quadmath-imp.h" |
| |
| static const __float128 CBRT2 = 1.259921049894873164767210607278228350570251Q; |
| static const __float128 CBRT4 = 1.587401051968199474751705639272308260391493Q; |
| static const __float128 CBRT2I = 0.7937005259840997373758528196361541301957467Q; |
| static const __float128 CBRT4I = 0.6299605249474365823836053036391141752851257Q; |
| |
| |
| __float128 |
| cbrtq (__float128 x) |
| { |
| int e, rem, sign; |
| __float128 z; |
| |
| if (!finiteq (x)) |
| return x + x; |
| |
| if (x == 0) |
| return (x); |
| |
| if (x > 0) |
| sign = 1; |
| else |
| { |
| sign = -1; |
| x = -x; |
| } |
| |
| z = x; |
| /* extract power of 2, leaving mantissa between 0.5 and 1 */ |
| x = frexpq (x, &e); |
| |
| /* Approximate cube root of number between .5 and 1, |
| peak relative error = 1.2e-6 */ |
| x = ((((1.3584464340920900529734e-1Q * x |
| - 6.3986917220457538402318e-1Q) * x |
| + 1.2875551670318751538055e0Q) * x |
| - 1.4897083391357284957891e0Q) * x |
| + 1.3304961236013647092521e0Q) * x + 3.7568280825958912391243e-1Q; |
| |
| /* exponent divided by 3 */ |
| if (e >= 0) |
| { |
| rem = e; |
| e /= 3; |
| rem -= 3 * e; |
| if (rem == 1) |
| x *= CBRT2; |
| else if (rem == 2) |
| x *= CBRT4; |
| } |
| else |
| { /* argument less than 1 */ |
| e = -e; |
| rem = e; |
| e /= 3; |
| rem -= 3 * e; |
| if (rem == 1) |
| x *= CBRT2I; |
| else if (rem == 2) |
| x *= CBRT4I; |
| e = -e; |
| } |
| |
| /* multiply by power of 2 */ |
| x = ldexpq (x, e); |
| |
| /* Newton iteration */ |
| x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333Q; |
| x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333Q; |
| x -= (x - (z / (x * x))) * 0.3333333333333333333333333333333333333333Q; |
| |
| if (sign < 0) |
| x = -x; |
| return (x); |
| } |