| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| |
| /* |
| Long double expansions are |
| Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov> |
| and are incorporated herein by permission of the author. The author |
| reserves the right to distribute this material elsewhere under different |
| copying permissions. These modifications are distributed here under |
| the following terms: |
| |
| This library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| This library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with this library; if not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* __quadmath_kernel_tanq( x, y, k ) |
| * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 |
| * Input x is assumed to be bounded by ~pi/4 in magnitude. |
| * Input y is the tail of x. |
| * Input k indicates whether tan (if k=1) or |
| * -1/tan (if k= -1) is returned. |
| * |
| * Algorithm |
| * 1. Since tan(-x) = -tan(x), we need only to consider positive x. |
| * 2. if x < 2^-57, return x with inexact if x!=0. |
| * 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2) |
| * on [0,0.67433]. |
| * |
| * Note: tan(x+y) = tan(x) + tan'(x)*y |
| * ~ tan(x) + (1+x*x)*y |
| * Therefore, for better accuracy in computing tan(x+y), let |
| * r = x^3 * R(x^2) |
| * then |
| * tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y)) |
| * |
| * 4. For x in [0.67433,pi/4], let y = pi/4 - x, then |
| * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) |
| * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) |
| */ |
| |
| #include "quadmath-imp.h" |
| |
| static const __float128 |
| one = 1, |
| pio4hi = 7.8539816339744830961566084581987569936977E-1Q, |
| pio4lo = 2.1679525325309452561992610065108379921906E-35Q, |
| |
| /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2) |
| 0 <= x <= 0.6743316650390625 |
| Peak relative error 8.0e-36 */ |
| TH = 3.333333333333333333333333333333333333333E-1Q, |
| T0 = -1.813014711743583437742363284336855889393E7Q, |
| T1 = 1.320767960008972224312740075083259247618E6Q, |
| T2 = -2.626775478255838182468651821863299023956E4Q, |
| T3 = 1.764573356488504935415411383687150199315E2Q, |
| T4 = -3.333267763822178690794678978979803526092E-1Q, |
| |
| U0 = -1.359761033807687578306772463253710042010E8Q, |
| U1 = 6.494370630656893175666729313065113194784E7Q, |
| U2 = -4.180787672237927475505536849168729386782E6Q, |
| U3 = 8.031643765106170040139966622980914621521E4Q, |
| U4 = -5.323131271912475695157127875560667378597E2Q; |
| /* 1.000000000000000000000000000000000000000E0 */ |
| |
| |
| __float128 |
| __quadmath_kernel_tanq (__float128 x, __float128 y, int iy) |
| { |
| __float128 z, r, v, w, s; |
| int32_t ix, sign; |
| ieee854_float128 u, u1; |
| |
| u.value = x; |
| ix = u.words32.w0 & 0x7fffffff; |
| if (ix < 0x3fc60000) /* x < 2**-57 */ |
| { |
| if ((int) x == 0) |
| { /* generate inexact */ |
| if ((ix | u.words32.w1 | u.words32.w2 | u.words32.w3 |
| | (iy + 1)) == 0) |
| return one / fabsq (x); |
| else if (iy == 1) |
| { |
| math_check_force_underflow (x); |
| return x; |
| } |
| else |
| return -one / x; |
| } |
| } |
| if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */ |
| { |
| if ((u.words32.w0 & 0x80000000) != 0) |
| { |
| x = -x; |
| y = -y; |
| sign = -1; |
| } |
| else |
| sign = 1; |
| z = pio4hi - x; |
| w = pio4lo - y; |
| x = z + w; |
| y = 0.0; |
| } |
| z = x * x; |
| r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4))); |
| v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z)))); |
| r = r / v; |
| |
| s = z * x; |
| r = y + z * (s * r + y); |
| r += TH * s; |
| w = x + r; |
| if (ix >= 0x3ffe5942) |
| { |
| v = (__float128) iy; |
| w = (v - 2.0 * (x - (w * w / (w + v) - r))); |
| /* SIGN is set for arguments that reach this code, but not |
| otherwise, resulting in warnings that it may be used |
| uninitialized although in the cases where it is used it has |
| always been set. */ |
| |
| |
| if (sign < 0) |
| w = -w; |
| |
| return w; |
| } |
| if (iy == 1) |
| return w; |
| else |
| { /* if allow error up to 2 ulp, |
| simply return -1.0/(x+r) here */ |
| /* compute -1.0/(x+r) accurately */ |
| u1.value = w; |
| u1.words32.w2 = 0; |
| u1.words32.w3 = 0; |
| v = r - (u1.value - x); /* u1+v = r+x */ |
| z = -1.0 / w; |
| u.value = z; |
| u.words32.w2 = 0; |
| u.words32.w3 = 0; |
| s = 1.0 + u.value * u1.value; |
| return u.value + z * (s + u.value * v); |
| } |
| } |