blob: 806c3099923bc9acd00a55b24711293a1b9ec101 [file] [log] [blame]
/* RTL simplification functions for GNU compiler.
Copyright (C) 1987-2017 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "predict.h"
#include "memmodel.h"
#include "optabs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "varasm.h"
#include "flags.h"
#include "selftest.h"
#include "selftest-rtl.h"
/* Simplification and canonicalization of RTL. */
/* Much code operates on (low, high) pairs; the low value is an
unsigned wide int, the high value a signed wide int. We
occasionally need to sign extend from low to high as if low were a
signed wide int. */
#define HWI_SIGN_EXTEND(low) \
((((HOST_WIDE_INT) low) < 0) ? HOST_WIDE_INT_M1 : HOST_WIDE_INT_0)
static rtx neg_const_int (machine_mode, const_rtx);
static bool plus_minus_operand_p (const_rtx);
static rtx simplify_plus_minus (enum rtx_code, machine_mode, rtx, rtx);
static rtx simplify_associative_operation (enum rtx_code, machine_mode,
rtx, rtx);
static rtx simplify_relational_operation_1 (enum rtx_code, machine_mode,
machine_mode, rtx, rtx);
static rtx simplify_unary_operation_1 (enum rtx_code, machine_mode, rtx);
static rtx simplify_binary_operation_1 (enum rtx_code, machine_mode,
rtx, rtx, rtx, rtx);
/* Negate a CONST_INT rtx. */
static rtx
neg_const_int (machine_mode mode, const_rtx i)
{
unsigned HOST_WIDE_INT val = -UINTVAL (i);
if (!HWI_COMPUTABLE_MODE_P (mode)
&& val == UINTVAL (i))
return simplify_const_unary_operation (NEG, mode, CONST_CAST_RTX (i),
mode);
return gen_int_mode (val, mode);
}
/* Test whether expression, X, is an immediate constant that represents
the most significant bit of machine mode MODE. */
bool
mode_signbit_p (machine_mode mode, const_rtx x)
{
unsigned HOST_WIDE_INT val;
unsigned int width;
scalar_int_mode int_mode;
if (!is_int_mode (mode, &int_mode))
return false;
width = GET_MODE_PRECISION (int_mode);
if (width == 0)
return false;
if (width <= HOST_BITS_PER_WIDE_INT
&& CONST_INT_P (x))
val = INTVAL (x);
#if TARGET_SUPPORTS_WIDE_INT
else if (CONST_WIDE_INT_P (x))
{
unsigned int i;
unsigned int elts = CONST_WIDE_INT_NUNITS (x);
if (elts != (width + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT)
return false;
for (i = 0; i < elts - 1; i++)
if (CONST_WIDE_INT_ELT (x, i) != 0)
return false;
val = CONST_WIDE_INT_ELT (x, elts - 1);
width %= HOST_BITS_PER_WIDE_INT;
if (width == 0)
width = HOST_BITS_PER_WIDE_INT;
}
#else
else if (width <= HOST_BITS_PER_DOUBLE_INT
&& CONST_DOUBLE_AS_INT_P (x)
&& CONST_DOUBLE_LOW (x) == 0)
{
val = CONST_DOUBLE_HIGH (x);
width -= HOST_BITS_PER_WIDE_INT;
}
#endif
else
/* X is not an integer constant. */
return false;
if (width < HOST_BITS_PER_WIDE_INT)
val &= (HOST_WIDE_INT_1U << width) - 1;
return val == (HOST_WIDE_INT_1U << (width - 1));
}
/* Test whether VAL is equal to the most significant bit of mode MODE
(after masking with the mode mask of MODE). Returns false if the
precision of MODE is too large to handle. */
bool
val_signbit_p (machine_mode mode, unsigned HOST_WIDE_INT val)
{
unsigned int width;
scalar_int_mode int_mode;
if (!is_int_mode (mode, &int_mode))
return false;
width = GET_MODE_PRECISION (int_mode);
if (width == 0 || width > HOST_BITS_PER_WIDE_INT)
return false;
val &= GET_MODE_MASK (int_mode);
return val == (HOST_WIDE_INT_1U << (width - 1));
}
/* Test whether the most significant bit of mode MODE is set in VAL.
Returns false if the precision of MODE is too large to handle. */
bool
val_signbit_known_set_p (machine_mode mode, unsigned HOST_WIDE_INT val)
{
unsigned int width;
scalar_int_mode int_mode;
if (!is_int_mode (mode, &int_mode))
return false;
width = GET_MODE_PRECISION (int_mode);
if (width == 0 || width > HOST_BITS_PER_WIDE_INT)
return false;
val &= HOST_WIDE_INT_1U << (width - 1);
return val != 0;
}
/* Test whether the most significant bit of mode MODE is clear in VAL.
Returns false if the precision of MODE is too large to handle. */
bool
val_signbit_known_clear_p (machine_mode mode, unsigned HOST_WIDE_INT val)
{
unsigned int width;
scalar_int_mode int_mode;
if (!is_int_mode (mode, &int_mode))
return false;
width = GET_MODE_PRECISION (int_mode);
if (width == 0 || width > HOST_BITS_PER_WIDE_INT)
return false;
val &= HOST_WIDE_INT_1U << (width - 1);
return val == 0;
}
/* Make a binary operation by properly ordering the operands and
seeing if the expression folds. */
rtx
simplify_gen_binary (enum rtx_code code, machine_mode mode, rtx op0,
rtx op1)
{
rtx tem;
/* If this simplifies, do it. */
tem = simplify_binary_operation (code, mode, op0, op1);
if (tem)
return tem;
/* Put complex operands first and constants second if commutative. */
if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
&& swap_commutative_operands_p (op0, op1))
std::swap (op0, op1);
return gen_rtx_fmt_ee (code, mode, op0, op1);
}
/* If X is a MEM referencing the constant pool, return the real value.
Otherwise return X. */
rtx
avoid_constant_pool_reference (rtx x)
{
rtx c, tmp, addr;
machine_mode cmode;
HOST_WIDE_INT offset = 0;
switch (GET_CODE (x))
{
case MEM:
break;
case FLOAT_EXTEND:
/* Handle float extensions of constant pool references. */
tmp = XEXP (x, 0);
c = avoid_constant_pool_reference (tmp);
if (c != tmp && CONST_DOUBLE_AS_FLOAT_P (c))
return const_double_from_real_value (*CONST_DOUBLE_REAL_VALUE (c),
GET_MODE (x));
return x;
default:
return x;
}
if (GET_MODE (x) == BLKmode)
return x;
addr = XEXP (x, 0);
/* Call target hook to avoid the effects of -fpic etc.... */
addr = targetm.delegitimize_address (addr);
/* Split the address into a base and integer offset. */
if (GET_CODE (addr) == CONST
&& GET_CODE (XEXP (addr, 0)) == PLUS
&& CONST_INT_P (XEXP (XEXP (addr, 0), 1)))
{
offset = INTVAL (XEXP (XEXP (addr, 0), 1));
addr = XEXP (XEXP (addr, 0), 0);
}
if (GET_CODE (addr) == LO_SUM)
addr = XEXP (addr, 1);
/* If this is a constant pool reference, we can turn it into its
constant and hope that simplifications happen. */
if (GET_CODE (addr) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (addr))
{
c = get_pool_constant (addr);
cmode = get_pool_mode (addr);
/* If we're accessing the constant in a different mode than it was
originally stored, attempt to fix that up via subreg simplifications.
If that fails we have no choice but to return the original memory. */
if (offset == 0 && cmode == GET_MODE (x))
return c;
else if (offset >= 0 && offset < GET_MODE_SIZE (cmode))
{
rtx tem = simplify_subreg (GET_MODE (x), c, cmode, offset);
if (tem && CONSTANT_P (tem))
return tem;
}
}
return x;
}
/* Simplify a MEM based on its attributes. This is the default
delegitimize_address target hook, and it's recommended that every
overrider call it. */
rtx
delegitimize_mem_from_attrs (rtx x)
{
/* MEMs without MEM_OFFSETs may have been offset, so we can't just
use their base addresses as equivalent. */
if (MEM_P (x)
&& MEM_EXPR (x)
&& MEM_OFFSET_KNOWN_P (x))
{
tree decl = MEM_EXPR (x);
machine_mode mode = GET_MODE (x);
HOST_WIDE_INT offset = 0;
switch (TREE_CODE (decl))
{
default:
decl = NULL;
break;
case VAR_DECL:
break;
case ARRAY_REF:
case ARRAY_RANGE_REF:
case COMPONENT_REF:
case BIT_FIELD_REF:
case REALPART_EXPR:
case IMAGPART_EXPR:
case VIEW_CONVERT_EXPR:
{
HOST_WIDE_INT bitsize, bitpos;
tree toffset;
int unsignedp, reversep, volatilep = 0;
decl
= get_inner_reference (decl, &bitsize, &bitpos, &toffset, &mode,
&unsignedp, &reversep, &volatilep);
if (bitsize != GET_MODE_BITSIZE (mode)
|| (bitpos % BITS_PER_UNIT)
|| (toffset && !tree_fits_shwi_p (toffset)))
decl = NULL;
else
{
offset += bitpos / BITS_PER_UNIT;
if (toffset)
offset += tree_to_shwi (toffset);
}
break;
}
}
if (decl
&& mode == GET_MODE (x)
&& VAR_P (decl)
&& (TREE_STATIC (decl)
|| DECL_THREAD_LOCAL_P (decl))
&& DECL_RTL_SET_P (decl)
&& MEM_P (DECL_RTL (decl)))
{
rtx newx;
offset += MEM_OFFSET (x);
newx = DECL_RTL (decl);
if (MEM_P (newx))
{
rtx n = XEXP (newx, 0), o = XEXP (x, 0);
/* Avoid creating a new MEM needlessly if we already had
the same address. We do if there's no OFFSET and the
old address X is identical to NEWX, or if X is of the
form (plus NEWX OFFSET), or the NEWX is of the form
(plus Y (const_int Z)) and X is that with the offset
added: (plus Y (const_int Z+OFFSET)). */
if (!((offset == 0
|| (GET_CODE (o) == PLUS
&& GET_CODE (XEXP (o, 1)) == CONST_INT
&& (offset == INTVAL (XEXP (o, 1))
|| (GET_CODE (n) == PLUS
&& GET_CODE (XEXP (n, 1)) == CONST_INT
&& (INTVAL (XEXP (n, 1)) + offset
== INTVAL (XEXP (o, 1)))
&& (n = XEXP (n, 0))))
&& (o = XEXP (o, 0))))
&& rtx_equal_p (o, n)))
x = adjust_address_nv (newx, mode, offset);
}
else if (GET_MODE (x) == GET_MODE (newx)
&& offset == 0)
x = newx;
}
}
return x;
}
/* Make a unary operation by first seeing if it folds and otherwise making
the specified operation. */
rtx
simplify_gen_unary (enum rtx_code code, machine_mode mode, rtx op,
machine_mode op_mode)
{
rtx tem;
/* If this simplifies, use it. */
if ((tem = simplify_unary_operation (code, mode, op, op_mode)) != 0)
return tem;
return gen_rtx_fmt_e (code, mode, op);
}
/* Likewise for ternary operations. */
rtx
simplify_gen_ternary (enum rtx_code code, machine_mode mode,
machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
{
rtx tem;
/* If this simplifies, use it. */
if (0 != (tem = simplify_ternary_operation (code, mode, op0_mode,
op0, op1, op2)))
return tem;
return gen_rtx_fmt_eee (code, mode, op0, op1, op2);
}
/* Likewise, for relational operations.
CMP_MODE specifies mode comparison is done in. */
rtx
simplify_gen_relational (enum rtx_code code, machine_mode mode,
machine_mode cmp_mode, rtx op0, rtx op1)
{
rtx tem;
if (0 != (tem = simplify_relational_operation (code, mode, cmp_mode,
op0, op1)))
return tem;
return gen_rtx_fmt_ee (code, mode, op0, op1);
}
/* If FN is NULL, replace all occurrences of OLD_RTX in X with copy_rtx (DATA)
and simplify the result. If FN is non-NULL, call this callback on each
X, if it returns non-NULL, replace X with its return value and simplify the
result. */
rtx
simplify_replace_fn_rtx (rtx x, const_rtx old_rtx,
rtx (*fn) (rtx, const_rtx, void *), void *data)
{
enum rtx_code code = GET_CODE (x);
machine_mode mode = GET_MODE (x);
machine_mode op_mode;
const char *fmt;
rtx op0, op1, op2, newx, op;
rtvec vec, newvec;
int i, j;
if (__builtin_expect (fn != NULL, 0))
{
newx = fn (x, old_rtx, data);
if (newx)
return newx;
}
else if (rtx_equal_p (x, old_rtx))
return copy_rtx ((rtx) data);
switch (GET_RTX_CLASS (code))
{
case RTX_UNARY:
op0 = XEXP (x, 0);
op_mode = GET_MODE (op0);
op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
if (op0 == XEXP (x, 0))
return x;
return simplify_gen_unary (code, mode, op0, op_mode);
case RTX_BIN_ARITH:
case RTX_COMM_ARITH:
op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
return x;
return simplify_gen_binary (code, mode, op0, op1);
case RTX_COMPARE:
case RTX_COMM_COMPARE:
op0 = XEXP (x, 0);
op1 = XEXP (x, 1);
op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
op1 = simplify_replace_fn_rtx (op1, old_rtx, fn, data);
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
return x;
return simplify_gen_relational (code, mode, op_mode, op0, op1);
case RTX_TERNARY:
case RTX_BITFIELD_OPS:
op0 = XEXP (x, 0);
op_mode = GET_MODE (op0);
op0 = simplify_replace_fn_rtx (op0, old_rtx, fn, data);
op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
op2 = simplify_replace_fn_rtx (XEXP (x, 2), old_rtx, fn, data);
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
return x;
if (op_mode == VOIDmode)
op_mode = GET_MODE (op0);
return simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
case RTX_EXTRA:
if (code == SUBREG)
{
op0 = simplify_replace_fn_rtx (SUBREG_REG (x), old_rtx, fn, data);
if (op0 == SUBREG_REG (x))
return x;
op0 = simplify_gen_subreg (GET_MODE (x), op0,
GET_MODE (SUBREG_REG (x)),
SUBREG_BYTE (x));
return op0 ? op0 : x;
}
break;
case RTX_OBJ:
if (code == MEM)
{
op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
if (op0 == XEXP (x, 0))
return x;
return replace_equiv_address_nv (x, op0);
}
else if (code == LO_SUM)
{
op0 = simplify_replace_fn_rtx (XEXP (x, 0), old_rtx, fn, data);
op1 = simplify_replace_fn_rtx (XEXP (x, 1), old_rtx, fn, data);
/* (lo_sum (high x) y) -> y where x and y have the same base. */
if (GET_CODE (op0) == HIGH)
{
rtx base0, base1, offset0, offset1;
split_const (XEXP (op0, 0), &base0, &offset0);
split_const (op1, &base1, &offset1);
if (rtx_equal_p (base0, base1))
return op1;
}
if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
return x;
return gen_rtx_LO_SUM (mode, op0, op1);
}
break;
default:
break;
}
newx = x;
fmt = GET_RTX_FORMAT (code);
for (i = 0; fmt[i]; i++)
switch (fmt[i])
{
case 'E':
vec = XVEC (x, i);
newvec = XVEC (newx, i);
for (j = 0; j < GET_NUM_ELEM (vec); j++)
{
op = simplify_replace_fn_rtx (RTVEC_ELT (vec, j),
old_rtx, fn, data);
if (op != RTVEC_ELT (vec, j))
{
if (newvec == vec)
{
newvec = shallow_copy_rtvec (vec);
if (x == newx)
newx = shallow_copy_rtx (x);
XVEC (newx, i) = newvec;
}
RTVEC_ELT (newvec, j) = op;
}
}
break;
case 'e':
if (XEXP (x, i))
{
op = simplify_replace_fn_rtx (XEXP (x, i), old_rtx, fn, data);
if (op != XEXP (x, i))
{
if (x == newx)
newx = shallow_copy_rtx (x);
XEXP (newx, i) = op;
}
}
break;
}
return newx;
}
/* Replace all occurrences of OLD_RTX in X with NEW_RTX and try to simplify the
resulting RTX. Return a new RTX which is as simplified as possible. */
rtx
simplify_replace_rtx (rtx x, const_rtx old_rtx, rtx new_rtx)
{
return simplify_replace_fn_rtx (x, old_rtx, 0, new_rtx);
}
/* Try to simplify a MODE truncation of OP, which has OP_MODE.
Only handle cases where the truncated value is inherently an rvalue.
RTL provides two ways of truncating a value:
1. a lowpart subreg. This form is only a truncation when both
the outer and inner modes (here MODE and OP_MODE respectively)
are scalar integers, and only then when the subreg is used as
an rvalue.
It is only valid to form such truncating subregs if the
truncation requires no action by the target. The onus for
proving this is on the creator of the subreg -- e.g. the
caller to simplify_subreg or simplify_gen_subreg -- and typically
involves either TRULY_NOOP_TRUNCATION_MODES_P or truncated_to_mode.
2. a TRUNCATE. This form handles both scalar and compound integers.
The first form is preferred where valid. However, the TRUNCATE
handling in simplify_unary_operation turns the second form into the
first form when TRULY_NOOP_TRUNCATION_MODES_P or truncated_to_mode allow,
so it is generally safe to form rvalue truncations using:
simplify_gen_unary (TRUNCATE, ...)
and leave simplify_unary_operation to work out which representation
should be used.
Because of the proof requirements on (1), simplify_truncation must
also use simplify_gen_unary (TRUNCATE, ...) to truncate parts of OP,
regardless of whether the outer truncation came from a SUBREG or a
TRUNCATE. For example, if the caller has proven that an SImode
truncation of:
(and:DI X Y)
is a no-op and can be represented as a subreg, it does not follow
that SImode truncations of X and Y are also no-ops. On a target
like 64-bit MIPS that requires SImode values to be stored in
sign-extended form, an SImode truncation of:
(and:DI (reg:DI X) (const_int 63))
is trivially a no-op because only the lower 6 bits can be set.
However, X is still an arbitrary 64-bit number and so we cannot
assume that truncating it too is a no-op. */
static rtx
simplify_truncation (machine_mode mode, rtx op,
machine_mode op_mode)
{
unsigned int precision = GET_MODE_UNIT_PRECISION (mode);
unsigned int op_precision = GET_MODE_UNIT_PRECISION (op_mode);
scalar_int_mode int_mode, int_op_mode, subreg_mode;
gcc_assert (precision <= op_precision);
/* Optimize truncations of zero and sign extended values. */
if (GET_CODE (op) == ZERO_EXTEND
|| GET_CODE (op) == SIGN_EXTEND)
{
/* There are three possibilities. If MODE is the same as the
origmode, we can omit both the extension and the subreg.
If MODE is not larger than the origmode, we can apply the
truncation without the extension. Finally, if the outermode
is larger than the origmode, we can just extend to the appropriate
mode. */
machine_mode origmode = GET_MODE (XEXP (op, 0));
if (mode == origmode)
return XEXP (op, 0);
else if (precision <= GET_MODE_UNIT_PRECISION (origmode))
return simplify_gen_unary (TRUNCATE, mode,
XEXP (op, 0), origmode);
else
return simplify_gen_unary (GET_CODE (op), mode,
XEXP (op, 0), origmode);
}
/* If the machine can perform operations in the truncated mode, distribute
the truncation, i.e. simplify (truncate:QI (op:SI (x:SI) (y:SI))) into
(op:QI (truncate:QI (x:SI)) (truncate:QI (y:SI))). */
if (1
&& (!WORD_REGISTER_OPERATIONS || precision >= BITS_PER_WORD)
&& (GET_CODE (op) == PLUS
|| GET_CODE (op) == MINUS
|| GET_CODE (op) == MULT))
{
rtx op0 = simplify_gen_unary (TRUNCATE, mode, XEXP (op, 0), op_mode);
if (op0)
{
rtx op1 = simplify_gen_unary (TRUNCATE, mode, XEXP (op, 1), op_mode);
if (op1)
return simplify_gen_binary (GET_CODE (op), mode, op0, op1);
}
}
/* Simplify (truncate:QI (lshiftrt:SI (sign_extend:SI (x:QI)) C)) into
to (ashiftrt:QI (x:QI) C), where C is a suitable small constant and
the outer subreg is effectively a truncation to the original mode. */
if ((GET_CODE (op) == LSHIFTRT
|| GET_CODE (op) == ASHIFTRT)
/* Ensure that OP_MODE is at least twice as wide as MODE
to avoid the possibility that an outer LSHIFTRT shifts by more
than the sign extension's sign_bit_copies and introduces zeros
into the high bits of the result. */
&& 2 * precision <= op_precision
&& CONST_INT_P (XEXP (op, 1))
&& GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == mode
&& UINTVAL (XEXP (op, 1)) < precision)
return simplify_gen_binary (ASHIFTRT, mode,
XEXP (XEXP (op, 0), 0), XEXP (op, 1));
/* Likewise (truncate:QI (lshiftrt:SI (zero_extend:SI (x:QI)) C)) into
to (lshiftrt:QI (x:QI) C), where C is a suitable small constant and
the outer subreg is effectively a truncation to the original mode. */
if ((GET_CODE (op) == LSHIFTRT
|| GET_CODE (op) == ASHIFTRT)
&& CONST_INT_P (XEXP (op, 1))
&& GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == mode
&& UINTVAL (XEXP (op, 1)) < precision)
return simplify_gen_binary (LSHIFTRT, mode,
XEXP (XEXP (op, 0), 0), XEXP (op, 1));
/* Likewise (truncate:QI (ashift:SI (zero_extend:SI (x:QI)) C)) into
to (ashift:QI (x:QI) C), where C is a suitable small constant and
the outer subreg is effectively a truncation to the original mode. */
if (GET_CODE (op) == ASHIFT
&& CONST_INT_P (XEXP (op, 1))
&& (GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
|| GET_CODE (XEXP (op, 0)) == SIGN_EXTEND)
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == mode
&& UINTVAL (XEXP (op, 1)) < precision)
return simplify_gen_binary (ASHIFT, mode,
XEXP (XEXP (op, 0), 0), XEXP (op, 1));
/* Likewise (truncate:QI (and:SI (lshiftrt:SI (x:SI) C) C2)) into
(and:QI (lshiftrt:QI (truncate:QI (x:SI)) C) C2) for suitable C
and C2. */
if (GET_CODE (op) == AND
&& (GET_CODE (XEXP (op, 0)) == LSHIFTRT
|| GET_CODE (XEXP (op, 0)) == ASHIFTRT)
&& CONST_INT_P (XEXP (XEXP (op, 0), 1))
&& CONST_INT_P (XEXP (op, 1)))
{
rtx op0 = (XEXP (XEXP (op, 0), 0));
rtx shift_op = XEXP (XEXP (op, 0), 1);
rtx mask_op = XEXP (op, 1);
unsigned HOST_WIDE_INT shift = UINTVAL (shift_op);
unsigned HOST_WIDE_INT mask = UINTVAL (mask_op);
if (shift < precision
/* If doing this transform works for an X with all bits set,
it works for any X. */
&& ((GET_MODE_MASK (mode) >> shift) & mask)
== ((GET_MODE_MASK (op_mode) >> shift) & mask)
&& (op0 = simplify_gen_unary (TRUNCATE, mode, op0, op_mode))
&& (op0 = simplify_gen_binary (LSHIFTRT, mode, op0, shift_op)))
{
mask_op = GEN_INT (trunc_int_for_mode (mask, mode));
return simplify_gen_binary (AND, mode, op0, mask_op);
}
}
/* Turn (truncate:M1 (*_extract:M2 (reg:M2) (len) (pos))) into
(*_extract:M1 (truncate:M1 (reg:M2)) (len) (pos')) if possible without
changing len. */
if ((GET_CODE (op) == ZERO_EXTRACT || GET_CODE (op) == SIGN_EXTRACT)
&& REG_P (XEXP (op, 0))
&& GET_MODE (XEXP (op, 0)) == GET_MODE (op)
&& CONST_INT_P (XEXP (op, 1))
&& CONST_INT_P (XEXP (op, 2)))
{
rtx op0 = XEXP (op, 0);
unsigned HOST_WIDE_INT len = UINTVAL (XEXP (op, 1));
unsigned HOST_WIDE_INT pos = UINTVAL (XEXP (op, 2));
if (BITS_BIG_ENDIAN && pos >= op_precision - precision)
{
op0 = simplify_gen_unary (TRUNCATE, mode, op0, GET_MODE (op0));
if (op0)
{
pos -= op_precision - precision;
return simplify_gen_ternary (GET_CODE (op), mode, mode, op0,
XEXP (op, 1), GEN_INT (pos));
}
}
else if (!BITS_BIG_ENDIAN && precision >= len + pos)
{
op0 = simplify_gen_unary (TRUNCATE, mode, op0, GET_MODE (op0));
if (op0)
return simplify_gen_ternary (GET_CODE (op), mode, mode, op0,
XEXP (op, 1), XEXP (op, 2));
}
}
/* Recognize a word extraction from a multi-word subreg. */
if ((GET_CODE (op) == LSHIFTRT
|| GET_CODE (op) == ASHIFTRT)
&& SCALAR_INT_MODE_P (mode)
&& SCALAR_INT_MODE_P (op_mode)
&& precision >= BITS_PER_WORD
&& 2 * precision <= op_precision
&& CONST_INT_P (XEXP (op, 1))
&& (INTVAL (XEXP (op, 1)) & (precision - 1)) == 0
&& UINTVAL (XEXP (op, 1)) < op_precision)
{
int byte = subreg_lowpart_offset (mode, op_mode);
int shifted_bytes = INTVAL (XEXP (op, 1)) / BITS_PER_UNIT;
return simplify_gen_subreg (mode, XEXP (op, 0), op_mode,
(WORDS_BIG_ENDIAN
? byte - shifted_bytes
: byte + shifted_bytes));
}
/* If we have a TRUNCATE of a right shift of MEM, make a new MEM
and try replacing the TRUNCATE and shift with it. Don't do this
if the MEM has a mode-dependent address. */
if ((GET_CODE (op) == LSHIFTRT
|| GET_CODE (op) == ASHIFTRT)
&& is_a <scalar_int_mode> (mode, &int_mode)
&& is_a <scalar_int_mode> (op_mode, &int_op_mode)
&& MEM_P (XEXP (op, 0))
&& CONST_INT_P (XEXP (op, 1))
&& INTVAL (XEXP (op, 1)) % GET_MODE_BITSIZE (int_mode) == 0
&& INTVAL (XEXP (op, 1)) > 0
&& INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (int_op_mode)
&& ! mode_dependent_address_p (XEXP (XEXP (op, 0), 0),
MEM_ADDR_SPACE (XEXP (op, 0)))
&& ! MEM_VOLATILE_P (XEXP (op, 0))
&& (GET_MODE_SIZE (int_mode) >= UNITS_PER_WORD
|| WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN))
{
int byte = subreg_lowpart_offset (int_mode, int_op_mode);
int shifted_bytes = INTVAL (XEXP (op, 1)) / BITS_PER_UNIT;
return adjust_address_nv (XEXP (op, 0), int_mode,
(WORDS_BIG_ENDIAN
? byte - shifted_bytes
: byte + shifted_bytes));
}
/* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
(OP:SI foo:SI) if OP is NEG or ABS. */
if ((GET_CODE (op) == ABS
|| GET_CODE (op) == NEG)
&& (GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
|| GET_CODE (XEXP (op, 0)) == ZERO_EXTEND)
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
return simplify_gen_unary (GET_CODE (op), mode,
XEXP (XEXP (op, 0), 0), mode);
/* (truncate:A (subreg:B (truncate:C X) 0)) is
(truncate:A X). */
if (GET_CODE (op) == SUBREG
&& is_a <scalar_int_mode> (mode, &int_mode)
&& SCALAR_INT_MODE_P (op_mode)
&& is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op)), &subreg_mode)
&& GET_CODE (SUBREG_REG (op)) == TRUNCATE
&& subreg_lowpart_p (op))
{
rtx inner = XEXP (SUBREG_REG (op), 0);
if (GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (subreg_mode))
return simplify_gen_unary (TRUNCATE, int_mode, inner,
GET_MODE (inner));
else
/* If subreg above is paradoxical and C is narrower
than A, return (subreg:A (truncate:C X) 0). */
return simplify_gen_subreg (int_mode, SUBREG_REG (op), subreg_mode, 0);
}
/* (truncate:A (truncate:B X)) is (truncate:A X). */
if (GET_CODE (op) == TRUNCATE)
return simplify_gen_unary (TRUNCATE, mode, XEXP (op, 0),
GET_MODE (XEXP (op, 0)));
/* (truncate:A (ior X C)) is (const_int -1) if C is equal to that already,
in mode A. */
if (GET_CODE (op) == IOR
&& SCALAR_INT_MODE_P (mode)
&& SCALAR_INT_MODE_P (op_mode)
&& CONST_INT_P (XEXP (op, 1))
&& trunc_int_for_mode (INTVAL (XEXP (op, 1)), mode) == -1)
return constm1_rtx;
return NULL_RTX;
}
/* Try to simplify a unary operation CODE whose output mode is to be
MODE with input operand OP whose mode was originally OP_MODE.
Return zero if no simplification can be made. */
rtx
simplify_unary_operation (enum rtx_code code, machine_mode mode,
rtx op, machine_mode op_mode)
{
rtx trueop, tem;
trueop = avoid_constant_pool_reference (op);
tem = simplify_const_unary_operation (code, mode, trueop, op_mode);
if (tem)
return tem;
return simplify_unary_operation_1 (code, mode, op);
}
/* Return true if FLOAT or UNSIGNED_FLOAT operation OP is known
to be exact. */
static bool
exact_int_to_float_conversion_p (const_rtx op)
{
int out_bits = significand_size (GET_MODE_INNER (GET_MODE (op)));
machine_mode op0_mode = GET_MODE (XEXP (op, 0));
/* Constants shouldn't reach here. */
gcc_assert (op0_mode != VOIDmode);
int in_prec = GET_MODE_UNIT_PRECISION (op0_mode);
int in_bits = in_prec;
if (HWI_COMPUTABLE_MODE_P (op0_mode))
{
unsigned HOST_WIDE_INT nonzero = nonzero_bits (XEXP (op, 0), op0_mode);
if (GET_CODE (op) == FLOAT)
in_bits -= num_sign_bit_copies (XEXP (op, 0), op0_mode);
else if (GET_CODE (op) == UNSIGNED_FLOAT)
in_bits = wi::min_precision (wi::uhwi (nonzero, in_prec), UNSIGNED);
else
gcc_unreachable ();
in_bits -= wi::ctz (wi::uhwi (nonzero, in_prec));
}
return in_bits <= out_bits;
}
/* Perform some simplifications we can do even if the operands
aren't constant. */
static rtx
simplify_unary_operation_1 (enum rtx_code code, machine_mode mode, rtx op)
{
enum rtx_code reversed;
rtx temp, elt, base, step;
scalar_int_mode inner, int_mode, op_mode, op0_mode;
switch (code)
{
case NOT:
/* (not (not X)) == X. */
if (GET_CODE (op) == NOT)
return XEXP (op, 0);
/* (not (eq X Y)) == (ne X Y), etc. if BImode or the result of the
comparison is all ones. */
if (COMPARISON_P (op)
&& (mode == BImode || STORE_FLAG_VALUE == -1)
&& ((reversed = reversed_comparison_code (op, NULL)) != UNKNOWN))
return simplify_gen_relational (reversed, mode, VOIDmode,
XEXP (op, 0), XEXP (op, 1));
/* (not (plus X -1)) can become (neg X). */
if (GET_CODE (op) == PLUS
&& XEXP (op, 1) == constm1_rtx)
return simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
/* Similarly, (not (neg X)) is (plus X -1). Only do this for
modes that have CONSTM1_RTX, i.e. MODE_INT, MODE_PARTIAL_INT
and MODE_VECTOR_INT. */
if (GET_CODE (op) == NEG && CONSTM1_RTX (mode))
return simplify_gen_binary (PLUS, mode, XEXP (op, 0),
CONSTM1_RTX (mode));
/* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
if (GET_CODE (op) == XOR
&& CONST_INT_P (XEXP (op, 1))
&& (temp = simplify_unary_operation (NOT, mode,
XEXP (op, 1), mode)) != 0)
return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
/* (not (plus X C)) for signbit C is (xor X D) with D = ~C. */
if (GET_CODE (op) == PLUS
&& CONST_INT_P (XEXP (op, 1))
&& mode_signbit_p (mode, XEXP (op, 1))
&& (temp = simplify_unary_operation (NOT, mode,
XEXP (op, 1), mode)) != 0)
return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
/* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for
operands other than 1, but that is not valid. We could do a
similar simplification for (not (lshiftrt C X)) where C is
just the sign bit, but this doesn't seem common enough to
bother with. */
if (GET_CODE (op) == ASHIFT
&& XEXP (op, 0) == const1_rtx)
{
temp = simplify_gen_unary (NOT, mode, const1_rtx, mode);
return simplify_gen_binary (ROTATE, mode, temp, XEXP (op, 1));
}
/* (not (ashiftrt foo C)) where C is the number of bits in FOO
minus 1 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1,
so we can perform the above simplification. */
if (STORE_FLAG_VALUE == -1
&& is_a <scalar_int_mode> (mode, &int_mode)
&& GET_CODE (op) == ASHIFTRT
&& CONST_INT_P (XEXP (op, 1))
&& INTVAL (XEXP (op, 1)) == GET_MODE_PRECISION (int_mode) - 1)
return simplify_gen_relational (GE, int_mode, VOIDmode,
XEXP (op, 0), const0_rtx);
if (partial_subreg_p (op)
&& subreg_lowpart_p (op)
&& GET_CODE (SUBREG_REG (op)) == ASHIFT
&& XEXP (SUBREG_REG (op), 0) == const1_rtx)
{
machine_mode inner_mode = GET_MODE (SUBREG_REG (op));
rtx x;
x = gen_rtx_ROTATE (inner_mode,
simplify_gen_unary (NOT, inner_mode, const1_rtx,
inner_mode),
XEXP (SUBREG_REG (op), 1));
temp = rtl_hooks.gen_lowpart_no_emit (mode, x);
if (temp)
return temp;
}
/* Apply De Morgan's laws to reduce number of patterns for machines
with negating logical insns (and-not, nand, etc.). If result has
only one NOT, put it first, since that is how the patterns are
coded. */
if (GET_CODE (op) == IOR || GET_CODE (op) == AND)
{
rtx in1 = XEXP (op, 0), in2 = XEXP (op, 1);
machine_mode op_mode;
op_mode = GET_MODE (in1);
in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
op_mode = GET_MODE (in2);
if (op_mode == VOIDmode)
op_mode = mode;
in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
std::swap (in1, in2);
return gen_rtx_fmt_ee (GET_CODE (op) == IOR ? AND : IOR,
mode, in1, in2);
}
/* (not (bswap x)) -> (bswap (not x)). */
if (GET_CODE (op) == BSWAP)
{
rtx x = simplify_gen_unary (NOT, mode, XEXP (op, 0), mode);
return simplify_gen_unary (BSWAP, mode, x, mode);
}
break;
case NEG:
/* (neg (neg X)) == X. */
if (GET_CODE (op) == NEG)
return XEXP (op, 0);
/* (neg (x ? (neg y) : y)) == !x ? (neg y) : y.
If comparison is not reversible use
x ? y : (neg y). */
if (GET_CODE (op) == IF_THEN_ELSE)
{
rtx cond = XEXP (op, 0);
rtx true_rtx = XEXP (op, 1);
rtx false_rtx = XEXP (op, 2);
if ((GET_CODE (true_rtx) == NEG
&& rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
|| (GET_CODE (false_rtx) == NEG
&& rtx_equal_p (XEXP (false_rtx, 0), true_rtx)))
{
if (reversed_comparison_code (cond, NULL) != UNKNOWN)
temp = reversed_comparison (cond, mode);
else
{
temp = cond;
std::swap (true_rtx, false_rtx);
}
return simplify_gen_ternary (IF_THEN_ELSE, mode,
mode, temp, true_rtx, false_rtx);
}
}
/* (neg (plus X 1)) can become (not X). */
if (GET_CODE (op) == PLUS
&& XEXP (op, 1) == const1_rtx)
return simplify_gen_unary (NOT, mode, XEXP (op, 0), mode);
/* Similarly, (neg (not X)) is (plus X 1). */
if (GET_CODE (op) == NOT)
return simplify_gen_binary (PLUS, mode, XEXP (op, 0),
CONST1_RTX (mode));
/* (neg (minus X Y)) can become (minus Y X). This transformation
isn't safe for modes with signed zeros, since if X and Y are
both +0, (minus Y X) is the same as (minus X Y). If the
rounding mode is towards +infinity (or -infinity) then the two
expressions will be rounded differently. */
if (GET_CODE (op) == MINUS
&& !HONOR_SIGNED_ZEROS (mode)
&& !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
return simplify_gen_binary (MINUS, mode, XEXP (op, 1), XEXP (op, 0));
if (GET_CODE (op) == PLUS
&& !HONOR_SIGNED_ZEROS (mode)
&& !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
{
/* (neg (plus A C)) is simplified to (minus -C A). */
if (CONST_SCALAR_INT_P (XEXP (op, 1))
|| CONST_DOUBLE_AS_FLOAT_P (XEXP (op, 1)))
{
temp = simplify_unary_operation (NEG, mode, XEXP (op, 1), mode);
if (temp)
return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 0));
}
/* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 1));
}
/* (neg (mult A B)) becomes (mult A (neg B)).
This works even for floating-point values. */
if (GET_CODE (op) == MULT
&& !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
{
temp = simplify_gen_unary (NEG, mode, XEXP (op, 1), mode);
return simplify_gen_binary (MULT, mode, XEXP (op, 0), temp);
}
/* NEG commutes with ASHIFT since it is multiplication. Only do
this if we can then eliminate the NEG (e.g., if the operand
is a constant). */
if (GET_CODE (op) == ASHIFT)
{
temp = simplify_unary_operation (NEG, mode, XEXP (op, 0), mode);
if (temp)
return simplify_gen_binary (ASHIFT, mode, temp, XEXP (op, 1));
}
/* (neg (ashiftrt X C)) can be replaced by (lshiftrt X C) when
C is equal to the width of MODE minus 1. */
if (GET_CODE (op) == ASHIFTRT
&& CONST_INT_P (XEXP (op, 1))
&& INTVAL (XEXP (op, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
return simplify_gen_binary (LSHIFTRT, mode,
XEXP (op, 0), XEXP (op, 1));
/* (neg (lshiftrt X C)) can be replaced by (ashiftrt X C) when
C is equal to the width of MODE minus 1. */
if (GET_CODE (op) == LSHIFTRT
&& CONST_INT_P (XEXP (op, 1))
&& INTVAL (XEXP (op, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
return simplify_gen_binary (ASHIFTRT, mode,
XEXP (op, 0), XEXP (op, 1));
/* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
if (GET_CODE (op) == XOR
&& XEXP (op, 1) == const1_rtx
&& nonzero_bits (XEXP (op, 0), mode) == 1)
return plus_constant (mode, XEXP (op, 0), -1);
/* (neg (lt x 0)) is (ashiftrt X C) if STORE_FLAG_VALUE is 1. */
/* (neg (lt x 0)) is (lshiftrt X C) if STORE_FLAG_VALUE is -1. */
if (GET_CODE (op) == LT
&& XEXP (op, 1) == const0_rtx
&& is_a <scalar_int_mode> (GET_MODE (XEXP (op, 0)), &inner))
{
int_mode = as_a <scalar_int_mode> (mode);
int isize = GET_MODE_PRECISION (inner);
if (STORE_FLAG_VALUE == 1)
{
temp = simplify_gen_binary (ASHIFTRT, inner, XEXP (op, 0),
GEN_INT (isize - 1));
if (int_mode == inner)
return temp;
if (GET_MODE_PRECISION (int_mode) > isize)
return simplify_gen_unary (SIGN_EXTEND, int_mode, temp, inner);
return simplify_gen_unary (TRUNCATE, int_mode, temp, inner);
}
else if (STORE_FLAG_VALUE == -1)
{
temp = simplify_gen_binary (LSHIFTRT, inner, XEXP (op, 0),
GEN_INT (isize - 1));
if (int_mode == inner)
return temp;
if (GET_MODE_PRECISION (int_mode) > isize)
return simplify_gen_unary (ZERO_EXTEND, int_mode, temp, inner);
return simplify_gen_unary (TRUNCATE, int_mode, temp, inner);
}
}
if (vec_series_p (op, &base, &step))
{
/* Only create a new series if we can simplify both parts. In other
cases this isn't really a simplification, and it's not necessarily
a win to replace a vector operation with a scalar operation. */
scalar_mode inner_mode = GET_MODE_INNER (mode);
base = simplify_unary_operation (NEG, inner_mode, base, inner_mode);
if (base)
{
step = simplify_unary_operation (NEG, inner_mode,
step, inner_mode);
if (step)
return gen_vec_series (mode, base, step);
}
}
break;
case TRUNCATE:
/* Don't optimize (lshiftrt (mult ...)) as it would interfere
with the umulXi3_highpart patterns. */
if (GET_CODE (op) == LSHIFTRT
&& GET_CODE (XEXP (op, 0)) == MULT)
break;
if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
{
if (TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op)))
{
temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
if (temp)
return temp;
}
/* We can't handle truncation to a partial integer mode here
because we don't know the real bitsize of the partial
integer mode. */
break;
}
if (GET_MODE (op) != VOIDmode)
{
temp = simplify_truncation (mode, op, GET_MODE (op));
if (temp)
return temp;
}
/* If we know that the value is already truncated, we can
replace the TRUNCATE with a SUBREG. */
if (GET_MODE_NUNITS (mode) == 1
&& (TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op))
|| truncated_to_mode (mode, op)))
{
temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
if (temp)
return temp;
}
/* A truncate of a comparison can be replaced with a subreg if
STORE_FLAG_VALUE permits. This is like the previous test,
but it works even if the comparison is done in a mode larger
than HOST_BITS_PER_WIDE_INT. */
if (HWI_COMPUTABLE_MODE_P (mode)
&& COMPARISON_P (op)
&& (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
{
temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
if (temp)
return temp;
}
/* A truncate of a memory is just loading the low part of the memory
if we are not changing the meaning of the address. */
if (GET_CODE (op) == MEM
&& !VECTOR_MODE_P (mode)
&& !MEM_VOLATILE_P (op)
&& !mode_dependent_address_p (XEXP (op, 0), MEM_ADDR_SPACE (op)))
{
temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
if (temp)
return temp;
}
break;
case FLOAT_TRUNCATE:
if (DECIMAL_FLOAT_MODE_P (mode))
break;
/* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
if (GET_CODE (op) == FLOAT_EXTEND
&& GET_MODE (XEXP (op, 0)) == mode)
return XEXP (op, 0);
/* (float_truncate:SF (float_truncate:DF foo:XF))
= (float_truncate:SF foo:XF).
This may eliminate double rounding, so it is unsafe.
(float_truncate:SF (float_extend:XF foo:DF))
= (float_truncate:SF foo:DF).
(float_truncate:DF (float_extend:XF foo:SF))
= (float_extend:DF foo:SF). */
if ((GET_CODE (op) == FLOAT_TRUNCATE
&& flag_unsafe_math_optimizations)
|| GET_CODE (op) == FLOAT_EXTEND)
return simplify_gen_unary (GET_MODE_UNIT_SIZE (GET_MODE (XEXP (op, 0)))
> GET_MODE_UNIT_SIZE (mode)
? FLOAT_TRUNCATE : FLOAT_EXTEND,
mode,
XEXP (op, 0), mode);
/* (float_truncate (float x)) is (float x) */
if ((GET_CODE (op) == FLOAT || GET_CODE (op) == UNSIGNED_FLOAT)
&& (flag_unsafe_math_optimizations
|| exact_int_to_float_conversion_p (op)))
return simplify_gen_unary (GET_CODE (op), mode,
XEXP (op, 0),
GET_MODE (XEXP (op, 0)));
/* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
(OP:SF foo:SF) if OP is NEG or ABS. */
if ((GET_CODE (op) == ABS
|| GET_CODE (op) == NEG)
&& GET_CODE (XEXP (op, 0)) == FLOAT_EXTEND
&& GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
return simplify_gen_unary (GET_CODE (op), mode,
XEXP (XEXP (op, 0), 0), mode);
/* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
is (float_truncate:SF x). */
if (GET_CODE (op) == SUBREG
&& subreg_lowpart_p (op)
&& GET_CODE (SUBREG_REG (op)) == FLOAT_TRUNCATE)
return SUBREG_REG (op);
break;
case FLOAT_EXTEND:
if (DECIMAL_FLOAT_MODE_P (mode))
break;
/* (float_extend (float_extend x)) is (float_extend x)
(float_extend (float x)) is (float x) assuming that double
rounding can't happen.
*/
if (GET_CODE (op) == FLOAT_EXTEND
|| ((GET_CODE (op) == FLOAT || GET_CODE (op) == UNSIGNED_FLOAT)
&& exact_int_to_float_conversion_p (op)))
return simplify_gen_unary (GET_CODE (op), mode,
XEXP (op, 0),
GET_MODE (XEXP (op, 0)));
break;
case ABS:
/* (abs (neg <foo>)) -> (abs <foo>) */
if (GET_CODE (op) == NEG)
return simplify_gen_unary (ABS, mode, XEXP (op, 0),
GET_MODE (XEXP (op, 0)));
/* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
do nothing. */
if (GET_MODE (op) == VOIDmode)
break;
/* If operand is something known to be positive, ignore the ABS. */
if (GET_CODE (op) == FFS || GET_CODE (op) == ABS
|| val_signbit_known_clear_p (GET_MODE (op),
nonzero_bits (op, GET_MODE (op))))
return op;
/* If operand is known to be only -1 or 0, convert ABS to NEG. */
if (is_a <scalar_int_mode> (mode, &int_mode)
&& (num_sign_bit_copies (op, int_mode)
== GET_MODE_PRECISION (int_mode)))
return gen_rtx_NEG (int_mode, op);
break;
case FFS:
/* (ffs (*_extend <X>)) = (ffs <X>) */
if (GET_CODE (op) == SIGN_EXTEND
|| GET_CODE (op) == ZERO_EXTEND)
return simplify_gen_unary (FFS, mode, XEXP (op, 0),
GET_MODE (XEXP (op, 0)));
break;
case POPCOUNT:
switch (GET_CODE (op))
{
case BSWAP:
case ZERO_EXTEND:
/* (popcount (zero_extend <X>)) = (popcount <X>) */
return simplify_gen_unary (POPCOUNT, mode, XEXP (op, 0),
GET_MODE (XEXP (op, 0)));
case ROTATE:
case ROTATERT:
/* Rotations don't affect popcount. */
if (!side_effects_p (XEXP (op, 1)))
return simplify_gen_unary (POPCOUNT, mode, XEXP (op, 0),
GET_MODE (XEXP (op, 0)));
break;
default:
break;
}
break;
case PARITY:
switch (GET_CODE (op))
{
case NOT:
case BSWAP:
case ZERO_EXTEND:
case SIGN_EXTEND:
return simplify_gen_unary (PARITY, mode, XEXP (op, 0),
GET_MODE (XEXP (op, 0)));
case ROTATE:
case ROTATERT:
/* Rotations don't affect parity. */
if (!side_effects_p (XEXP (op, 1)))
return simplify_gen_unary (PARITY, mode, XEXP (op, 0),
GET_MODE (XEXP (op, 0)));
break;
default:
break;
}
break;
case BSWAP:
/* (bswap (bswap x)) -> x. */
if (GET_CODE (op) == BSWAP)
return XEXP (op, 0);
break;
case FLOAT:
/* (float (sign_extend <X>)) = (float <X>). */
if (GET_CODE (op) == SIGN_EXTEND)
return simplify_gen_unary (FLOAT, mode, XEXP (op, 0),
GET_MODE (XEXP (op, 0)));
break;
case SIGN_EXTEND:
/* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
becomes just the MINUS if its mode is MODE. This allows
folding switch statements on machines using casesi (such as
the VAX). */
if (GET_CODE (op) == TRUNCATE
&& GET_MODE (XEXP (op, 0)) == mode
&& GET_CODE (XEXP (op, 0)) == MINUS
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
return XEXP (op, 0);
/* Extending a widening multiplication should be canonicalized to
a wider widening multiplication. */
if (GET_CODE (op) == MULT)
{
rtx lhs = XEXP (op, 0);
rtx rhs = XEXP (op, 1);
enum rtx_code lcode = GET_CODE (lhs);
enum rtx_code rcode = GET_CODE (rhs);
/* Widening multiplies usually extend both operands, but sometimes
they use a shift to extract a portion of a register. */
if ((lcode == SIGN_EXTEND
|| (lcode == ASHIFTRT && CONST_INT_P (XEXP (lhs, 1))))
&& (rcode == SIGN_EXTEND
|| (rcode == ASHIFTRT && CONST_INT_P (XEXP (rhs, 1)))))
{
machine_mode lmode = GET_MODE (lhs);
machine_mode rmode = GET_MODE (rhs);
int bits;
if (lcode == ASHIFTRT)
/* Number of bits not shifted off the end. */
bits = (GET_MODE_UNIT_PRECISION (lmode)
- INTVAL (XEXP (lhs, 1)));
else /* lcode == SIGN_EXTEND */
/* Size of inner mode. */
bits = GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (lhs, 0)));
if (rcode == ASHIFTRT)
bits += (GET_MODE_UNIT_PRECISION (rmode)
- INTVAL (XEXP (rhs, 1)));
else /* rcode == SIGN_EXTEND */
bits += GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (rhs, 0)));
/* We can only widen multiplies if the result is mathematiclly
equivalent. I.e. if overflow was impossible. */
if (bits <= GET_MODE_UNIT_PRECISION (GET_MODE (op)))
return simplify_gen_binary
(MULT, mode,
simplify_gen_unary (SIGN_EXTEND, mode, lhs, lmode),
simplify_gen_unary (SIGN_EXTEND, mode, rhs, rmode));
}
}
/* Check for a sign extension of a subreg of a promoted
variable, where the promotion is sign-extended, and the
target mode is the same as the variable's promotion. */
if (GET_CODE (op) == SUBREG
&& SUBREG_PROMOTED_VAR_P (op)
&& SUBREG_PROMOTED_SIGNED_P (op)
&& !paradoxical_subreg_p (mode, GET_MODE (SUBREG_REG (op))))
{
temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
if (temp)
return temp;
}
/* (sign_extend:M (sign_extend:N <X>)) is (sign_extend:M <X>).
(sign_extend:M (zero_extend:N <X>)) is (zero_extend:M <X>). */
if (GET_CODE (op) == SIGN_EXTEND || GET_CODE (op) == ZERO_EXTEND)
{
gcc_assert (GET_MODE_UNIT_PRECISION (mode)
> GET_MODE_UNIT_PRECISION (GET_MODE (op)));
return simplify_gen_unary (GET_CODE (op), mode, XEXP (op, 0),
GET_MODE (XEXP (op, 0)));
}
/* (sign_extend:M (ashiftrt:N (ashift <X> (const_int I)) (const_int I)))
is (sign_extend:M (subreg:O <X>)) if there is mode with
GET_MODE_BITSIZE (N) - I bits.
(sign_extend:M (lshiftrt:N (ashift <X> (const_int I)) (const_int I)))
is similarly (zero_extend:M (subreg:O <X>)). */
if ((GET_CODE (op) == ASHIFTRT || GET_CODE (op) == LSHIFTRT)
&& GET_CODE (XEXP (op, 0)) == ASHIFT
&& is_a <scalar_int_mode> (mode, &int_mode)
&& CONST_INT_P (XEXP (op, 1))
&& XEXP (XEXP (op, 0), 1) == XEXP (op, 1)
&& (op_mode = as_a <scalar_int_mode> (GET_MODE (op)),
GET_MODE_BITSIZE (op_mode) > INTVAL (XEXP (op, 1))))
{
scalar_int_mode tmode;
gcc_assert (GET_MODE_BITSIZE (int_mode)
> GET_MODE_BITSIZE (op_mode));
if (int_mode_for_size (GET_MODE_BITSIZE (op_mode)
- INTVAL (XEXP (op, 1)), 1).exists (&tmode))
{
rtx inner =
rtl_hooks.gen_lowpart_no_emit (tmode, XEXP (XEXP (op, 0), 0));
if (inner)
return simplify_gen_unary (GET_CODE (op) == ASHIFTRT
? SIGN_EXTEND : ZERO_EXTEND,
int_mode, inner, tmode);
}
}
/* (sign_extend:M (lshiftrt:N <X> (const_int I))) is better as
(zero_extend:M (lshiftrt:N <X> (const_int I))) if I is not 0. */
if (GET_CODE (op) == LSHIFTRT
&& CONST_INT_P (XEXP (op, 1))
&& XEXP (op, 1) != const0_rtx)
return simplify_gen_unary (ZERO_EXTEND, mode, op, GET_MODE (op));
#if defined(POINTERS_EXTEND_UNSIGNED)
/* As we do not know which address space the pointer is referring to,
we can do this only if the target does not support different pointer
or address modes depending on the address space. */
if (target_default_pointer_address_modes_p ()
&& ! POINTERS_EXTEND_UNSIGNED
&& mode == Pmode && GET_MODE (op) == ptr_mode
&& (CONSTANT_P (op)
|| (GET_CODE (op) == SUBREG
&& REG_P (SUBREG_REG (op))
&& REG_POINTER (SUBREG_REG (op))
&& GET_MODE (SUBREG_REG (op)) == Pmode))
&& !targetm.have_ptr_extend ())
{
temp
= convert_memory_address_addr_space_1 (Pmode, op,
ADDR_SPACE_GENERIC, false,
true);
if (temp)
return temp;
}
#endif
break;
case ZERO_EXTEND:
/* Check for a zero extension of a subreg of a promoted
variable, where the promotion is zero-extended, and the
target mode is the same as the variable's promotion. */
if (GET_CODE (op) == SUBREG
&& SUBREG_PROMOTED_VAR_P (op)
&& SUBREG_PROMOTED_UNSIGNED_P (op)
&& !paradoxical_subreg_p (mode, GET_MODE (SUBREG_REG (op))))
{
temp = rtl_hooks.gen_lowpart_no_emit (mode, op);
if (temp)
return temp;
}
/* Extending a widening multiplication should be canonicalized to
a wider widening multiplication. */
if (GET_CODE (op) == MULT)
{
rtx lhs = XEXP (op, 0);
rtx rhs = XEXP (op, 1);
enum rtx_code lcode = GET_CODE (lhs);
enum rtx_code rcode = GET_CODE (rhs);
/* Widening multiplies usually extend both operands, but sometimes
they use a shift to extract a portion of a register. */
if ((lcode == ZERO_EXTEND
|| (lcode == LSHIFTRT && CONST_INT_P (XEXP (lhs, 1))))
&& (rcode == ZERO_EXTEND
|| (rcode == LSHIFTRT && CONST_INT_P (XEXP (rhs, 1)))))
{
machine_mode lmode = GET_MODE (lhs);
machine_mode rmode = GET_MODE (rhs);
int bits;
if (lcode == LSHIFTRT)
/* Number of bits not shifted off the end. */
bits = (GET_MODE_UNIT_PRECISION (lmode)
- INTVAL (XEXP (lhs, 1)));
else /* lcode == ZERO_EXTEND */
/* Size of inner mode. */
bits = GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (lhs, 0)));
if (rcode == LSHIFTRT)
bits += (GET_MODE_UNIT_PRECISION (rmode)
- INTVAL (XEXP (rhs, 1)));
else /* rcode == ZERO_EXTEND */
bits += GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (rhs, 0)));
/* We can only widen multiplies if the result is mathematiclly
equivalent. I.e. if overflow was impossible. */
if (bits <= GET_MODE_UNIT_PRECISION (GET_MODE (op)))
return simplify_gen_binary
(MULT, mode,
simplify_gen_unary (ZERO_EXTEND, mode, lhs, lmode),
simplify_gen_unary (ZERO_EXTEND, mode, rhs, rmode));
}
}
/* (zero_extend:M (zero_extend:N <X>)) is (zero_extend:M <X>). */
if (GET_CODE (op) == ZERO_EXTEND)
return simplify_gen_unary (ZERO_EXTEND, mode, XEXP (op, 0),
GET_MODE (XEXP (op, 0)));
/* (zero_extend:M (lshiftrt:N (ashift <X> (const_int I)) (const_int I)))
is (zero_extend:M (subreg:O <X>)) if there is mode with
GET_MODE_PRECISION (N) - I bits. */
if (GET_CODE (op) == LSHIFTRT
&& GET_CODE (XEXP (op, 0)) == ASHIFT
&& is_a <scalar_int_mode> (mode, &int_mode)
&& CONST_INT_P (XEXP (op, 1))
&& XEXP (XEXP (op, 0), 1) == XEXP (op, 1)
&& (op_mode = as_a <scalar_int_mode> (GET_MODE (op)),
GET_MODE_PRECISION (op_mode) > INTVAL (XEXP (op, 1))))
{
scalar_int_mode tmode;
if (int_mode_for_size (GET_MODE_PRECISION (op_mode)
- INTVAL (XEXP (op, 1)), 1).exists (&tmode))
{
rtx inner =
rtl_hooks.gen_lowpart_no_emit (tmode, XEXP (XEXP (op, 0), 0));
if (inner)
return simplify_gen_unary (ZERO_EXTEND, int_mode,
inner, tmode);
}
}
/* (zero_extend:M (subreg:N <X:O>)) is <X:O> (for M == O) or
(zero_extend:M <X:O>), if X doesn't have any non-zero bits outside
of mode N. E.g.
(zero_extend:SI (subreg:QI (and:SI (reg:SI) (const_int 63)) 0)) is
(and:SI (reg:SI) (const_int 63)). */
if (partial_subreg_p (op)
&& is_a <scalar_int_mode> (mode, &int_mode)
&& is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op)), &op0_mode)
&& GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT
&& GET_MODE_PRECISION (int_mode) >= GET_MODE_PRECISION (op0_mode)
&& subreg_lowpart_p (op)
&& (nonzero_bits (SUBREG_REG (op), op0_mode)
& ~GET_MODE_MASK (GET_MODE (op))) == 0)
{
if (GET_MODE_PRECISION (int_mode) == GET_MODE_PRECISION (op0_mode))
return SUBREG_REG (op);
return simplify_gen_unary (ZERO_EXTEND, int_mode, SUBREG_REG (op),
op0_mode);
}
#if defined(POINTERS_EXTEND_UNSIGNED)
/* As we do not know which address space the pointer is referring to,
we can do this only if the target does not support different pointer
or address modes depending on the address space. */
if (target_default_pointer_address_modes_p ()
&& POINTERS_EXTEND_UNSIGNED > 0
&& mode == Pmode && GET_MODE (op) == ptr_mode
&& (CONSTANT_P (op)
|| (GET_CODE (op) == SUBREG
&& REG_P (SUBREG_REG (op))
&& REG_POINTER (SUBREG_REG (op))
&& GET_MODE (SUBREG_REG (op)) == Pmode))
&& !targetm.have_ptr_extend ())
{
temp
= convert_memory_address_addr_space_1 (Pmode, op,
ADDR_SPACE_GENERIC, false,
true);
if (temp)
return temp;
}
#endif
break;
default:
break;
}
if (VECTOR_MODE_P (mode) && vec_duplicate_p (op, &elt))
{
/* Try applying the operator to ELT and see if that simplifies.
We can duplicate the result if so.
The reason we don't use simplify_gen_unary is that it isn't
necessarily a win to convert things like:
(neg:V (vec_duplicate:V (reg:S R)))
to:
(vec_duplicate:V (neg:S (reg:S R)))
The first might be done entirely in vector registers while the
second might need a move between register files. */
temp = simplify_unary_operation (code, GET_MODE_INNER (mode),
elt, GET_MODE_INNER (GET_MODE (op)));
if (temp)
return gen_vec_duplicate (mode, temp);
}
return 0;
}
/* Try to compute the value of a unary operation CODE whose output mode is to
be MODE with input operand OP whose mode was originally OP_MODE.
Return zero if the value cannot be computed. */
rtx
simplify_const_unary_operation (enum rtx_code code, machine_mode mode,
rtx op, machine_mode op_mode)
{
scalar_int_mode result_mode;
if (code == VEC_DUPLICATE)
{
gcc_assert (VECTOR_MODE_P (mode));
if (GET_MODE (op) != VOIDmode)
{
if (!VECTOR_MODE_P (GET_MODE (op)))
gcc_assert (GET_MODE_INNER (mode) == GET_MODE (op));
else
gcc_assert (GET_MODE_INNER (mode) == GET_MODE_INNER
(GET_MODE (op)));
}
if (CONST_SCALAR_INT_P (op) || CONST_DOUBLE_AS_FLOAT_P (op))
return gen_const_vec_duplicate (mode, op);
if (GET_CODE (op) == CONST_VECTOR)
{
unsigned int n_elts = GET_MODE_NUNITS (mode);
unsigned int in_n_elts = CONST_VECTOR_NUNITS (op);
gcc_assert (in_n_elts < n_elts);
gcc_assert ((n_elts % in_n_elts) == 0);
rtvec v = rtvec_alloc (n_elts);
for (unsigned i = 0; i < n_elts; i++)
RTVEC_ELT (v, i) = CONST_VECTOR_ELT (op, i % in_n_elts);
return gen_rtx_CONST_VECTOR (mode, v);
}
}
if (VECTOR_MODE_P (mode) && GET_CODE (op) == CONST_VECTOR)
{
int elt_size = GET_MODE_UNIT_SIZE (mode);
unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
machine_mode opmode = GET_MODE (op);
int op_elt_size = GET_MODE_UNIT_SIZE (opmode);
unsigned op_n_elts = (GET_MODE_SIZE (opmode) / op_elt_size);
rtvec v = rtvec_alloc (n_elts);
unsigned int i;
gcc_assert (op_n_elts == n_elts);
for (i = 0; i < n_elts; i++)
{
rtx x = simplify_unary_operation (code, GET_MODE_INNER (mode),
CONST_VECTOR_ELT (op, i),
GET_MODE_INNER (opmode));
if (!x)
return 0;
RTVEC_ELT (v, i) = x;
}
return gen_rtx_CONST_VECTOR (mode, v);
}
/* The order of these tests is critical so that, for example, we don't
check the wrong mode (input vs. output) for a conversion operation,
such as FIX. At some point, this should be simplified. */
if (code == FLOAT && CONST_SCALAR_INT_P (op))
{
REAL_VALUE_TYPE d;
if (op_mode == VOIDmode)
{
/* CONST_INT have VOIDmode as the mode. We assume that all
the bits of the constant are significant, though, this is
a dangerous assumption as many times CONST_INTs are
created and used with garbage in the bits outside of the
precision of the implied mode of the const_int. */
op_mode = MAX_MODE_INT;
}
real_from_integer (&d, mode, rtx_mode_t (op, op_mode), SIGNED);
/* Avoid the folding if flag_signaling_nans is on and
operand is a signaling NaN. */
if (HONOR_SNANS (mode) && REAL_VALUE_ISSIGNALING_NAN (d))
return 0;
d = real_value_truncate (mode, d);
return const_double_from_real_value (d, mode);
}
else if (code == UNSIGNED_FLOAT && CONST_SCALAR_INT_P (op))
{
REAL_VALUE_TYPE d;
if (op_mode == VOIDmode)
{
/* CONST_INT have VOIDmode as the mode. We assume that all
the bits of the constant are significant, though, this is
a dangerous assumption as many times CONST_INTs are
created and used with garbage in the bits outside of the
precision of the implied mode of the const_int. */
op_mode = MAX_MODE_INT;
}
real_from_integer (&d, mode, rtx_mode_t (op, op_mode), UNSIGNED);
/* Avoid the folding if flag_signaling_nans is on and
operand is a signaling NaN. */
if (HONOR_SNANS (mode) && REAL_VALUE_ISSIGNALING_NAN (d))
return 0;
d = real_value_truncate (mode, d);
return const_double_from_real_value (d, mode);
}
if (CONST_SCALAR_INT_P (op) && is_a <scalar_int_mode> (mode, &result_mode))
{
unsigned int width = GET_MODE_PRECISION (result_mode);
wide_int result;
scalar_int_mode imode = (op_mode == VOIDmode
? result_mode
: as_a <scalar_int_mode> (op_mode));
rtx_mode_t op0 = rtx_mode_t (op, imode);
int int_value;
#if TARGET_SUPPORTS_WIDE_INT == 0
/* This assert keeps the simplification from producing a result
that cannot be represented in a CONST_DOUBLE but a lot of
upstream callers expect that this function never fails to
simplify something and so you if you added this to the test
above the code would die later anyway. If this assert
happens, you just need to make the port support wide int. */
gcc_assert (width <= HOST_BITS_PER_DOUBLE_INT);
#endif
switch (code)
{
case NOT:
result = wi::bit_not (op0);
break;
case NEG:
result = wi::neg (op0);
break;
case ABS:
result = wi::abs (op0);
break;
case FFS:
result = wi::shwi (wi::ffs (op0), result_mode);
break;
case CLZ:
if (wi::ne_p (op0, 0))
int_value = wi::clz (op0);
else if (! CLZ_DEFINED_VALUE_AT_ZERO (imode, int_value))
int_value = GET_MODE_PRECISION (imode);
result = wi::shwi (int_value, result_mode);
break;
case CLRSB:
result = wi::shwi (wi::clrsb (op0), result_mode);
break;
case CTZ:
if (wi::ne_p (op0, 0))
int_value = wi::ctz (op0);
else if (! CTZ_DEFINED_VALUE_AT_ZERO (imode, int_value))
int_value = GET_MODE_PRECISION (imode);
result = wi::shwi (int_value, result_mode);
break;
case POPCOUNT:
result = wi::shwi (wi::popcount (op0), result_mode);
break;
case PARITY:
result = wi::shwi (wi::parity (op0), result_mode);
break;
case BSWAP:
result = wide_int (op0).bswap ();
break;
case TRUNCATE:
case ZERO_EXTEND:
result = wide_int::from (op0, width, UNSIGNED);
break;
case SIGN_EXTEND:
result = wide_int::from (op0, width, SIGNED);
break;
case SQRT:
default:
return 0;
}
return immed_wide_int_const (result, result_mode);
}
else if (CONST_DOUBLE_AS_FLOAT_P (op)
&& SCALAR_FLOAT_MODE_P (mode)
&& SCALAR_FLOAT_MODE_P (GET_MODE (op)))
{
REAL_VALUE_TYPE d = *CONST_DOUBLE_REAL_VALUE (op);
switch (code)
{
case SQRT:
return 0;
case ABS:
d = real_value_abs (&d);
break;
case NEG:
d = real_value_negate (&d);
break;
case FLOAT_TRUNCATE:
/* Don't perform the operation if flag_signaling_nans is on
and the operand is a signaling NaN. */
if (HONOR_SNANS (mode) && REAL_VALUE_ISSIGNALING_NAN (d))
return NULL_RTX;
d = real_value_truncate (mode, d);
break;
case FLOAT_EXTEND:
/* Don't perform the operation if flag_signaling_nans is on
and the operand is a signaling NaN. */
if (HONOR_SNANS (mode) && REAL_VALUE_ISSIGNALING_NAN (d))
return NULL_RTX;
/* All this does is change the mode, unless changing
mode class. */
if (GET_MODE_CLASS (mode) != GET_MODE_CLASS (GET_MODE (op)))
real_convert (&d, mode, &d);
break;
case FIX:
/* Don't perform the operation if flag_signaling_nans is on
and the operand is a signaling NaN. */
if (HONOR_SNANS (mode) && REAL_VALUE_ISSIGNALING_NAN (d))
return NULL_RTX;
real_arithmetic (&d, FIX_TRUNC_EXPR, &d, NULL);
break;
case NOT:
{
long tmp[4];
int i;
real_to_target (tmp, &d, GET_MODE (op));
for (i = 0; i < 4; i++)
tmp[i] = ~tmp[i];
real_from_target (&d, tmp, mode);
break;
}
default:
gcc_unreachable ();
}
return const_double_from_real_value (d, mode);
}
else if (CONST_DOUBLE_AS_FLOAT_P (op)
&& SCALAR_FLOAT_MODE_P (GET_MODE (op))
&& is_int_mode (mode, &result_mode))
{
unsigned int width = GET_MODE_PRECISION (result_mode);
/* Although the overflow semantics of RTL's FIX and UNSIGNED_FIX
operators are intentionally left unspecified (to ease implementation
by target backends), for consistency, this routine implements the
same semantics for constant folding as used by the middle-end. */
/* This was formerly used only for non-IEEE float.
eggert@twinsun.com says it is safe for IEEE also. */
REAL_VALUE_TYPE t;
const REAL_VALUE_TYPE *x = CONST_DOUBLE_REAL_VALUE (op);
wide_int wmax, wmin;
/* This is part of the abi to real_to_integer, but we check
things before making this call. */
bool fail;
switch (code)
{
case FIX:
if (REAL_VALUE_ISNAN (*x))
return const0_rtx;
/* Test against the signed upper bound. */
wmax = wi::max_value (width, SIGNED);
real_from_integer (&t, VOIDmode, wmax, SIGNED);
if (real_less (&t, x))
return immed_wide_int_const (wmax, mode);
/* Test against the signed lower bound. */
wmin = wi::min_value (width, SIGNED);
real_from_integer (&t, VOIDmode, wmin, SIGNED);
if (real_less (x, &t))
return immed_wide_int_const (wmin, mode);
return immed_wide_int_const (real_to_integer (x, &fail, width),
mode);
case UNSIGNED_FIX:
if (REAL_VALUE_ISNAN (*x) || REAL_VALUE_NEGATIVE (*x))
return const0_rtx;
/* Test against the unsigned upper bound. */
wmax = wi::max_value (width, UNSIGNED);
real_from_integer (&t, VOIDmode, wmax, UNSIGNED);
if (real_less (&t, x))
return immed_wide_int_const (wmax, mode);
return immed_wide_int_const (real_to_integer (x, &fail, width),
mode);
default:
gcc_unreachable ();
}
}
return NULL_RTX;
}
/* Subroutine of simplify_binary_operation to simplify a binary operation
CODE that can commute with byte swapping, with result mode MODE and
operating on OP0 and OP1. CODE is currently one of AND, IOR or XOR.
Return zero if no simplification or canonicalization is possible. */
static rtx
simplify_byte_swapping_operation (enum rtx_code code, machine_mode mode,
rtx op0, rtx op1)
{
rtx tem;
/* (op (bswap x) C1)) -> (bswap (op x C2)) with C2 swapped. */
if (GET_CODE (op0) == BSWAP && CONST_SCALAR_INT_P (op1))
{
tem = simplify_gen_binary (code, mode, XEXP (op0, 0),
simplify_gen_unary (BSWAP, mode, op1, mode));
return simplify_gen_unary (BSWAP, mode, tem, mode);
}
/* (op (bswap x) (bswap y)) -> (bswap (op x y)). */
if (GET_CODE (op0) == BSWAP && GET_CODE (op1) == BSWAP)
{
tem = simplify_gen_binary (code, mode, XEXP (op0, 0), XEXP (op1, 0));
return simplify_gen_unary (BSWAP, mode, tem, mode);
}
return NULL_RTX;
}
/* Subroutine of simplify_binary_operation to simplify a commutative,
associative binary operation CODE with result mode MODE, operating
on OP0 and OP1. CODE is currently one of PLUS, MULT, AND, IOR, XOR,
SMIN, SMAX, UMIN or UMAX. Return zero if no simplification or
canonicalization is possible. */
static rtx
simplify_associative_operation (enum rtx_code code, machine_mode mode,
rtx op0, rtx op1)
{
rtx tem;
/* Linearize the operator to the left. */
if (GET_CODE (op1) == code)
{
/* "(a op b) op (c op d)" becomes "((a op b) op c) op d)". */
if (GET_CODE (op0) == code)
{
tem = simplify_gen_binary (code, mode, op0, XEXP (op1, 0));
return simplify_gen_binary (code, mode, tem, XEXP (op1, 1));
}
/* "a op (b op c)" becomes "(b op c) op a". */
if (! swap_commutative_operands_p (op1, op0))
return simplify_gen_binary (code, mode, op1, op0);
std::swap (op0, op1);
}
if (GET_CODE (op0) == code)
{
/* Canonicalize "(x op c) op y" as "(x op y) op c". */
if (swap_commutative_operands_p (XEXP (op0, 1), op1))
{
tem = simplify_gen_binary (code, mode, XEXP (op0, 0), op1);
return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
}
/* Attempt to simplify "(a op b) op c" as "a op (b op c)". */
tem = simplify_binary_operation (code, mode, XEXP (op0, 1), op1);
if (tem != 0)
return simplify_gen_binary (code, mode, XEXP (op0, 0), tem);
/* Attempt to simplify "(a op b) op c" as "(a op c) op b". */
tem = simplify_binary_operation (code, mode, XEXP (op0, 0), op1);
if (tem != 0)
return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
}
return 0;
}
/* Simplify a binary operation CODE with result mode MODE, operating on OP0
and OP1. Return 0 if no simplification is possible.
Don't use this for relational operations such as EQ or LT.
Use simplify_relational_operation instead. */
rtx
simplify_binary_operation (enum rtx_code code, machine_mode mode,
rtx op0, rtx op1)
{
rtx trueop0, trueop1;
rtx tem;
/* Relational operations don't work here. We must know the mode
of the operands in order to do the comparison correctly.
Assuming a full word can give incorrect results.
Consider comparing 128 with -128 in QImode. */
gcc_assert (GET_RTX_CLASS (code) != RTX_COMPARE);
gcc_assert (GET_RTX_CLASS (code) != RTX_COMM_COMPARE);
/* Make sure the constant is second. */
if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
&& swap_commutative_operands_p (op0, op1))
std::swap (op0, op1);
trueop0 = avoid_constant_pool_reference (op0);
trueop1 = avoid_constant_pool_reference (op1);
tem = simplify_const_binary_operation (code, mode, trueop0, trueop1);
if (tem)
return tem;
tem = simplify_binary_operation_1 (code, mode, op0, op1, trueop0, trueop1);
if (tem)
return tem;
/* If the above steps did not result in a simplification and op0 or op1
were constant pool references, use the referenced constants directly. */
if (trueop0 != op0 || trueop1 != op1)
return simplify_gen_binary (code, mode, trueop0, trueop1);
return NULL_RTX;
}
/* Subroutine of simplify_binary_operation_1 that looks for cases in
which OP0 and OP1 are both vector series or vector duplicates
(which are really just series with a step of 0). If so, try to
form a new series by applying CODE to the bases and to the steps.
Return null if no simplification is possible.
MODE is the mode of the operation and is known to be a vector
integer mode. */
static rtx
simplify_binary_operation_series (rtx_code code, machine_mode mode,
rtx op0, rtx op1)
{
rtx base0, step0;
if (vec_duplicate_p (op0, &base0))
step0 = const0_rtx;
else if (!vec_series_p (op0, &base0, &step0))
return NULL_RTX;
rtx base1, step1;
if (vec_duplicate_p (op1, &base1))
step1 = const0_rtx;
else if (!vec_series_p (op1, &base1, &step1))
return NULL_RTX;
/* Only create a new series if we can simplify both parts. In other
cases this isn't really a simplification, and it's not necessarily
a win to replace a vector operation with a scalar operation. */
scalar_mode inner_mode = GET_MODE_INNER (mode);
rtx new_base = simplify_binary_operation (code, inner_mode, base0, base1);
if (!new_base)
return NULL_RTX;
rtx new_step = simplify_binary_operation (code, inner_mode, step0, step1);
if (!new_step)
return NULL_RTX;
return gen_vec_series (mode, new_base, new_step);
}
/* Subroutine of simplify_binary_operation. Simplify a binary operation
CODE with result mode MODE, operating on OP0 and OP1. If OP0 and/or
OP1 are constant pool references, TRUEOP0 and TRUEOP1 represent the
actual constants. */
static rtx
simplify_binary_operation_1 (enum rtx_code code, machine_mode mode,
rtx op0, rtx op1, rtx trueop0, rtx trueop1)
{
rtx tem, reversed, opleft, opright, elt0, elt1;
HOST_WIDE_INT val;
scalar_int_mode int_mode, inner_mode;
/* Even if we can't compute a constant result,
there are some cases worth simplifying. */
switch (code)
{
case PLUS:
/* Maybe simplify x + 0 to x. The two expressions are equivalent
when x is NaN, infinite, or finite and nonzero. They aren't
when x is -0 and the rounding mode is not towards -infinity,
since (-0) + 0 is then 0. */
if (!HONOR_SIGNED_ZEROS (mode) && trueop1 == CONST0_RTX (mode))
return op0;
/* ((-a) + b) -> (b - a) and similarly for (a + (-b)). These
transformations are safe even for IEEE. */
if (GET_CODE (op0) == NEG)
return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
else if (GET_CODE (op1) == NEG)
return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
/* (~a) + 1 -> -a */
if (INTEGRAL_MODE_P (mode)
&& GET_CODE (op0) == NOT
&& trueop1 == const1_rtx)
return simplify_gen_unary (NEG, mode, XEXP (op0, 0), mode);
/* Handle both-operands-constant cases. We can only add
CONST_INTs to constants since the sum of relocatable symbols
can't be handled by most assemblers. Don't add CONST_INT
to CONST_INT since overflow won't be computed properly if wider
than HOST_BITS_PER_WIDE_INT. */
if ((GET_CODE (op0) == CONST
|| GET_CODE (op0) == SYMBOL_REF
|| GET_CODE (op0) == LABEL_REF)
&& CONST_INT_P (op1))
return plus_constant (mode, op0, INTVAL (op1));
else if ((GET_CODE (op1) == CONST
|| GET_CODE (op1) == SYMBOL_REF
|| GET_CODE (op1) == LABEL_REF)
&& CONST_INT_P (op0))
return plus_constant (mode, op1, INTVAL (op0));
/* See if this is something like X * C - X or vice versa or
if the multiplication is written as a shift. If so, we can
distribute and make a new multiply, shift, or maybe just
have X (if C is 2 in the example above). But don't make
something more expensive than we had before. */
if (is_a <scalar_int_mode> (mode, &int_mode))
{
rtx lhs = op0, rhs = op1;
wide_int coeff0 = wi::one (GET_MODE_PRECISION (int_mode));
wide_int coeff1 = wi::one (GET_MODE_PRECISION (int_mode));
if (GET_CODE (lhs) == NEG)
{
coeff0 = wi::minus_one (GET_MODE_PRECISION (int_mode));
lhs = XEXP (lhs, 0);
}
else if (GET_CODE (lhs) == MULT
&& CONST_SCALAR_INT_P (XEXP (lhs, 1)))
{
coeff0 = rtx_mode_t (XEXP (lhs, 1), int_mode);
lhs = XEXP (lhs, 0);
}
else if (GET_CODE (lhs) == ASHIFT
&& CONST_INT_P (XEXP (lhs, 1))
&& INTVAL (XEXP (lhs, 1)) >= 0
&& INTVAL (XEXP (lhs, 1)) < GET_MODE_PRECISION (int_mode))
{
coeff0 = wi::set_bit_in_zero (INTVAL (XEXP (lhs, 1)),
GET_MODE_PRECISION (int_mode));
lhs = XEXP (lhs, 0);
}
if (GET_CODE (rhs) == NEG)
{
coeff1 = wi::minus_one (GET_MODE_PRECISION (int_mode));
rhs = XEXP (rhs, 0);
}
else if (GET_CODE (rhs) == MULT
&& CONST_INT_P (XEXP (rhs, 1)))
{
coeff1 = rtx_mode_t (XEXP (rhs, 1), int_mode);
rhs = XEXP (rhs, 0);
}
else if (GET_CODE (rhs) == ASHIFT
&& CONST_INT_P (XEXP (rhs, 1))
&& INTVAL (XEXP (rhs, 1)) >= 0
&& INTVAL (XEXP (rhs, 1)) < GET_MODE_PRECISION (int_mode))
{
coeff1 = wi::set_bit_in_zero (INTVAL (XEXP (rhs, 1)),
GET_MODE_PRECISION (int_mode));
rhs = XEXP (rhs, 0);
}
if (rtx_equal_p (lhs, rhs))
{
rtx orig = gen_rtx_PLUS (int_mode, op0, op1);
rtx coeff;
bool speed = optimize_function_for_speed_p (cfun);
coeff = immed_wide_int_const (coeff0 + coeff1, int_mode);
tem = simplify_gen_binary (MULT, int_mode, lhs, coeff);
return (set_src_cost (tem, int_mode, speed)
<= set_src_cost (orig, int_mode, speed) ? tem : 0);
}
}
/* (plus (xor X C1) C2) is (xor X (C1^C2)) if C2 is signbit. */
if (CONST_SCALAR_INT_P (op1)
&& GET_CODE (op0) == XOR
&& CONST_SCALAR_INT_P (XEXP (op0, 1))
&& mode_signbit_p (mode, op1))
return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
simplify_gen_binary (XOR, mode, op1,
XEXP (op0, 1)));
/* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)). */
if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
&& GET_CODE (op0) == MULT
&& GET_CODE (XEXP (op0, 0)) == NEG)
{
rtx in1, in2;
in1 = XEXP (XEXP (op0, 0), 0);
in2 = XEXP (op0, 1);
return simplify_gen_binary (MINUS, mode, op1,
simplify_gen_binary (MULT, mode,
in1, in2));
}
/* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
is 1. */
if (COMPARISON_P (op0)
&& ((STORE_FLAG_VALUE == -1 && trueop1 == const1_rtx)
|| (STORE_FLAG_VALUE == 1 && trueop1 == constm1_rtx))
&& (reversed = reversed_comparison (op0, mode)))
return
simplify_gen_unary (NEG, mode, reversed, mode);
/* If one of the operands is a PLUS or a MINUS, see if we can
simplify this by the associative law.
Don't use the associative law for floating point.
The inaccuracy makes it nonassociative,
and subtle programs can break if operations are associated. */
if (INTEGRAL_MODE_P (mode)
&& (plus_minus_operand_p (op0)
|| plus_minus_operand_p (op1))
&& (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
return tem;
/* Reassociate floating point addition only when the user
specifies associative math operations. */
if (FLOAT_MODE_P (mode)
&& flag_associative_math)
{
tem = simplify_associative_operation (code, mode, op0, op1);
if (tem)
return tem;
}
/* Handle vector series. */
if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
{
tem = simplify_binary_operation_series (code, mode, op0, op1);
if (tem)
return tem;
}
break;
case COMPARE:
/* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
|| (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
&& XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
{
rtx xop00 = XEXP (op0, 0);
rtx xop10 = XEXP (op1, 0);
if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
return xop00;
if (REG_P (xop00) && REG_P (xop10)
&& REGNO (xop00) == REGNO (xop10)
&& GET_MODE (xop00) == mode
&& GET_MODE (xop10) == mode
&& GET_MODE_CLASS (mode) == MODE_CC)
return xop00;
}
break;
case MINUS:
/* We can't assume x-x is 0 even with non-IEEE floating point,
but since it is zero except in very strange circumstances, we
will treat it as zero with -ffinite-math-only. */
if (rtx_equal_p (trueop0, trueop1)
&& ! side_effects_p (op0)
&& (!FLOAT_MODE_P (mode) || !HONOR_NANS (mode)))
return CONST0_RTX (mode);
/* Change subtraction from zero into negation. (0 - x) is the
same as -x when x is NaN, infinite, or finite and nonzero.
But if the mode has signed zeros, and does not round towards
-infinity, then 0 - 0 is 0, not -0. */
if (!HONOR_SIGNED_ZEROS (mode) && trueop0 == CONST0_RTX (mode))
return simplify_gen_unary (NEG, mode, op1, mode);
/* (-1 - a) is ~a, unless the expression contains symbolic
constants, in which case not retaining additions and
subtractions could cause invalid assembly to be produced. */
if (trueop0 == constm1_rtx
&& !contains_symbolic_reference_p (op1))
return simplify_gen_unary (NOT, mode, op1, mode);
/* Subtracting 0 has no effect unless the mode has signed zeros
and supports rounding towards -infinity. In such a case,
0 - 0 is -0. */
if (!(HONOR_SIGNED_ZEROS (mode)
&& HONOR_SIGN_DEPENDENT_ROUNDING (mode))
&& trueop1 == CONST0_RTX (mode))
return op0;
/* See if this is something like X * C - X or vice versa or
if the multiplication is written as a shift. If so, we can
distribute and make a new multiply, shift, or maybe just
have X (if C is 2 in the example above). But don't make
something more expensive than we had before. */
if (is_a <scalar_int_mode> (mode, &int_mode))
{
rtx lhs = op0, rhs = op1;
wide_int coeff0 = wi::one (GET_MODE_PRECISION (int_mode));
wide_int negcoeff1 = wi::minus_one (GET_MODE_PRECISION (int_mode));
if (GET_CODE (lhs) == NEG)
{
coeff0 = wi::minus_one (GET_MODE_PRECISION (int_mode));
lhs = XEXP (lhs, 0);
}
else if (GET_CODE (lhs) == MULT
&& CONST_SCALAR_INT_P (XEXP (lhs, 1)))
{
coeff0 = rtx_mode_t (XEXP (lhs, 1), int_mode);
lhs = XEXP (lhs, 0);
}
else if (GET_CODE (lhs) == ASHIFT
&& CONST_INT_P (XEXP (lhs, 1))
&& INTVAL (XEXP (lhs, 1)) >= 0
&& INTVAL (XEXP (lhs, 1)) < GET_MODE_PRECISION (int_mode))
{
coeff0 = wi::set_bit_in_zero (INTVAL (XEXP (lhs, 1)),
GET_MODE_PRECISION (int_mode));
lhs = XEXP (lhs, 0);
}
if (GET_CODE (rhs) == NEG)
{
negcoeff1 = wi::one (GET_MODE_PRECISION (int_mode));
rhs = XEXP (rhs, 0);
}
else if (GET_CODE (rhs) == MULT
&& CONST_INT_P (XEXP (rhs, 1)))
{
negcoeff1 = wi::neg (rtx_mode_t (XEXP (rhs, 1), int_mode));
rhs = XEXP (rhs, 0);
}
else if (GET_CODE (rhs) == ASHIFT
&& CONST_INT_P (XEXP (rhs, 1))
&& INTVAL (XEXP (rhs, 1)) >= 0
&& INTVAL (XEXP (rhs, 1)) < GET_MODE_PRECISION (int_mode))
{
negcoeff1 = wi::set_bit_in_zero (INTVAL (XEXP (rhs, 1)),
GET_MODE_PRECISION (int_mode));
negcoeff1 = -negcoeff1;
rhs = XEXP (rhs, 0);
}
if (rtx_equal_p (lhs, rhs))
{
rtx orig = gen_rtx_MINUS (int_mode, op0, op1);
rtx coeff;
bool speed = optimize_function_for_speed_p (cfun);
coeff = immed_wide_int_const (coeff0 + negcoeff1, int_mode);
tem = simplify_gen_binary (MULT, int_mode, lhs, coeff);
return (set_src_cost (tem, int_mode, speed)
<= set_src_cost (orig, int_mode, speed) ? tem : 0);
}
}
/* (a - (-b)) -> (a + b). True even for IEEE. */
if (GET_CODE (op1) == NEG)
return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
/* (-x - c) may be simplified as (-c - x). */
if (GET_CODE (op0) == NEG
&& (CONST_SCALAR_INT_P (op1) || CONST_DOUBLE_AS_FLOAT_P (op1)))
{
tem = simplify_unary_operation (NEG, mode, op1, mode);
if (tem)
return simplify_gen_binary (MINUS, mode, tem, XEXP (op0, 0));
}
/* Don't let a relocatable value get a negative coeff. */
if (CONST_INT_P (op1) && GET_MODE (op0) != VOIDmode)
return simplify_gen_binary (PLUS, mode,
op0,
neg_const_int (mode, op1));
/* (x - (x & y)) -> (x & ~y) */
if (INTEGRAL_MODE_P (mode) && GET_CODE (op1) == AND)
{
if (rtx_equal_p (op0, XEXP (op1, 0)))
{
tem = simplify_gen_unary (NOT, mode, XEXP (op1, 1),
GET_MODE (XEXP (op1, 1)));
return simplify_gen_binary (AND, mode, op0, tem);
}
if (rtx_equal_p (op0, XEXP (op1, 1)))
{
tem = simplify_gen_unary (NOT, mode, XEXP (op1, 0),
GET_MODE (XEXP (op1, 0)));
return simplify_gen_binary (AND, mode, op0, tem);
}
}
/* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
by reversing the comparison code if valid. */
if (STORE_FLAG_VALUE == 1
&& trueop0 == const1_rtx
&& COMPARISON_P (op1)
&& (reversed = reversed_comparison (op1, mode)))
return reversed;
/* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A). */
if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
&& GET_CODE (op1) == MULT
&& GET_CODE (XEXP (op1, 0)) == NEG)
{
rtx in1, in2;
in1 = XEXP (XEXP (op1, 0), 0);
in2 = XEXP (op1, 1);
return simplify_gen_binary (PLUS, mode,
simplify_gen_binary (MULT, mode,
in1, in2),
op0);
}
/* Canonicalize (minus (neg A) (mult B C)) to
(minus (mult (neg B) C) A). */
if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
&& GET_CODE (op1) == MULT
&& GET_CODE (op0) == NEG)
{
rtx in1, in2;
in1 = simplify_gen_unary (NEG, mode, XEXP (op1, 0), mode);
in2 = XEXP (op1, 1);
return simplify_gen_binary (MINUS, mode,
simplify_gen_binary (MULT, mode,
in1, in2),
XEXP (op0, 0));
}
/* If one of the operands is a PLUS or a MINUS, see if we can
simplify this by the associative law. This will, for example,
canonicalize (minus A (plus B C)) to (minus (minus A B) C).
Don't use the associative law for floating point.
The inaccuracy makes it nonassociative,
and subtle programs can break if operations are associated. */
if (INTEGRAL_MODE_P (mode)
&& (plus_minus_operand_p (op0)
|| plus_minus_operand_p (op1))
&& (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
return tem;
/* Handle vector series. */
if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
{
tem = simplify_binary_operation_series (code, mode, op0, op1);
if (tem)
return tem;
}
break;
case MULT:
if (trueop1 == constm1_rtx)
return simplify_gen_unary (NEG, mode, op0, mode);
if (GET_CODE (op0) == NEG)
{
rtx temp = simplify_unary_operation (NEG, mode, op1, mode);
/* If op1 is a MULT as well and simplify_unary_operation
just moved the NEG to the second operand, simplify_gen_binary
below could through simplify_associative_operation move
the NEG around again and recurse endlessly. */
if (temp
&& GET_CODE (op1) == MULT
&& GET_CODE (temp) == MULT
&& XEXP (op1, 0) == XEXP (temp, 0)
&& GET_CODE (XEXP (temp, 1)) == NEG
&& XEXP (op1, 1) == XEXP (XEXP (temp, 1), 0))
temp = NULL_RTX;
if (temp)
return simplify_gen_binary (MULT, mode, XEXP (op0, 0), temp);
}
if (GET_CODE (op1) == NEG)
{
rtx temp = simplify_unary_operation (NEG, mode, op0, mode);
/* If op0 is a MULT as well and simplify_unary_operation
just moved the NEG to the second operand, simplify_gen_binary
below could through simplify_associative_operation move
the NEG around again and recurse endlessly. */
if (temp
&& GET_CODE (op0) == MULT
&& GET_CODE (temp) == MULT
&& XEXP (op0, 0) == XEXP (temp, 0)
&& GET_CODE (XEXP (temp, 1)) == NEG
&& XEXP (op0, 1) == XEXP (XEXP (temp, 1), 0))
temp = NULL_RTX;
if (temp)
return simplify_gen_binary (MULT, mode, temp, XEXP (op1, 0));
}
/* Maybe simplify x * 0 to 0. The reduction is not valid if
x is NaN, since x * 0 is then also NaN. Nor is it valid
when the mode has signed zeros, since multiplying a negative
number by 0 will give -0, not 0. */
if (!HONOR_NANS (mode)
&& !HONOR_SIGNED_ZEROS (mode)
&& trueop1 == CONST0_RTX (mode)
&& ! side_effects_p (op0))
return op1;
/* In IEEE floating point, x*1 is not equivalent to x for
signalling NaNs. */
if (!HONOR_SNANS (mode)
&& trueop1 == CONST1_RTX (mode))
return op0;
/* Convert multiply by constant power of two into shift. */
if (CONST_SCALAR_INT_P (trueop1))
{
val = wi::exact_log2 (rtx_mode_t (trueop1, mode));
if (val >= 0)
return simplify_gen_binary (ASHIFT, mode, op0, GEN_INT (val));
}
/* x*2 is x+x and x*(-1) is -x */
if (CONST_DOUBLE_AS_FLOAT_P (trueop1)
&& SCALAR_FLOAT_MODE_P (GET_MODE (trueop1))
&& !DECIMAL_FLOAT_MODE_P (GET_MODE (trueop1))
&& GET_MODE (op0) == mode)
{
const REAL_VALUE_TYPE *d1 = CONST_DOUBLE_REAL_VALUE (trueop1);
if (real_equal (d1, &dconst2))
return simplify_gen_binary (PLUS, mode, op0, copy_rtx (op0));
if (!HONOR_SNANS (mode)
&& real_equal (d1, &dconstm1))
return simplify_gen_unary (NEG, mode, op0, mode);
}
/* Optimize -x * -x as x * x. */
if (FLOAT_MODE_P (mode)
&& GET_CODE (op0) == NEG
&& GET_CODE (op1) == NEG
&& rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
&& !side_effects_p (XEXP (op0, 0)))
return simplify_gen_binary (MULT, mode, XEXP (op0, 0), XEXP (op1, 0));
/* Likewise, optimize abs(x) * abs(x) as x * x. */
if (SCALAR_FLOAT_MODE_P (mode)
&& GET_CODE (op0) == ABS
&& GET_CODE (op1) == ABS
&& rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
&& !side_effects_p (XEXP (op0, 0)))
return simplify_gen_binary (MULT, mode, XEXP (op0, 0), XEXP (op1, 0));
/* Reassociate multiplication, but for floating point MULTs
only when the user specifies unsafe math optimizations. */
if (! FLOAT_MODE_P (mode)
|| flag_unsafe_math_optimizations)
{
tem = simplify_associative_operation (code, mode, op0, op1);
if (tem)
return tem;
}
break;
case IOR:
if (trueop1 == CONST0_RTX (mode))
return op0;
if (INTEGRAL_MODE_P (mode)
&& trueop1 == CONSTM1_RTX (mode)
&& !side_effects_p (op0))
return op1;
if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
return op0;
/* A | (~A) -> -1 */
if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
|| (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
&& ! side_effects_p (op0)
&& SCALAR_INT_MODE_P (mode))
return constm1_rtx;
/* (ior A C) is C if all bits of A that might be nonzero are on in C. */
if (CONST_INT_P (op1)
&& HWI_COMPUTABLE_MODE_P (mode)
&& (nonzero_bits (op0, mode) & ~UINTVAL (op1)) == 0
&& !side_effects_p (op0))
return op1;
/* Canonicalize (X & C1) | C2. */
if (GET_CODE (op0) == AND
&& CONST_INT_P (trueop1)
&& CONST_INT_P (XEXP (op0, 1)))
{
HOST_WIDE_INT mask = GET_MODE_MASK (mode);
HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
HOST_WIDE_INT c2 = INTVAL (trueop1);
/* If (C1&C2) == C1, then (X&C1)|C2 becomes C2. */
if ((c1 & c2) == c1
&& !side_effects_p (XEXP (op0, 0)))
return trueop1;
/* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
if (((c1|c2) & mask) == mask)
return simplify_gen_binary (IOR, mode, XEXP (op0, 0), op1);
}
/* Convert (A & B) | A to A. */
if (GET_CODE (op0) == AND
&& (rtx_equal_p (XEXP (op0, 0), op1)
|| rtx_equal_p (XEXP (op0, 1), op1))
&& ! side_effects_p (XEXP (op0, 0))
&& ! side_effects_p (XEXP (op0, 1)))
return op1;
/* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
mode size to (rotate A CX). */
if (GET_CODE (op1) == ASHIFT
|| GET_CODE (op1) == SUBREG)
{
opleft = op1;
opright = op0;
}
else
{
opright = op1;
opleft = op0;
}
if (GET_CODE (opleft) == ASHIFT && GET_CODE (opright) == LSHIFTRT
&& rtx_equal_p (XEXP (opleft, 0), XEXP (opright, 0))
&& CONST_INT_P (XEXP (opleft, 1))
&& CONST_INT_P (XEXP (opright, 1))
&& (INTVAL (XEXP (opleft, 1)) + INTVAL (XEXP (opright, 1))
== GET_MODE_UNIT_PRECISION (mode)))
return gen_rtx_ROTATE (mode, XEXP (opright, 0), XEXP (opleft, 1));
/* Same, but for ashift that has been "simplified" to a wider mode
by simplify_shift_const. */
if (GET_CODE (opleft) == SUBREG
&& is_a <scalar_int_mode> (mode, &int_mode)
&& is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (opleft)),
&inner_mode)
&& GET_CODE (SUBREG_REG (opleft)) == ASHIFT
&& GET_CODE (opright) == LSHIFTRT
&& GET_CODE (XEXP (opright, 0)) == SUBREG
&& SUBREG_BYTE (opleft) == SUBREG_BYTE (XEXP (opright, 0))
&& GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (inner_mode)
&& rtx_equal_p (XEXP (SUBREG_REG (opleft), 0),
SUBREG_REG (XEXP (opright, 0)))
&& CONST_INT_P (XEXP (SUBREG_REG (opleft), 1))
&& CONST_INT_P (XEXP (opright, 1))
&& (INTVAL (XEXP (SUBREG_REG (opleft), 1))
+ INTVAL (XEXP (opright, 1))
== GET_MODE_PRECISION (int_mode)))
return gen_rtx_ROTATE (int_mode, XEXP (opright, 0),
XEXP (SUBREG_REG (opleft), 1));
/* If OP0 is (ashiftrt (plus ...) C), it might actually be
a (sign_extend (plus ...)). Then check if OP1 is a CONST_INT and
the PLUS does not affect any of the bits in OP1: then we can do
the IOR as a PLUS and we can associate. This is valid if OP1
can be safely shifted left C bits. */
if (CONST_INT_P (trueop1) && GET_CODE (op0) == ASHIFTRT
&& GET_CODE (XEXP (op0, 0)) == PLUS
&& CONST_INT_P (XEXP (XEXP (op0, 0), 1))
&& CONST_INT_P (XEXP (op0, 1))
&& INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
{
int count = INTVAL (XEXP (op0, 1));
HOST_WIDE_INT mask = UINTVAL (trueop1) << count;
if (mask >> count == INTVAL (trueop1)
&& trunc_int_for_mode (mask, mode) == mask
&& (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
return simplify_gen_binary (ASHIFTRT, mode,
plus_constant (mode, XEXP (op0, 0),
mask),
XEXP (op0, 1));
}
tem = simplify_byte_swapping_operation (code, mode, op0, op1);
if (tem)
return tem;
tem = simplify_associative_operation (code, mode, op0, op1);
if (tem)
return tem;
break;
case XOR:
if (trueop1 == CONST0_RTX (mode))
return op0;
if (INTEGRAL_MODE_P (mode) && trueop1 == CONSTM1_RTX (mode))
return simplify_gen_unary (NOT, mode, op0, mode);
if (rtx_equal_p (trueop0, trueop1)
&& ! side_effects_p (op0)
&& GET_MODE_CLASS (mode) != MODE_CC)
return CONST0_RTX (mode);
/* Canonicalize XOR of the most significant bit to PLUS. */