blob: cbc20ab10644ad1fa5306dad4f96bd9da87ba2eb [file] [log] [blame]
/* Single entry single exit control flow regions.
Copyright (C) 2008-2017 Free Software Foundation, Inc.
Contributed by Jan Sjodin <jan.sjodin@amd.com> and
Sebastian Pop <sebastian.pop@amd.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_SESE_H
#define GCC_SESE_H
typedef struct ifsese_s *ifsese;
/* A Single Entry, Single Exit region is a part of the CFG delimited
by two edges. */
struct sese_l
{
sese_l (edge e, edge x) : entry (e), exit (x) {}
operator bool () const { return entry && exit; }
edge entry;
edge exit;
};
void print_edge (FILE *file, const_edge e);
void print_sese (FILE *file, const sese_l &s);
void dump_edge (const_edge e);
void dump_sese (const sese_l &);
/* Get the entry of an sese S. */
static inline basic_block
get_entry_bb (sese_l &s)
{
return s.entry->dest;
}
/* Get the exit of an sese S. */
static inline basic_block
get_exit_bb (sese_l &s)
{
return s.exit->src;
}
/* Returns the index of V where ELEM can be found. -1 Otherwise. */
template<typename T>
int
vec_find (const vec<T> &v, const T &elem)
{
int i;
T t;
FOR_EACH_VEC_ELT (v, i, t)
if (elem == t)
return i;
return -1;
}
/* A helper structure for bookkeeping information about a scop in graphite. */
typedef struct sese_info_t
{
/* The SESE region. */
sese_l region;
/* Liveout vars. */
bitmap liveout;
/* Liveout in debug stmts. */
bitmap debug_liveout;
/* Parameters used within the SCOP. */
vec<tree> params;
/* Maps an old name to a new decl. */
hash_map<tree, tree> *rename_map;
/* Basic blocks contained in this SESE. */
vec<basic_block> bbs;
/* The condition region generated for this sese. */
ifsese if_region;
} *sese_info_p;
extern sese_info_p new_sese_info (edge, edge);
extern void free_sese_info (sese_info_p);
extern void sese_insert_phis_for_liveouts (sese_info_p, basic_block, edge, edge);
extern struct loop *outermost_loop_in_sese (sese_l &, basic_block);
extern tree scalar_evolution_in_region (const sese_l &, loop_p, tree);
extern bool scev_analyzable_p (tree, sese_l &);
extern bool invariant_in_sese_p_rec (tree, const sese_l &, bool *);
extern void sese_build_liveouts (sese_info_p);
extern bool sese_trivially_empty_bb_p (basic_block);
/* The number of parameters in REGION. */
static inline unsigned
sese_nb_params (sese_info_p region)
{
return region->params.length ();
}
/* Checks whether BB is contained in the region delimited by ENTRY and
EXIT blocks. */
static inline bool
bb_in_region (const_basic_block bb, const_basic_block entry, const_basic_block exit)
{
/* FIXME: PR67842. */
#if 0
if (flag_checking)
{
edge e;
edge_iterator ei;
/* Check that there are no edges coming in the region: all the
predecessors of EXIT are dominated by ENTRY. */
FOR_EACH_EDGE (e, ei, exit->preds)
gcc_assert (dominated_by_p (CDI_DOMINATORS, e->src, entry));
}
#endif
return dominated_by_p (CDI_DOMINATORS, bb, entry)
&& !(dominated_by_p (CDI_DOMINATORS, bb, exit)
&& !dominated_by_p (CDI_DOMINATORS, entry, exit));
}
/* Checks whether BB is contained in the region delimited by ENTRY and
EXIT blocks. */
static inline bool
bb_in_sese_p (basic_block bb, const sese_l &r)
{
return bb_in_region (bb, r.entry->dest, r.exit->dest);
}
/* Returns true when STMT is defined in REGION. */
static inline bool
stmt_in_sese_p (gimple *stmt, const sese_l &r)
{
basic_block bb = gimple_bb (stmt);
return bb && bb_in_sese_p (bb, r);
}
/* Returns true when NAME is defined in REGION. */
static inline bool
defined_in_sese_p (tree name, const sese_l &r)
{
return stmt_in_sese_p (SSA_NAME_DEF_STMT (name), r);
}
/* Returns true when LOOP is in REGION. */
static inline bool
loop_in_sese_p (struct loop *loop, const sese_l &region)
{
return (bb_in_sese_p (loop->header, region)
&& bb_in_sese_p (loop->latch, region));
}
/* Returns the loop depth of LOOP in REGION. The loop depth
is the same as the normal loop depth, but limited by a region.
Example:
loop_0
loop_1
{
S0
<- region start
S1
loop_2
S2
S3
<- region end
}
loop_0 does not exist in the region -> invalid
loop_1 exists, but is not completely contained in the region -> depth 0
loop_2 is completely contained -> depth 1 */
static inline unsigned int
sese_loop_depth (const sese_l &region, loop_p loop)
{
unsigned int depth = 0;
while (loop_in_sese_p (loop, region))
{
depth++;
loop = loop_outer (loop);
}
return depth;
}
/* A single entry single exit specialized for conditions. */
typedef struct ifsese_s {
sese_info_p region;
sese_info_p true_region;
sese_info_p false_region;
} *ifsese;
extern ifsese move_sese_in_condition (sese_info_p);
extern void set_ifsese_condition (ifsese, tree);
extern edge get_true_edge_from_guard_bb (basic_block);
extern edge get_false_edge_from_guard_bb (basic_block);
static inline edge
if_region_entry (ifsese if_region)
{
return if_region->region->region.entry;
}
static inline edge
if_region_exit (ifsese if_region)
{
return if_region->region->region.exit;
}
static inline basic_block
if_region_get_condition_block (ifsese if_region)
{
return if_region_entry (if_region)->dest;
}
/* Free and compute again all the dominators information. */
static inline void
recompute_all_dominators (void)
{
mark_irreducible_loops ();
free_dominance_info (CDI_DOMINATORS);
calculate_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
calculate_dominance_info (CDI_POST_DOMINATORS);
}
typedef std::pair <gimple *, tree> scalar_use;
typedef struct gimple_poly_bb
{
basic_block bb;
struct poly_bb *pbb;
/* Lists containing the restrictions of the conditional statements
dominating this bb. This bb can only be executed, if all conditions
are true.
Example:
for (i = 0; i <= 20; i++)
{
A
if (2i <= 8)
B
}
So for B there is an additional condition (2i <= 8).
List of COND_EXPR and SWITCH_EXPR. A COND_EXPR is true only if the
corresponding element in CONDITION_CASES is not NULL_TREE. For a
SWITCH_EXPR the corresponding element in CONDITION_CASES is a
CASE_LABEL_EXPR. */
vec<gimple *> conditions;
vec<gimple *> condition_cases;
vec<data_reference_p> data_refs;
vec<scalar_use> read_scalar_refs;
vec<tree> write_scalar_refs;
} *gimple_poly_bb_p;
#define GBB_BB(GBB) (GBB)->bb
#define GBB_PBB(GBB) (GBB)->pbb
#define GBB_DATA_REFS(GBB) (GBB)->data_refs
#define GBB_CONDITIONS(GBB) (GBB)->conditions
#define GBB_CONDITION_CASES(GBB) (GBB)->condition_cases
/* Return the innermost loop that contains the basic block GBB. */
static inline struct loop *
gbb_loop (gimple_poly_bb_p gbb)
{
return GBB_BB (gbb)->loop_father;
}
/* Returns the gimple loop, that corresponds to the loop_iterator_INDEX.
If there is no corresponding gimple loop, we return NULL. */
static inline loop_p
gbb_loop_at_index (gimple_poly_bb_p gbb, sese_l &region, int index)
{
loop_p loop = gbb_loop (gbb);
int depth = sese_loop_depth (region, loop);
while (--depth > index)
loop = loop_outer (loop);
gcc_assert (loop_in_sese_p (loop, region));
return loop;
}
/* The number of common loops in REGION for GBB1 and GBB2. */
static inline int
nb_common_loops (sese_l &region, gimple_poly_bb_p gbb1, gimple_poly_bb_p gbb2)
{
loop_p l1 = gbb_loop (gbb1);
loop_p l2 = gbb_loop (gbb2);
loop_p common = find_common_loop (l1, l2);
return sese_loop_depth (region, common);
}
#endif