blob: af94c2756a74f710aa50aec1ac3b3de5eeb43a8e [file] [log] [blame]
/* Header file for range operator class.
Copyright (C) 2017-2023 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <amacleod@redhat.com>
and Aldy Hernandez <aldyh@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_RANGE_OP_H
#define GCC_RANGE_OP_H
// This class is implemented for each kind of operator supported by
// the range generator. It serves various purposes.
//
// 1 - Generates range information for the specific operation between
// two ranges. This provides the ability to fold ranges for an
// expression.
//
// 2 - Performs range algebra on the expression such that a range can be
// adjusted in terms of one of the operands:
//
// def = op1 + op2
//
// Given a range for def, we can adjust the range so that it is in
// terms of either operand.
//
// op1_range (def_range, op2) will adjust the range in place so it
// is in terms of op1. Since op1 = def - op2, it will subtract
// op2 from each element of the range.
//
// 3 - Creates a range for an operand based on whether the result is 0 or
// non-zero. This is mostly for logical true false, but can serve other
// purposes.
// ie 0 = op1 - op2 implies op2 has the same range as op1.
//
// 4 - All supported range combinations are explicitly specified.
// Any desired combinations should be implemented for each operator.
// When new range classes are added, new matching prototypes should be
// added.
class range_operator
{
friend class range_op_table;
public:
// Perform an operation between 2 ranges and return it.
virtual bool fold_range (irange &r, tree type,
const irange &lh,
const irange &rh,
relation_trio = TRIO_VARYING) const;
virtual bool fold_range (frange &r, tree type,
const frange &lh,
const frange &rh,
relation_trio = TRIO_VARYING) const;
virtual bool fold_range (irange &r, tree type,
const frange &lh,
const irange &rh,
relation_trio = TRIO_VARYING) const;
virtual bool fold_range (irange &r, tree type,
const frange &lh,
const frange &rh,
relation_trio = TRIO_VARYING) const;
virtual bool fold_range (frange &r, tree type,
const irange &lh,
const irange &rh,
relation_trio = TRIO_VARYING) const;
// Return the range for op[12] in the general case. LHS is the range for
// the LHS of the expression, OP[12]is the range for the other
//
// The operand and the result is returned in R.
//
// TYPE is the expected type of the range.
//
// Return TRUE if the operation is performed and a valid range is available.
//
// i.e. [LHS] = ??? + OP2
// is re-formed as R = [LHS] - OP2.
virtual bool op1_range (irange &r, tree type,
const irange &lhs,
const irange &op2,
relation_trio = TRIO_VARYING) const;
virtual bool op1_range (frange &r, tree type,
const frange &lhs,
const frange &op2,
relation_trio = TRIO_VARYING) const;
virtual bool op1_range (frange &r, tree type,
const irange &lhs,
const frange &op2,
relation_trio = TRIO_VARYING) const;
virtual bool op2_range (irange &r, tree type,
const irange &lhs,
const irange &op1,
relation_trio = TRIO_VARYING) const;
virtual bool op2_range (frange &r, tree type,
const frange &lhs,
const frange &op1,
relation_trio = TRIO_VARYING) const;
virtual bool op2_range (frange &r, tree type,
const irange &lhs,
const frange &op1,
relation_trio = TRIO_VARYING) const;
// The following routines are used to represent relations between the
// various operations. If the caller knows where the symbolics are,
// it can query for relationships between them given known ranges.
// the optional relation passed in is the relation between op1 and op2.
virtual relation_kind lhs_op1_relation (const irange &lhs,
const irange &op1,
const irange &op2,
relation_kind = VREL_VARYING) const;
virtual relation_kind lhs_op1_relation (const frange &lhs,
const frange &op1,
const frange &op2,
relation_kind = VREL_VARYING) const;
virtual relation_kind lhs_op1_relation (const irange &lhs,
const frange &op1,
const frange &op2,
relation_kind = VREL_VARYING) const;
virtual relation_kind lhs_op2_relation (const irange &lhs,
const irange &op1,
const irange &op2,
relation_kind = VREL_VARYING) const;
virtual relation_kind lhs_op2_relation (const frange &lhs,
const frange &op1,
const frange &op2,
relation_kind = VREL_VARYING) const;
virtual relation_kind lhs_op2_relation (const irange &lhs,
const frange &op1,
const frange &op2,
relation_kind = VREL_VARYING) const;
virtual relation_kind op1_op2_relation (const irange &lhs) const;
virtual relation_kind op1_op2_relation (const frange &lhs) const;
protected:
// Perform an integral operation between 2 sub-ranges and return it.
virtual void wi_fold (irange &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const;
// Effect of relation for generic fold_range clients.
virtual bool op1_op2_relation_effect (irange &lhs_range, tree type,
const irange &op1_range,
const irange &op2_range,
relation_kind rel) const;
// Called by fold range to split small subranges into parts.
void wi_fold_in_parts (irange &r, tree type,
const wide_int &lh_lb,
const wide_int &lh_ub,
const wide_int &rh_lb,
const wide_int &rh_ub) const;
// Called by fold range to split small subranges into parts when op1 == op2
void wi_fold_in_parts_equiv (irange &r, tree type,
const wide_int &lb,
const wide_int &ub,
unsigned limit) const;
// Apply any bitmasks implied by these ranges.
virtual void update_bitmask (irange &, const irange &, const irange &) const;
// Perform an float operation between 2 ranges and return it.
virtual void rv_fold (REAL_VALUE_TYPE &lb, REAL_VALUE_TYPE &ub,
bool &maybe_nan,
tree type,
const REAL_VALUE_TYPE &lh_lb,
const REAL_VALUE_TYPE &lh_ub,
const REAL_VALUE_TYPE &rh_lb,
const REAL_VALUE_TYPE &rh_ub,
relation_kind) const;
};
class range_op_handler
{
public:
range_op_handler ();
range_op_handler (unsigned);
operator bool () const;
range_operator *range_op () const;
bool fold_range (vrange &r, tree type,
const vrange &lh,
const vrange &rh,
relation_trio = TRIO_VARYING) const;
bool op1_range (vrange &r, tree type,
const vrange &lhs,
const vrange &op2,
relation_trio = TRIO_VARYING) const;
bool op2_range (vrange &r, tree type,
const vrange &lhs,
const vrange &op1,
relation_trio = TRIO_VARYING) const;
relation_kind lhs_op1_relation (const vrange &lhs,
const vrange &op1,
const vrange &op2,
relation_kind = VREL_VARYING) const;
relation_kind lhs_op2_relation (const vrange &lhs,
const vrange &op1,
const vrange &op2,
relation_kind = VREL_VARYING) const;
relation_kind op1_op2_relation (const vrange &lhs) const;
protected:
unsigned dispatch_kind (const vrange &lhs, const vrange &op1,
const vrange& op2) const;
range_operator *m_operator;
};
// Cast the range in R to TYPE if R supports TYPE.
inline bool
range_cast (vrange &r, tree type)
{
gcc_checking_assert (r.supports_type_p (type));
Value_Range tmp (r);
Value_Range varying (type);
varying.set_varying (type);
// Call op_convert, if it fails, the result is varying.
if (!range_op_handler (CONVERT_EXPR).fold_range (r, type, tmp, varying))
{
r.set_varying (type);
return false;
}
return true;
}
// Range cast which is capable of switching range kinds.
// ie for float to int.
inline bool
range_cast (Value_Range &r, tree type)
{
Value_Range tmp (r);
Value_Range varying (type);
varying.set_varying (type);
// Ensure we are in the correct mode for the call to fold.
r.set_type (type);
// Call op_convert, if it fails, the result is varying.
if (!range_op_handler (CONVERT_EXPR).fold_range (r, type, tmp, varying))
{
r.set_varying (type);
return false;
}
return true;
}
extern void wi_set_zero_nonzero_bits (tree type,
const wide_int &, const wide_int &,
wide_int &maybe_nonzero,
wide_int &mustbe_nonzero);
// These are extra operators that do not fit in the normal scheme of things.
// Add them to the end of the tree-code vector, and provide a name for
// each allowing for easy access when required.
#define OP_WIDEN_MULT_SIGNED ((unsigned) MAX_TREE_CODES)
#define OP_WIDEN_MULT_UNSIGNED ((unsigned) MAX_TREE_CODES + 1)
#define OP_WIDEN_PLUS_SIGNED ((unsigned) MAX_TREE_CODES + 2)
#define OP_WIDEN_PLUS_UNSIGNED ((unsigned) MAX_TREE_CODES + 3)
#define RANGE_OP_TABLE_SIZE ((unsigned) MAX_TREE_CODES + 4)
// This implements the range operator tables as local objects.
class range_op_table
{
public:
range_op_table ();
inline range_operator *operator[] (unsigned code)
{
gcc_checking_assert (code < RANGE_OP_TABLE_SIZE);
return m_range_tree[code];
}
protected:
inline void set (unsigned code, range_operator &op)
{
gcc_checking_assert (code < RANGE_OP_TABLE_SIZE);
gcc_checking_assert (m_range_tree[code] == NULL);
m_range_tree[code] = &op;
}
range_operator *m_range_tree[RANGE_OP_TABLE_SIZE];
void initialize_integral_ops ();
void initialize_pointer_ops ();
void initialize_float_ops ();
};
#endif // GCC_RANGE_OP_H