blob: 2835a4b722c21f0ced3542a505cdd56fae0bb37d [file] [log] [blame]
/* Control flow functions for trees.
Copyright (C) 2001-2017 Free Software Foundation, Inc.
Contributed by Diego Novillo <dnovillo@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "cgraph.h"
#include "gimple-pretty-print.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "trans-mem.h"
#include "stor-layout.h"
#include "print-tree.h"
#include "cfganal.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "gimple-walk.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-into-ssa.h"
#include "tree-dfa.h"
#include "tree-ssa.h"
#include "except.h"
#include "cfgloop.h"
#include "tree-ssa-propagate.h"
#include "value-prof.h"
#include "tree-inline.h"
#include "tree-ssa-live.h"
#include "omp-general.h"
#include "omp-expand.h"
#include "tree-cfgcleanup.h"
#include "gimplify.h"
#include "attribs.h"
#include "selftest.h"
#include "opts.h"
/* This file contains functions for building the Control Flow Graph (CFG)
for a function tree. */
/* Local declarations. */
/* Initial capacity for the basic block array. */
static const int initial_cfg_capacity = 20;
/* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
which use a particular edge. The CASE_LABEL_EXPRs are chained together
via their CASE_CHAIN field, which we clear after we're done with the
hash table to prevent problems with duplication of GIMPLE_SWITCHes.
Access to this list of CASE_LABEL_EXPRs allows us to efficiently
update the case vector in response to edge redirections.
Right now this table is set up and torn down at key points in the
compilation process. It would be nice if we could make the table
more persistent. The key is getting notification of changes to
the CFG (particularly edge removal, creation and redirection). */
static hash_map<edge, tree> *edge_to_cases;
/* If we record edge_to_cases, this bitmap will hold indexes
of basic blocks that end in a GIMPLE_SWITCH which we touched
due to edge manipulations. */
static bitmap touched_switch_bbs;
/* CFG statistics. */
struct cfg_stats_d
{
long num_merged_labels;
};
static struct cfg_stats_d cfg_stats;
/* Data to pass to replace_block_vars_by_duplicates_1. */
struct replace_decls_d
{
hash_map<tree, tree> *vars_map;
tree to_context;
};
/* Hash table to store last discriminator assigned for each locus. */
struct locus_discrim_map
{
location_t locus;
int discriminator;
};
/* Hashtable helpers. */
struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
{
static inline hashval_t hash (const locus_discrim_map *);
static inline bool equal (const locus_discrim_map *,
const locus_discrim_map *);
};
/* Trivial hash function for a location_t. ITEM is a pointer to
a hash table entry that maps a location_t to a discriminator. */
inline hashval_t
locus_discrim_hasher::hash (const locus_discrim_map *item)
{
return LOCATION_LINE (item->locus);
}
/* Equality function for the locus-to-discriminator map. A and B
point to the two hash table entries to compare. */
inline bool
locus_discrim_hasher::equal (const locus_discrim_map *a,
const locus_discrim_map *b)
{
return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
}
static hash_table<locus_discrim_hasher> *discriminator_per_locus;
/* Basic blocks and flowgraphs. */
static void make_blocks (gimple_seq);
/* Edges. */
static void make_edges (void);
static void assign_discriminators (void);
static void make_cond_expr_edges (basic_block);
static void make_gimple_switch_edges (gswitch *, basic_block);
static bool make_goto_expr_edges (basic_block);
static void make_gimple_asm_edges (basic_block);
static edge gimple_redirect_edge_and_branch (edge, basic_block);
static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
/* Various helpers. */
static inline bool stmt_starts_bb_p (gimple *, gimple *);
static int gimple_verify_flow_info (void);
static void gimple_make_forwarder_block (edge);
static gimple *first_non_label_stmt (basic_block);
static bool verify_gimple_transaction (gtransaction *);
static bool call_can_make_abnormal_goto (gimple *);
/* Flowgraph optimization and cleanup. */
static void gimple_merge_blocks (basic_block, basic_block);
static bool gimple_can_merge_blocks_p (basic_block, basic_block);
static void remove_bb (basic_block);
static edge find_taken_edge_computed_goto (basic_block, tree);
static edge find_taken_edge_cond_expr (basic_block, tree);
static edge find_taken_edge_switch_expr (gswitch *, basic_block, tree);
static tree find_case_label_for_value (gswitch *, tree);
static void lower_phi_internal_fn ();
void
init_empty_tree_cfg_for_function (struct function *fn)
{
/* Initialize the basic block array. */
init_flow (fn);
profile_status_for_fn (fn) = PROFILE_ABSENT;
n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
vec_safe_grow_cleared (basic_block_info_for_fn (fn),
initial_cfg_capacity);
/* Build a mapping of labels to their associated blocks. */
vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
initial_cfg_capacity);
SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
= EXIT_BLOCK_PTR_FOR_FN (fn);
EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
= ENTRY_BLOCK_PTR_FOR_FN (fn);
}
void
init_empty_tree_cfg (void)
{
init_empty_tree_cfg_for_function (cfun);
}
/*---------------------------------------------------------------------------
Create basic blocks
---------------------------------------------------------------------------*/
/* Entry point to the CFG builder for trees. SEQ is the sequence of
statements to be added to the flowgraph. */
static void
build_gimple_cfg (gimple_seq seq)
{
/* Register specific gimple functions. */
gimple_register_cfg_hooks ();
memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
init_empty_tree_cfg ();
make_blocks (seq);
/* Make sure there is always at least one block, even if it's empty. */
if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
/* Adjust the size of the array. */
if (basic_block_info_for_fn (cfun)->length ()
< (size_t) n_basic_blocks_for_fn (cfun))
vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
n_basic_blocks_for_fn (cfun));
/* To speed up statement iterator walks, we first purge dead labels. */
cleanup_dead_labels ();
/* Group case nodes to reduce the number of edges.
We do this after cleaning up dead labels because otherwise we miss
a lot of obvious case merging opportunities. */
group_case_labels ();
/* Create the edges of the flowgraph. */
discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
make_edges ();
assign_discriminators ();
lower_phi_internal_fn ();
cleanup_dead_labels ();
delete discriminator_per_locus;
discriminator_per_locus = NULL;
}
/* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
them and propagate the information to LOOP. We assume that the annotations
come immediately before the condition in BB, if any. */
static void
replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
{
gimple_stmt_iterator gsi = gsi_last_bb (bb);
gimple *stmt = gsi_stmt (gsi);
if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
return;
for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
{
stmt = gsi_stmt (gsi);
if (gimple_code (stmt) != GIMPLE_CALL)
break;
if (!gimple_call_internal_p (stmt)
|| gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
break;
switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
{
case annot_expr_ivdep_kind:
loop->safelen = INT_MAX;
break;
case annot_expr_unroll_kind:
loop->unroll
= (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2));
cfun->has_unroll = true;
break;
case annot_expr_no_vector_kind:
loop->dont_vectorize = true;
break;
case annot_expr_vector_kind:
loop->force_vectorize = true;
cfun->has_force_vectorize_loops = true;
break;
case annot_expr_parallel_kind:
loop->can_be_parallel = true;
loop->safelen = INT_MAX;
break;
default:
gcc_unreachable ();
}
stmt = gimple_build_assign (gimple_call_lhs (stmt),
gimple_call_arg (stmt, 0));
gsi_replace (&gsi, stmt, true);
}
}
/* Look for ANNOTATE calls with loop annotation kind; if found, remove
them and propagate the information to the loop. We assume that the
annotations come immediately before the condition of the loop. */
static void
replace_loop_annotate (void)
{
struct loop *loop;
basic_block bb;
gimple_stmt_iterator gsi;
gimple *stmt;
FOR_EACH_LOOP (loop, 0)
{
/* First look into the header. */
replace_loop_annotate_in_block (loop->header, loop);
/* Then look into the latch, if any. */
if (loop->latch)
replace_loop_annotate_in_block (loop->latch, loop);
}
/* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
FOR_EACH_BB_FN (bb, cfun)
{
for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
{
stmt = gsi_stmt (gsi);
if (gimple_code (stmt) != GIMPLE_CALL)
continue;
if (!gimple_call_internal_p (stmt)
|| gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
continue;
switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
{
case annot_expr_ivdep_kind:
case annot_expr_unroll_kind:
case annot_expr_no_vector_kind:
case annot_expr_vector_kind:
break;
default:
gcc_unreachable ();
}
warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
stmt = gimple_build_assign (gimple_call_lhs (stmt),
gimple_call_arg (stmt, 0));
gsi_replace (&gsi, stmt, true);
}
}
}
/* Lower internal PHI function from GIMPLE FE. */
static void
lower_phi_internal_fn ()
{
basic_block bb, pred = NULL;
gimple_stmt_iterator gsi;
tree lhs;
gphi *phi_node;
gimple *stmt;
/* After edge creation, handle __PHI function from GIMPLE FE. */
FOR_EACH_BB_FN (bb, cfun)
{
for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
{
stmt = gsi_stmt (gsi);
if (! gimple_call_internal_p (stmt, IFN_PHI))
break;
lhs = gimple_call_lhs (stmt);
phi_node = create_phi_node (lhs, bb);
/* Add arguments to the PHI node. */
for (unsigned i = 0; i < gimple_call_num_args (stmt); ++i)
{
tree arg = gimple_call_arg (stmt, i);
if (TREE_CODE (arg) == LABEL_DECL)
pred = label_to_block (arg);
else
{
edge e = find_edge (pred, bb);
add_phi_arg (phi_node, arg, e, UNKNOWN_LOCATION);
}
}
gsi_remove (&gsi, true);
}
}
}
static unsigned int
execute_build_cfg (void)
{
gimple_seq body = gimple_body (current_function_decl);
build_gimple_cfg (body);
gimple_set_body (current_function_decl, NULL);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Scope blocks:\n");
dump_scope_blocks (dump_file, dump_flags);
}
cleanup_tree_cfg ();
loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
replace_loop_annotate ();
return 0;
}
namespace {
const pass_data pass_data_build_cfg =
{
GIMPLE_PASS, /* type */
"cfg", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_CFG, /* tv_id */
PROP_gimple_leh, /* properties_required */
( PROP_cfg | PROP_loops ), /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_build_cfg : public gimple_opt_pass
{
public:
pass_build_cfg (gcc::context *ctxt)
: gimple_opt_pass (pass_data_build_cfg, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *) { return execute_build_cfg (); }
}; // class pass_build_cfg
} // anon namespace
gimple_opt_pass *
make_pass_build_cfg (gcc::context *ctxt)
{
return new pass_build_cfg (ctxt);
}
/* Return true if T is a computed goto. */
bool
computed_goto_p (gimple *t)
{
return (gimple_code (t) == GIMPLE_GOTO
&& TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
}
/* Returns true if the sequence of statements STMTS only contains
a call to __builtin_unreachable (). */
bool
gimple_seq_unreachable_p (gimple_seq stmts)
{
if (stmts == NULL)
return false;
gimple_stmt_iterator gsi = gsi_last (stmts);
if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE))
return false;
for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (gimple_code (stmt) != GIMPLE_LABEL
&& !is_gimple_debug (stmt)
&& !gimple_clobber_p (stmt))
return false;
}
return true;
}
/* Returns true for edge E where e->src ends with a GIMPLE_COND and
the other edge points to a bb with just __builtin_unreachable ().
I.e. return true for C->M edge in:
<bb C>:
...
if (something)
goto <bb N>;
else
goto <bb M>;
<bb N>:
__builtin_unreachable ();
<bb M>: */
bool
assert_unreachable_fallthru_edge_p (edge e)
{
basic_block pred_bb = e->src;
gimple *last = last_stmt (pred_bb);
if (last && gimple_code (last) == GIMPLE_COND)
{
basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
if (other_bb == e->dest)
other_bb = EDGE_SUCC (pred_bb, 1)->dest;
if (EDGE_COUNT (other_bb->succs) == 0)
return gimple_seq_unreachable_p (bb_seq (other_bb));
}
return false;
}
/* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
could alter control flow except via eh. We initialize the flag at
CFG build time and only ever clear it later. */
static void
gimple_call_initialize_ctrl_altering (gimple *stmt)
{
int flags = gimple_call_flags (stmt);
/* A call alters control flow if it can make an abnormal goto. */
if (call_can_make_abnormal_goto (stmt)
/* A call also alters control flow if it does not return. */
|| flags & ECF_NORETURN
/* TM ending statements have backedges out of the transaction.
Return true so we split the basic block containing them.
Note that the TM_BUILTIN test is merely an optimization. */
|| ((flags & ECF_TM_BUILTIN)
&& is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
/* BUILT_IN_RETURN call is same as return statement. */
|| gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
/* IFN_UNIQUE should be the last insn, to make checking for it
as cheap as possible. */
|| (gimple_call_internal_p (stmt)
&& gimple_call_internal_unique_p (stmt)))
gimple_call_set_ctrl_altering (stmt, true);
else
gimple_call_set_ctrl_altering (stmt, false);
}
/* Insert SEQ after BB and build a flowgraph. */
static basic_block
make_blocks_1 (gimple_seq seq, basic_block bb)
{
gimple_stmt_iterator i = gsi_start (seq);
gimple *stmt = NULL;
bool start_new_block = true;
bool first_stmt_of_seq = true;
while (!gsi_end_p (i))
{
gimple *prev_stmt;
prev_stmt = stmt;
stmt = gsi_stmt (i);
if (stmt && is_gimple_call (stmt))
gimple_call_initialize_ctrl_altering (stmt);
/* If the statement starts a new basic block or if we have determined
in a previous pass that we need to create a new block for STMT, do
so now. */
if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
{
if (!first_stmt_of_seq)
gsi_split_seq_before (&i, &seq);
bb = create_basic_block (seq, bb);
start_new_block = false;
}
/* Now add STMT to BB and create the subgraphs for special statement
codes. */
gimple_set_bb (stmt, bb);
/* If STMT is a basic block terminator, set START_NEW_BLOCK for the
next iteration. */
if (stmt_ends_bb_p (stmt))
{
/* If the stmt can make abnormal goto use a new temporary
for the assignment to the LHS. This makes sure the old value
of the LHS is available on the abnormal edge. Otherwise
we will end up with overlapping life-ranges for abnormal
SSA names. */
if (gimple_has_lhs (stmt)
&& stmt_can_make_abnormal_goto (stmt)
&& is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
{
tree lhs = gimple_get_lhs (stmt);
tree tmp = create_tmp_var (TREE_TYPE (lhs));
gimple *s = gimple_build_assign (lhs, tmp);
gimple_set_location (s, gimple_location (stmt));
gimple_set_block (s, gimple_block (stmt));
gimple_set_lhs (stmt, tmp);
if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
|| TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
DECL_GIMPLE_REG_P (tmp) = 1;
gsi_insert_after (&i, s, GSI_SAME_STMT);
}
start_new_block = true;
}
gsi_next (&i);
first_stmt_of_seq = false;
}
return bb;
}
/* Build a flowgraph for the sequence of stmts SEQ. */
static void
make_blocks (gimple_seq seq)
{
make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
}
/* Create and return a new empty basic block after bb AFTER. */
static basic_block
create_bb (void *h, void *e, basic_block after)
{
basic_block bb;
gcc_assert (!e);
/* Create and initialize a new basic block. Since alloc_block uses
GC allocation that clears memory to allocate a basic block, we do
not have to clear the newly allocated basic block here. */
bb = alloc_block ();
bb->index = last_basic_block_for_fn (cfun);
bb->flags = BB_NEW;
set_bb_seq (bb, h ? (gimple_seq) h : NULL);
/* Add the new block to the linked list of blocks. */
link_block (bb, after);
/* Grow the basic block array if needed. */
if ((size_t) last_basic_block_for_fn (cfun)
== basic_block_info_for_fn (cfun)->length ())
{
size_t new_size =
(last_basic_block_for_fn (cfun)
+ (last_basic_block_for_fn (cfun) + 3) / 4);
vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
}
/* Add the newly created block to the array. */
SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
n_basic_blocks_for_fn (cfun)++;
last_basic_block_for_fn (cfun)++;
return bb;
}
/*---------------------------------------------------------------------------
Edge creation
---------------------------------------------------------------------------*/
/* If basic block BB has an abnormal edge to a basic block
containing IFN_ABNORMAL_DISPATCHER internal call, return
that the dispatcher's basic block, otherwise return NULL. */
basic_block
get_abnormal_succ_dispatcher (basic_block bb)
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
{
gimple_stmt_iterator gsi
= gsi_start_nondebug_after_labels_bb (e->dest);
gimple *g = gsi_stmt (gsi);
if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
return e->dest;
}
return NULL;
}
/* Helper function for make_edges. Create a basic block with
with ABNORMAL_DISPATCHER internal call in it if needed, and
create abnormal edges from BBS to it and from it to FOR_BB
if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
static void
handle_abnormal_edges (basic_block *dispatcher_bbs,
basic_block for_bb, int *bb_to_omp_idx,
auto_vec<basic_block> *bbs, bool computed_goto)
{
basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
unsigned int idx = 0;
basic_block bb;
bool inner = false;
if (bb_to_omp_idx)
{
dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
if (bb_to_omp_idx[for_bb->index] != 0)
inner = true;
}
/* If the dispatcher has been created already, then there are basic
blocks with abnormal edges to it, so just make a new edge to
for_bb. */
if (*dispatcher == NULL)
{
/* Check if there are any basic blocks that need to have
abnormal edges to this dispatcher. If there are none, return
early. */
if (bb_to_omp_idx == NULL)
{
if (bbs->is_empty ())
return;
}
else
{
FOR_EACH_VEC_ELT (*bbs, idx, bb)
if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
break;
if (bb == NULL)
return;
}
/* Create the dispatcher bb. */
*dispatcher = create_basic_block (NULL, for_bb);
if (computed_goto)
{
/* Factor computed gotos into a common computed goto site. Also
record the location of that site so that we can un-factor the
gotos after we have converted back to normal form. */
gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
/* Create the destination of the factored goto. Each original
computed goto will put its desired destination into this
variable and jump to the label we create immediately below. */
tree var = create_tmp_var (ptr_type_node, "gotovar");
/* Build a label for the new block which will contain the
factored computed goto. */
tree factored_label_decl
= create_artificial_label (UNKNOWN_LOCATION);
gimple *factored_computed_goto_label
= gimple_build_label (factored_label_decl);
gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
/* Build our new computed goto. */
gimple *factored_computed_goto = gimple_build_goto (var);
gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
FOR_EACH_VEC_ELT (*bbs, idx, bb)
{
if (bb_to_omp_idx
&& bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
continue;
gsi = gsi_last_bb (bb);
gimple *last = gsi_stmt (gsi);
gcc_assert (computed_goto_p (last));
/* Copy the original computed goto's destination into VAR. */
gimple *assignment
= gimple_build_assign (var, gimple_goto_dest (last));
gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
e->goto_locus = gimple_location (last);
gsi_remove (&gsi, true);
}
}
else
{
tree arg = inner ? boolean_true_node : boolean_false_node;
gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
1, arg);
gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
gsi_insert_after (&gsi, g, GSI_NEW_STMT);
/* Create predecessor edges of the dispatcher. */
FOR_EACH_VEC_ELT (*bbs, idx, bb)
{
if (bb_to_omp_idx
&& bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
continue;
make_edge (bb, *dispatcher, EDGE_ABNORMAL);
}
}
}
make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
}
/* Creates outgoing edges for BB. Returns 1 when it ends with an
computed goto, returns 2 when it ends with a statement that
might return to this function via an nonlocal goto, otherwise
return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
static int
make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
{
gimple *last = last_stmt (bb);
bool fallthru = false;
int ret = 0;
if (!last)
return ret;
switch (gimple_code (last))
{
case GIMPLE_GOTO:
if (make_goto_expr_edges (bb))
ret = 1;
fallthru = false;
break;
case GIMPLE_RETURN:
{
edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
e->goto_locus = gimple_location (last);
fallthru = false;
}
break;
case GIMPLE_COND:
make_cond_expr_edges (bb);
fallthru = false;
break;
case GIMPLE_SWITCH:
make_gimple_switch_edges (as_a <gswitch *> (last), bb);
fallthru = false;
break;
case GIMPLE_RESX:
make_eh_edges (last);
fallthru = false;
break;
case GIMPLE_EH_DISPATCH:
fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
break;
case GIMPLE_CALL:
/* If this function receives a nonlocal goto, then we need to
make edges from this call site to all the nonlocal goto
handlers. */
if (stmt_can_make_abnormal_goto (last))
ret = 2;
/* If this statement has reachable exception handlers, then
create abnormal edges to them. */
make_eh_edges (last);
/* BUILTIN_RETURN is really a return statement. */
if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
{
make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
fallthru = false;
}
/* Some calls are known not to return. */
else
fallthru = !gimple_call_noreturn_p (last);
break;
case GIMPLE_ASSIGN:
/* A GIMPLE_ASSIGN may throw internally and thus be considered
control-altering. */
if (is_ctrl_altering_stmt (last))
make_eh_edges (last);
fallthru = true;
break;
case GIMPLE_ASM:
make_gimple_asm_edges (bb);
fallthru = true;
break;
CASE_GIMPLE_OMP:
fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index);
break;
case GIMPLE_TRANSACTION:
{
gtransaction *txn = as_a <gtransaction *> (last);
tree label1 = gimple_transaction_label_norm (txn);
tree label2 = gimple_transaction_label_uninst (txn);
if (label1)
make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
if (label2)
make_edge (bb, label_to_block (label2),
EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
tree label3 = gimple_transaction_label_over (txn);
if (gimple_transaction_subcode (txn)
& (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
fallthru = false;
}
break;
default:
gcc_assert (!stmt_ends_bb_p (last));
fallthru = true;
break;
}
if (fallthru)
make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
return ret;
}
/* Join all the blocks in the flowgraph. */
static void
make_edges (void)
{
basic_block bb;
struct omp_region *cur_region = NULL;
auto_vec<basic_block> ab_edge_goto;
auto_vec<basic_block> ab_edge_call;
int *bb_to_omp_idx = NULL;
int cur_omp_region_idx = 0;
/* Create an edge from entry to the first block with executable
statements in it. */
make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
EDGE_FALLTHRU);
/* Traverse the basic block array placing edges. */
FOR_EACH_BB_FN (bb, cfun)
{
int mer;
if (bb_to_omp_idx)
bb_to_omp_idx[bb->index] = cur_omp_region_idx;
mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
if (mer == 1)
ab_edge_goto.safe_push (bb);
else if (mer == 2)
ab_edge_call.safe_push (bb);
if (cur_region && bb_to_omp_idx == NULL)
bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
}
/* Computed gotos are hell to deal with, especially if there are
lots of them with a large number of destinations. So we factor
them to a common computed goto location before we build the
edge list. After we convert back to normal form, we will un-factor
the computed gotos since factoring introduces an unwanted jump.
For non-local gotos and abnormal edges from calls to calls that return
twice or forced labels, factor the abnormal edges too, by having all
abnormal edges from the calls go to a common artificial basic block
with ABNORMAL_DISPATCHER internal call and abnormal edges from that
basic block to all forced labels and calls returning twice.
We do this per-OpenMP structured block, because those regions
are guaranteed to be single entry single exit by the standard,
so it is not allowed to enter or exit such regions abnormally this way,
thus all computed gotos, non-local gotos and setjmp/longjmp calls
must not transfer control across SESE region boundaries. */
if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
{
gimple_stmt_iterator gsi;
basic_block dispatcher_bb_array[2] = { NULL, NULL };
basic_block *dispatcher_bbs = dispatcher_bb_array;
int count = n_basic_blocks_for_fn (cfun);
if (bb_to_omp_idx)
dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
FOR_EACH_BB_FN (bb, cfun)
{
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
tree target;
if (!label_stmt)
break;
target = gimple_label_label (label_stmt);
/* Make an edge to every label block that has been marked as a
potential target for a computed goto or a non-local goto. */
if (FORCED_LABEL (target))
handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
&ab_edge_goto, true);
if (DECL_NONLOCAL (target))
{
handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
&ab_edge_call, false);
break;
}
}
if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
gsi_next_nondebug (&gsi);
if (!gsi_end_p (gsi))
{
/* Make an edge to every setjmp-like call. */
gimple *call_stmt = gsi_stmt (gsi);
if (is_gimple_call (call_stmt)
&& ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
|| gimple_call_builtin_p (call_stmt,
BUILT_IN_SETJMP_RECEIVER)))
handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
&ab_edge_call, false);
}
}
if (bb_to_omp_idx)
XDELETE (dispatcher_bbs);
}
XDELETE (bb_to_omp_idx);
omp_free_regions ();
}
/* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
needed. Returns true if new bbs were created.
Note: This is transitional code, and should not be used for new code. We
should be able to get rid of this by rewriting all target va-arg
gimplification hooks to use an interface gimple_build_cond_value as described
in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
bool
gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
{
gimple *stmt = gsi_stmt (*gsi);
basic_block bb = gimple_bb (stmt);
basic_block lastbb, afterbb;
int old_num_bbs = n_basic_blocks_for_fn (cfun);
edge e;
lastbb = make_blocks_1 (seq, bb);
if (old_num_bbs == n_basic_blocks_for_fn (cfun))
return false;
e = split_block (bb, stmt);
/* Move e->dest to come after the new basic blocks. */
afterbb = e->dest;
unlink_block (afterbb);
link_block (afterbb, lastbb);
redirect_edge_succ (e, bb->next_bb);
bb = bb->next_bb;
while (bb != afterbb)
{
struct omp_region *cur_region = NULL;
profile_count cnt = profile_count::zero ();
bool all = true;
int cur_omp_region_idx = 0;
int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
gcc_assert (!mer && !cur_region);
add_bb_to_loop (bb, afterbb->loop_father);
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->preds)
{
if (e->count ().initialized_p ())
cnt += e->count ();
else
all = false;
}
tree_guess_outgoing_edge_probabilities (bb);
if (all || profile_status_for_fn (cfun) == PROFILE_READ)
bb->count = cnt;
bb = bb->next_bb;
}
return true;
}
/* Find the next available discriminator value for LOCUS. The
discriminator distinguishes among several basic blocks that
share a common locus, allowing for more accurate sample-based
profiling. */
static int
next_discriminator_for_locus (location_t locus)
{
struct locus_discrim_map item;
struct locus_discrim_map **slot;
item.locus = locus;
item.discriminator = 0;
slot = discriminator_per_locus->find_slot_with_hash (
&item, LOCATION_LINE (locus), INSERT);
gcc_assert (slot);
if (*slot == HTAB_EMPTY_ENTRY)
{
*slot = XNEW (struct locus_discrim_map);
gcc_assert (*slot);
(*slot)->locus = locus;
(*slot)->discriminator = 0;
}
(*slot)->discriminator++;
return (*slot)->discriminator;
}
/* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
static bool
same_line_p (location_t locus1, location_t locus2)
{
expanded_location from, to;
if (locus1 == locus2)
return true;
from = expand_location (locus1);
to = expand_location (locus2);
if (from.line != to.line)
return false;
if (from.file == to.file)
return true;
return (from.file != NULL
&& to.file != NULL
&& filename_cmp (from.file, to.file) == 0);
}
/* Assign discriminators to each basic block. */
static void
assign_discriminators (void)
{
basic_block bb;
FOR_EACH_BB_FN (bb, cfun)
{
edge e;
edge_iterator ei;
gimple *last = last_stmt (bb);
location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
if (locus == UNKNOWN_LOCATION)
continue;
FOR_EACH_EDGE (e, ei, bb->succs)
{
gimple *first = first_non_label_stmt (e->dest);
gimple *last = last_stmt (e->dest);
if ((first && same_line_p (locus, gimple_location (first)))
|| (last && same_line_p (locus, gimple_location (last))))
{
if (e->dest->discriminator != 0 && bb->discriminator == 0)
bb->discriminator = next_discriminator_for_locus (locus);
else
e->dest->discriminator = next_discriminator_for_locus (locus);
}
}
}
}
/* Create the edges for a GIMPLE_COND starting at block BB. */
static void
make_cond_expr_edges (basic_block bb)
{
gcond *entry = as_a <gcond *> (last_stmt (bb));
gimple *then_stmt, *else_stmt;
basic_block then_bb, else_bb;
tree then_label, else_label;
edge e;
gcc_assert (entry);
gcc_assert (gimple_code (entry) == GIMPLE_COND);
/* Entry basic blocks for each component. */
then_label = gimple_cond_true_label (entry);
else_label = gimple_cond_false_label (entry);
then_bb = label_to_block (then_label);
else_bb = label_to_block (else_label);
then_stmt = first_stmt (then_bb);
else_stmt = first_stmt (else_bb);
e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
e->goto_locus = gimple_location (then_stmt);
e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
if (e)
e->goto_locus = gimple_location (else_stmt);
/* We do not need the labels anymore. */
gimple_cond_set_true_label (entry, NULL_TREE);
gimple_cond_set_false_label (entry, NULL_TREE);
}
/* Called for each element in the hash table (P) as we delete the
edge to cases hash table.
Clear all the CASE_CHAINs to prevent problems with copying of
SWITCH_EXPRs and structure sharing rules, then free the hash table
element. */
bool
edge_to_cases_cleanup (edge const &, tree const &value, void *)
{
tree t, next;
for (t = value; t; t = next)
{
next = CASE_CHAIN (t);
CASE_CHAIN (t) = NULL;
}
return true;
}
/* Start recording information mapping edges to case labels. */
void
start_recording_case_labels (void)
{
gcc_assert (edge_to_cases == NULL);
edge_to_cases = new hash_map<edge, tree>;
touched_switch_bbs = BITMAP_ALLOC (NULL);
}
/* Return nonzero if we are recording information for case labels. */
static bool
recording_case_labels_p (void)
{
return (edge_to_cases != NULL);
}
/* Stop recording information mapping edges to case labels and
remove any information we have recorded. */
void
end_recording_case_labels (void)
{
bitmap_iterator bi;
unsigned i;
edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
delete edge_to_cases;
edge_to_cases = NULL;
EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
{
basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
if (bb)
{
gimple *stmt = last_stmt (bb);
if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
group_case_labels_stmt (as_a <gswitch *> (stmt));
}
}
BITMAP_FREE (touched_switch_bbs);
}
/* If we are inside a {start,end}_recording_cases block, then return
a chain of CASE_LABEL_EXPRs from T which reference E.
Otherwise return NULL. */
static tree
get_cases_for_edge (edge e, gswitch *t)
{
tree *slot;
size_t i, n;
/* If we are not recording cases, then we do not have CASE_LABEL_EXPR
chains available. Return NULL so the caller can detect this case. */
if (!recording_case_labels_p ())
return NULL;
slot = edge_to_cases->get (e);
if (slot)
return *slot;
/* If we did not find E in the hash table, then this must be the first
time we have been queried for information about E & T. Add all the
elements from T to the hash table then perform the query again. */
n = gimple_switch_num_labels (t);
for (i = 0; i < n; i++)
{
tree elt = gimple_switch_label (t, i);
tree lab = CASE_LABEL (elt);
basic_block label_bb = label_to_block (lab);
edge this_edge = find_edge (e->src, label_bb);
/* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
a new chain. */
tree &s = edge_to_cases->get_or_insert (this_edge);
CASE_CHAIN (elt) = s;
s = elt;
}
return *edge_to_cases->get (e);
}
/* Create the edges for a GIMPLE_SWITCH starting at block BB. */
static void
make_gimple_switch_edges (gswitch *entry, basic_block bb)
{
size_t i, n;
n = gimple_switch_num_labels (entry);
for (i = 0; i < n; ++i)
{
tree lab = CASE_LABEL (gimple_switch_label (entry, i));
basic_block label_bb = label_to_block (lab);
make_edge (bb, label_bb, 0);
}
}
/* Return the basic block holding label DEST. */
basic_block
label_to_block_fn (struct function *ifun, tree dest)
{
int uid = LABEL_DECL_UID (dest);
/* We would die hard when faced by an undefined label. Emit a label to
the very first basic block. This will hopefully make even the dataflow
and undefined variable warnings quite right. */
if (seen_error () && uid < 0)
{
gimple_stmt_iterator gsi =
gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
gimple *stmt;
stmt = gimple_build_label (dest);
gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
uid = LABEL_DECL_UID (dest);
}
if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
return NULL;
return (*ifun->cfg->x_label_to_block_map)[uid];
}
/* Create edges for a goto statement at block BB. Returns true
if abnormal edges should be created. */
static bool
make_goto_expr_edges (basic_block bb)
{
gimple_stmt_iterator last = gsi_last_bb (bb);
gimple *goto_t = gsi_stmt (last);
/* A simple GOTO creates normal edges. */
if (simple_goto_p (goto_t))
{
tree dest = gimple_goto_dest (goto_t);
basic_block label_bb = label_to_block (dest);
edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
e->goto_locus = gimple_location (goto_t);
gsi_remove (&last, true);
return false;
}
/* A computed GOTO creates abnormal edges. */
return true;
}
/* Create edges for an asm statement with labels at block BB. */
static void
make_gimple_asm_edges (basic_block bb)
{
gasm *stmt = as_a <gasm *> (last_stmt (bb));
int i, n = gimple_asm_nlabels (stmt);
for (i = 0; i < n; ++i)
{
tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
basic_block label_bb = label_to_block (label);
make_edge (bb, label_bb, 0);
}
}
/*---------------------------------------------------------------------------
Flowgraph analysis
---------------------------------------------------------------------------*/
/* Cleanup useless labels in basic blocks. This is something we wish
to do early because it allows us to group case labels before creating
the edges for the CFG, and it speeds up block statement iterators in
all passes later on.
We rerun this pass after CFG is created, to get rid of the labels that
are no longer referenced. After then we do not run it any more, since
(almost) no new labels should be created. */
/* A map from basic block index to the leading label of that block. */
static struct label_record
{
/* The label. */
tree label;
/* True if the label is referenced from somewhere. */
bool used;
} *label_for_bb;
/* Given LABEL return the first label in the same basic block. */
static tree
main_block_label (tree label)
{
basic_block bb = label_to_block (label);
tree main_label = label_for_bb[bb->index].label;
/* label_to_block possibly inserted undefined label into the chain. */
if (!main_label)
{
label_for_bb[bb->index].label = label;
main_label = label;
}
label_for_bb[bb->index].used = true;
return main_label;
}
/* Clean up redundant labels within the exception tree. */
static void
cleanup_dead_labels_eh (void)
{
eh_landing_pad lp;
eh_region r;
tree lab;
int i;
if (cfun->eh == NULL)
return;
for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
if (lp && lp->post_landing_pad)
{
lab = main_block_label (lp->post_landing_pad);
if (lab != lp->post_landing_pad)
{
EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
EH_LANDING_PAD_NR (lab) = lp->index;
}
}
FOR_ALL_EH_REGION (r)
switch (r->type)
{
case ERT_CLEANUP:
case ERT_MUST_NOT_THROW:
break;
case ERT_TRY:
{
eh_catch c;
for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
{
lab = c->label;
if (lab)
c->label = main_block_label (lab);
}
}
break;
case ERT_ALLOWED_EXCEPTIONS:
lab = r->u.allowed.label;
if (lab)
r->u.allowed.label = main_block_label (lab);
break;
}
}
/* Cleanup redundant labels. This is a three-step process:
1) Find the leading label for each block.
2) Redirect all references to labels to the leading labels.
3) Cleanup all useless labels. */
void
cleanup_dead_labels (void)
{
basic_block bb;
label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
/* Find a suitable label for each block. We use the first user-defined
label if there is one, or otherwise just the first label we see. */
FOR_EACH_BB_FN (bb, cfun)
{
gimple_stmt_iterator i;
for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
{
tree label;
glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
if (!label_stmt)
break;
label = gimple_label_label (label_stmt);
/* If we have not yet seen a label for the current block,
remember this one and see if there are more labels. */
if (!label_for_bb[bb->index].label)
{
label_for_bb[bb->index].label = label;
continue;
}
/* If we did see a label for the current block already, but it
is an artificially created label, replace it if the current
label is a user defined label. */
if (!DECL_ARTIFICIAL (label)
&& DECL_ARTIFICIAL (label_for_bb[bb->index].label))
{
label_for_bb[bb->index].label = label;
break;
}
}
}
/* Now redirect all jumps/branches to the selected label.
First do so for each block ending in a control statement. */
FOR_EACH_BB_FN (bb, cfun)
{
gimple *stmt = last_stmt (bb);
tree label, new_label;
if (!stmt)
continue;
switch (gimple_code (stmt))
{
case GIMPLE_COND:
{
gcond *cond_stmt = as_a <gcond *> (stmt);
label = gimple_cond_true_label (cond_stmt);
if (label)
{
new_label = main_block_label (label);
if (new_label != label)
gimple_cond_set_true_label (cond_stmt, new_label);
}
label = gimple_cond_false_label (cond_stmt);
if (label)
{
new_label = main_block_label (label);
if (new_label != label)
gimple_cond_set_false_label (cond_stmt, new_label);
}
}
break;
case GIMPLE_SWITCH:
{
gswitch *switch_stmt = as_a <gswitch *> (stmt);
size_t i, n = gimple_switch_num_labels (switch_stmt);
/* Replace all destination labels. */
for (i = 0; i < n; ++i)
{
tree case_label = gimple_switch_label (switch_stmt, i);
label = CASE_LABEL (case_label);
new_label = main_block_label (label);
if (new_label != label)
CASE_LABEL (case_label) = new_label;
}
break;
}
case GIMPLE_ASM:
{
gasm *asm_stmt = as_a <gasm *> (stmt);
int i, n = gimple_asm_nlabels (asm_stmt);
for (i = 0; i < n; ++i)
{
tree cons = gimple_asm_label_op (asm_stmt, i);
tree label = main_block_label (TREE_VALUE (cons));
TREE_VALUE (cons) = label;
}
break;
}
/* We have to handle gotos until they're removed, and we don't
remove them until after we've created the CFG edges. */
case GIMPLE_GOTO:
if (!computed_goto_p (stmt))
{
ggoto *goto_stmt = as_a <ggoto *> (stmt);
label = gimple_goto_dest (goto_stmt);
new_label = main_block_label (label);
if (new_label != label)
gimple_goto_set_dest (goto_stmt, new_label);
}
break;
case GIMPLE_TRANSACTION:
{
gtransaction *txn = as_a <gtransaction *> (stmt);
label = gimple_transaction_label_norm (txn);
if (label)
{
new_label = main_block_label (label);
if (new_label != label)
gimple_transaction_set_label_norm (txn, new_label);
}
label = gimple_transaction_label_uninst (txn);
if (label)
{
new_label = main_block_label (label);
if (new_label != label)
gimple_transaction_set_label_uninst (txn, new_label);
}
label = gimple_transaction_label_over (txn);
if (label)
{
new_label = main_block_label (label);
if (new_label != label)
gimple_transaction_set_label_over (txn, new_label);
}
}
break;
default:
break;
}
}
/* Do the same for the exception region tree labels. */
cleanup_dead_labels_eh ();
/* Finally, purge dead labels. All user-defined labels and labels that
can be the target of non-local gotos and labels which have their
address taken are preserved. */
FOR_EACH_BB_FN (bb, cfun)
{
gimple_stmt_iterator i;
tree label_for_this_bb = label_for_bb[bb->index].label;
if (!label_for_this_bb)
continue;
/* If the main label of the block is unused, we may still remove it. */
if (!label_for_bb[bb->index].used)
label_for_this_bb = NULL;
for (i = gsi_start_bb (bb); !gsi_end_p (i); )
{
tree label;
glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
if (!label_stmt)
break;
label = gimple_label_label (label_stmt);
if (label == label_for_this_bb
|| !DECL_ARTIFICIAL (label)
|| DECL_NONLOCAL (label)
|| FORCED_LABEL (label))
gsi_next (&i);
else
gsi_remove (&i, true);
}
}
free (label_for_bb);
}
/* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
the ones jumping to the same label.
Eg. three separate entries 1: 2: 3: become one entry 1..3: */
bool
group_case_labels_stmt (gswitch *stmt)
{
int old_size = gimple_switch_num_labels (stmt);
int i, next_index, new_size;
basic_block default_bb = NULL;
default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
/* Look for possible opportunities to merge cases. */
new_size = i = 1;
while (i < old_size)
{
tree base_case, base_high;
basic_block base_bb;
base_case = gimple_switch_label (stmt, i);
gcc_assert (base_case);
base_bb = label_to_block (CASE_LABEL (base_case));
/* Discard cases that have the same destination as the default case or
whose destiniation blocks have already been removed as unreachable. */
if (base_bb == NULL || base_bb == default_bb)
{
i++;
continue;
}
base_high = CASE_HIGH (base_case)
? CASE_HIGH (base_case)
: CASE_LOW (base_case);
next_index = i + 1;
/* Try to merge case labels. Break out when we reach the end
of the label vector or when we cannot merge the next case
label with the current one. */
while (next_index < old_size)
{
tree merge_case = gimple_switch_label (stmt, next_index);
basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
wide_int bhp1 = wi::to_wide (base_high) + 1;
/* Merge the cases if they jump to the same place,
and their ranges are consecutive. */
if (merge_bb == base_bb
&& wi::to_wide (CASE_LOW (merge_case)) == bhp1)
{
base_high = CASE_HIGH (merge_case) ?
CASE_HIGH (merge_case) : CASE_LOW (merge_case);
CASE_HIGH (base_case) = base_high;
next_index++;
}
else
break;
}
/* Discard cases that have an unreachable destination block. */
if (EDGE_COUNT (base_bb->succs) == 0
&& gimple_seq_unreachable_p (bb_seq (base_bb)))
{
edge base_edge = find_edge (gimple_bb (stmt), base_bb);
if (base_edge != NULL)
remove_edge_and_dominated_blocks (base_edge);
i = next_index;
continue;
}
if (new_size < i)
gimple_switch_set_label (stmt, new_size,
gimple_switch_label (stmt, i));
i = next_index;
new_size++;
}
gcc_assert (new_size <= old_size);
if (new_size < old_size)
gimple_switch_set_num_labels (stmt, new_size);
return new_size < old_size;
}
/* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
and scan the sorted vector of cases. Combine the ones jumping to the
same label. */
bool
group_case_labels (void)
{
basic_block bb;
bool changed = false;
FOR_EACH_BB_FN (bb, cfun)
{
gimple *stmt = last_stmt (bb);
if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
changed |= group_case_labels_stmt (as_a <gswitch *> (stmt));
}
return changed;
}
/* Checks whether we can merge block B into block A. */
static bool
gimple_can_merge_blocks_p (basic_block a, basic_block b)
{
gimple *stmt;
if (!single_succ_p (a))
return false;
if (single_succ_edge (a)->flags & EDGE_COMPLEX)
return false;
if (single_succ (a) != b)
return false;
if (!single_pred_p (b))
return false;
if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
|| b == EXIT_BLOCK_PTR_FOR_FN (cfun))
return false;
/* If A ends by a statement causing exceptions or something similar, we
cannot merge the blocks. */
stmt = last_stmt (a);
if (stmt && stmt_ends_bb_p (stmt))
return false;
/* Do not allow a block with only a non-local label to be merged. */
if (stmt)
if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
return false;
/* Examine the labels at the beginning of B. */
for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
gsi_next (&gsi))
{
tree lab;
glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
if (!label_stmt)
break;
lab = gimple_label_label (label_stmt);
/* Do not remove user forced labels or for -O0 any user labels. */
if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
return false;
}
/* Protect simple loop latches. We only want to avoid merging
the latch with the loop header or with a block in another
loop in this case. */
if (current_loops
&& b->loop_father->latch == b
&& loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
&& (b->loop_father->header == a
|| b->loop_father != a->loop_father))
return false;
/* It must be possible to eliminate all phi nodes in B. If ssa form
is not up-to-date and a name-mapping is registered, we cannot eliminate
any phis. Symbols marked for renaming are never a problem though. */
for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
/* Technically only new names matter. */
if (name_registered_for_update_p (PHI_RESULT (phi)))
return false;
}
/* When not optimizing, don't merge if we'd lose goto_locus. */
if (!optimize
&& single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
{
location_t goto_locus = single_succ_edge (a)->goto_locus;
gimple_stmt_iterator prev, next;
prev = gsi_last_nondebug_bb (a);
next = gsi_after_labels (b);
if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
gsi_next_nondebug (&next);
if ((gsi_end_p (prev)
|| gimple_location (gsi_stmt (prev)) != goto_locus)
&& (gsi_end_p (next)
|| gimple_location (gsi_stmt (next)) != goto_locus))
return false;
}
return true;
}
/* Replaces all uses of NAME by VAL. */
void
replace_uses_by (tree name, tree val)
{
imm_use_iterator imm_iter;
use_operand_p use;
gimple *stmt;
edge e;
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
{
/* Mark the block if we change the last stmt in it. */
if (cfgcleanup_altered_bbs
&& stmt_ends_bb_p (stmt))
bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
{
replace_exp (use, val);
if (gimple_code (stmt) == GIMPLE_PHI)
{
e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
PHI_ARG_INDEX_FROM_USE (use));
if (e->flags & EDGE_ABNORMAL
&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
{
/* This can only occur for virtual operands, since
for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
would prevent replacement. */
gcc_checking_assert (virtual_operand_p (name));
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
}
}
}
if (gimple_code (stmt) != GIMPLE_PHI)
{
gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
gimple *orig_stmt = stmt;
size_t i;
/* FIXME. It shouldn't be required to keep TREE_CONSTANT
on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
only change sth from non-invariant to invariant, and only
when propagating constants. */
if (is_gimple_min_invariant (val))
for (i = 0; i < gimple_num_ops (stmt); i++)
{
tree op = gimple_op (stmt, i);
/* Operands may be empty here. For example, the labels
of a GIMPLE_COND are nulled out following the creation
of the corresponding CFG edges. */
if (op && TREE_CODE (op) == ADDR_EXPR)
recompute_tree_invariant_for_addr_expr (op);
}
if (fold_stmt (&gsi))
stmt = gsi_stmt (gsi);
if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
gimple_purge_dead_eh_edges (gimple_bb (stmt));
update_stmt (stmt);
}
}
gcc_checking_assert (has_zero_uses (name));
/* Also update the trees stored in loop structures. */
if (current_loops)
{
struct loop *loop;
FOR_EACH_LOOP (loop, 0)
{
substitute_in_loop_info (loop, name, val);
}
}
}
/* Merge block B into block A. */
static void
gimple_merge_blocks (basic_block a, basic_block b)
{
gimple_stmt_iterator last, gsi;
gphi_iterator psi;
if (dump_file)
fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
/* Remove all single-valued PHI nodes from block B of the form
V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
gsi = gsi_last_bb (a);
for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
{
gimple *phi = gsi_stmt (psi);
tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
gimple *copy;
bool may_replace_uses = (virtual_operand_p (def)
|| may_propagate_copy (def, use));
/* In case we maintain loop closed ssa form, do not propagate arguments
of loop exit phi nodes. */
if (current_loops
&& loops_state_satisfies_p (LOOP_CLOSED_SSA)
&& !virtual_operand_p (def)
&& TREE_CODE (use) == SSA_NAME
&& a->loop_father != b->loop_father)
may_replace_uses = false;
if (!may_replace_uses)
{
gcc_assert (!virtual_operand_p (def));
/* Note that just emitting the copies is fine -- there is no problem
with ordering of phi nodes. This is because A is the single
predecessor of B, therefore results of the phi nodes cannot
appear as arguments of the phi nodes. */
copy = gimple_build_assign (def, use);
gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
remove_phi_node (&psi, false);
}
else
{
/* If we deal with a PHI for virtual operands, we can simply
propagate these without fussing with folding or updating
the stmt. */
if (virtual_operand_p (def))
{
imm_use_iterator iter;
use_operand_p use_p;
gimple *stmt;
FOR_EACH_IMM_USE_STMT (stmt, iter, def)
FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
SET_USE (use_p, use);
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
}
else
replace_uses_by (def, use);
remove_phi_node (&psi, true);
}
}
/* Ensure that B follows A. */
move_block_after (b, a);
gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
/* Remove labels from B and set gimple_bb to A for other statements. */
for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
{
gimple *stmt = gsi_stmt (gsi);
if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
{
tree label = gimple_label_label (label_stmt);
int lp_nr;
gsi_remove (&gsi, false);
/* Now that we can thread computed gotos, we might have
a situation where we have a forced label in block B
However, the label at the start of block B might still be
used in other ways (think about the runtime checking for
Fortran assigned gotos). So we can not just delete the
label. Instead we move the label to the start of block A. */
if (FORCED_LABEL (label))
{
gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
}
/* Other user labels keep around in a form of a debug stmt. */
else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
{
gimple *dbg = gimple_build_debug_bind (label,
integer_zero_node,
stmt);
gimple_debug_bind_reset_value (dbg);
gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
}
lp_nr = EH_LANDING_PAD_NR (label);
if (lp_nr)
{
eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
lp->post_landing_pad = NULL;
}
}
else
{
gimple_set_bb (stmt, a);
gsi_next (&gsi);
}
}
/* When merging two BBs, if their counts are different, the larger count
is selected as the new bb count. This is to handle inconsistent
profiles. */
if (a->loop_father == b->loop_father)
{
a->count = a->count.merge (b->count);
}
/* Merge the sequences. */
last = gsi_last_bb (a);
gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
set_bb_seq (b, NULL);
if (cfgcleanup_altered_bbs)
bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
}
/* Return the one of two successors of BB that is not reachable by a
complex edge, if there is one. Else, return BB. We use
this in optimizations that use post-dominators for their heuristics,
to catch the cases in C++ where function calls are involved. */
basic_block
single_noncomplex_succ (basic_block bb)
{
edge e0, e1;
if (EDGE_COUNT (bb->succs) != 2)
return bb;
e0 = EDGE_SUCC (bb, 0);
e1 = EDGE_SUCC (bb, 1);
if (e0->flags & EDGE_COMPLEX)
return e1->dest;
if (e1->flags & EDGE_COMPLEX)
return e0->dest;
return bb;
}
/* T is CALL_EXPR. Set current_function_calls_* flags. */
void
notice_special_calls (gcall *call)
{
int flags = gimple_call_flags (call);
if (flags & ECF_MAY_BE_ALLOCA)
cfun->calls_alloca = true;
if (flags & ECF_RETURNS_TWICE)
cfun->calls_setjmp = true;
}
/* Clear flags set by notice_special_calls. Used by dead code removal
to update the flags. */
void
clear_special_calls (void)
{
cfun->calls_alloca = false;
cfun->calls_setjmp = false;
}
/* Remove PHI nodes associated with basic block BB and all edges out of BB. */
static void
remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
{
/* Since this block is no longer reachable, we can just delete all
of its PHI nodes. */
remove_phi_nodes (bb);
/* Remove edges to BB's successors. */
while (EDGE_COUNT (bb->succs) > 0)
remove_edge (EDGE_SUCC (bb, 0));
}
/* Remove statements of basic block BB. */
static void
remove_bb (basic_block bb)
{
gimple_stmt_iterator i;
if (dump_file)
{
fprintf (dump_file, "Removing basic block %d\n", bb->index);
if (dump_flags & TDF_DETAILS)
{
dump_bb (dump_file, bb, 0, TDF_BLOCKS);
fprintf (dump_file, "\n");
}
}
if (current_loops)
{
struct loop *loop = bb->loop_father;
/* If a loop gets removed, clean up the information associated
with it. */
if (loop->latch == bb
|| loop->header == bb)
free_numbers_of_iterations_estimates (loop);
}
/* Remove all the instructions in the block. */
if (bb_seq (bb) != NULL)
{
/* Walk backwards so as to get a chance to substitute all
released DEFs into debug stmts. See
eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
details. */
for (i = gsi_last_bb (bb); !gsi_end_p (i);)
{
gimple *stmt = gsi_stmt (i);
glabel *label_stmt = dyn_cast <glabel *> (stmt);
if (label_stmt
&& (FORCED_LABEL (gimple_label_label (label_stmt))
|| DECL_NONLOCAL (gimple_label_label (label_stmt))))
{
basic_block new_bb;
gimple_stmt_iterator new_gsi;
/* A non-reachable non-local label may still be referenced.
But it no longer needs to carry the extra semantics of
non-locality. */
if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
{
DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
}
new_bb = bb->prev_bb;
new_gsi = gsi_start_bb (new_bb);
gsi_remove (&i, false);
gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
}
else
{
/* Release SSA definitions. */
release_defs (stmt);
gsi_remove (&i, true);
}
if (gsi_end_p (i))
i = gsi_last_bb (bb);
else
gsi_prev (&i);
}
}
remove_phi_nodes_and_edges_for_unreachable_block (bb);
bb->il.gimple.seq = NULL;
bb->il.gimple.phi_nodes = NULL;
}
/* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
predicate VAL, return the edge that will be taken out of the block.
If VAL does not match a unique edge, NULL is returned. */
edge
find_taken_edge (basic_block bb, tree val)
{
gimple *stmt;
stmt = last_stmt (bb);
gcc_assert (is_ctrl_stmt (stmt));
if (gimple_code (stmt) == GIMPLE_COND)
return find_taken_edge_cond_expr (bb, val);
if (gimple_code (stmt) == GIMPLE_SWITCH)
return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), bb, val);
if (computed_goto_p (stmt))
{
/* Only optimize if the argument is a label, if the argument is
not a label then we can not construct a proper CFG.
It may be the case that we only need to allow the LABEL_REF to
appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
appear inside a LABEL_EXPR just to be safe. */
if (val
&& (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
&& TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
return NULL;
}
gcc_unreachable ();
}
/* Given a constant value VAL and the entry block BB to a GOTO_EXPR
statement, determine which of the outgoing edges will be taken out of the
block. Return NULL if either edge may be taken. */
static edge
find_taken_edge_computed_goto (basic_block bb, tree val)
{
basic_block dest;
edge e = NULL;
dest = label_to_block (val);
if (dest)
{
e = find_edge (bb, dest);
gcc_assert (e != NULL);
}
return e;
}
/* Given a constant value VAL and the entry block BB to a COND_EXPR
statement, determine which of the two edges will be taken out of the
block. Return NULL if either edge may be taken. */
static edge
find_taken_edge_cond_expr (basic_block bb, tree val)
{
edge true_edge, false_edge;
if (val == NULL
|| TREE_CODE (val) != INTEGER_CST)
return NULL;
extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
return (integer_zerop (val) ? false_edge : true_edge);
}
/* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
statement, determine which edge will be taken out of the block. Return
NULL if any edge may be taken. */
static edge
find_taken_edge_switch_expr (gswitch *switch_stmt, basic_block bb,
tree val)
{
basic_block dest_bb;
edge e;
tree taken_case;
if (gimple_switch_num_labels (switch_stmt) == 1)
taken_case = gimple_switch_default_label (switch_stmt);
else if (! val || TREE_CODE (val) != INTEGER_CST)
return NULL;
else
taken_case = find_case_label_for_value (switch_stmt, val);
dest_bb = label_to_block (CASE_LABEL (taken_case));
e = find_edge (bb, dest_bb);
gcc_assert (e);
return e;
}
/* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
We can make optimal use here of the fact that the case labels are
sorted: We can do a binary search for a case matching VAL. */
static tree
find_case_label_for_value (gswitch *switch_stmt, tree val)
{
size_t low, high, n = gimple_switch_num_labels (switch_stmt);
tree default_case = gimple_switch_default_label (switch_stmt);
for (low = 0, high = n; high - low > 1; )
{
size_t i = (high + low) / 2;
tree t = gimple_switch_label (switch_stmt, i);
int cmp;
/* Cache the result of comparing CASE_LOW and val. */
cmp = tree_int_cst_compare (CASE_LOW (t), val);
if (cmp > 0)
high = i;
else
low = i;
if (CASE_HIGH (t) == NULL)
{
/* A singe-valued case label. */
if (cmp == 0)
return t;
}
else
{
/* A case range. We can only handle integer ranges. */
if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
return t;
}
}
return default_case;
}
/* Dump a basic block on stderr. */
void
gimple_debug_bb (basic_block bb)
{
dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
}
/* Dump basic block with index N on stderr. */
basic_block
gimple_debug_bb_n (int n)
{
gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
return BASIC_BLOCK_FOR_FN (cfun, n);
}
/* Dump the CFG on stderr.
FLAGS are the same used by the tree dumping functions
(see TDF_* in dumpfile.h). */
void
gimple_debug_cfg (dump_flags_t flags)
{
gimple_dump_cfg (stderr, flags);
}
/* Dump the program showing basic block boundaries on the given FILE.
FLAGS are the same used by the tree dumping functions (see TDF_* in
tree.h). */
void
gimple_dump_cfg (FILE *file, dump_flags_t flags)
{
if (flags & TDF_DETAILS)
{
dump_function_header (file, current_function_decl, flags);
fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
last_basic_block_for_fn (cfun));
brief_dump_cfg (file, flags);
fprintf (file, "\n");
}
if (flags & TDF_STATS)
dump_cfg_stats (file);
dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
}
/* Dump CFG statistics on FILE. */
void
dump_cfg_stats (FILE *file)
{
static long max_num_merged_labels = 0;
unsigned long size, total = 0;
long num_edges;
basic_block bb;
const char * const fmt_str = "%-30s%-13s%12s\n";
const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
const char * const fmt_str_3 = "%-43s%11lu%c\n";
const char *funcname = current_function_name ();
fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
fprintf (file, "---------------------------------------------------------\n");
fprintf (file, fmt_str, "", " Number of ", "Memory");
fprintf (file, fmt_str, "", " instances ", "used ");
fprintf (file, "---------------------------------------------------------\n");
size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
total += size;
fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
SCALE (size), LABEL (size));
num_edges = 0;
FOR_EACH_BB_FN (bb, cfun)
num_edges += EDGE_COUNT (bb->succs);
size = num_edges * sizeof (struct edge_def);
total += size;
fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
fprintf (file, "---------------------------------------------------------\n");
fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
LABEL (total));
fprintf (file, "---------------------------------------------------------\n");
fprintf (file, "\n");
if (cfg_stats.num_merged_labels > max_num_merged_labels)
max_num_merged_labels = cfg_stats.num_merged_labels;
fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
cfg_stats.num_merged_labels, max_num_merged_labels);
fprintf (file, "\n");
}
/* Dump CFG statistics on stderr. Keep extern so that it's always
linked in the final executable. */
DEBUG_FUNCTION void
debug_cfg_stats (void)
{
dump_cfg_stats (stderr);
}
/*---------------------------------------------------------------------------
Miscellaneous helpers
---------------------------------------------------------------------------*/
/* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
flow. Transfers of control flow associated with EH are excluded. */
static bool
call_can_make_abnormal_goto (gimple *t)
{
/* If the function has no non-local labels, then a call cannot make an
abnormal transfer of control. */
if (!cfun->has_nonlocal_label
&& !cfun->calls_setjmp)
return false;
/* Likewise if the call has no side effects. */
if (!gimple_has_side_effects (t))
return false;
/* Likewise if the called function is leaf. */
if (gimple_call_flags (t) & ECF_LEAF)
return false;
return true;
}
/* Return true if T can make an abnormal transfer of control flow.
Transfers of control flow associated with EH are excluded. */
bool
stmt_can_make_abnormal_goto (gimple *t)
{
if (computed_goto_p (t))
return true;
if (is_gimple_call (t))
return call_can_make_abnormal_goto (t);
return false;
}
/* Return true if T represents a stmt that always transfers control. */
bool
is_ctrl_stmt (gimple *t)
{
switch (gimple_code (t))
{
case GIMPLE_COND:
case GIMPLE_SWITCH:
case GIMPLE_GOTO:
case GIMPLE_RETURN:
case GIMPLE_RESX:
return true;
default:
return false;
}
}
/* Return true if T is a statement that may alter the flow of control
(e.g., a call to a non-returning function). */
bool
is_ctrl_altering_stmt (gimple *t)
{
gcc_assert (t);
switch (gimple_code (t))
{
case GIMPLE_CALL:
/* Per stmt call flag indicates whether the call could alter
controlflow. */
if (gimple_call_ctrl_altering_p (t))
return true;
break;
case GIMPLE_EH_DISPATCH:
/* EH_DISPATCH branches to the individual catch handlers at
this level of a try or allowed-exceptions region. It can
fallthru to the next statement as well. */
return true;
case GIMPLE_ASM:
if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
return true;
break;
CASE_GIMPLE_OMP:
/* OpenMP directives alter control flow. */
return true;
case GIMPLE_TRANSACTION:
/* A transaction start alters control flow. */
return true;
default:
break;
}
/* If a statement can throw, it alters control flow. */
return stmt_can_throw_internal (t);
}
/* Return true if T is a simple local goto. */
bool
simple_goto_p (gimple *t)
{
return (gimple_code (t) == GIMPLE_GOTO
&& TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
}
/* Return true if STMT should start a new basic block. PREV_STMT is
the statement preceding STMT. It is used when STMT is a label or a
case label. Labels should only start a new basic block if their
previous statement wasn't a label. Otherwise, sequence of labels
would generate unnecessary basic blocks that only contain a single
label. */
static inline bool
stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
{
if (stmt == NULL)
return false;
/* Labels start a new basic block only if the preceding statement
wasn't a label of the same type. This prevents the creation of
consecutive blocks that have nothing but a single label. */
if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
{
/* Nonlocal and computed GOTO targets always start a new block. */
if (DECL_NONLOCAL (gimple_label_label (label_stmt))
|| FORCED_LABEL (gimple_label_label (label_stmt)))
return true;
if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
{
if (DECL_NONLOCAL (gimple_label_label (
as_a <glabel *> (prev_stmt))))
return true;
cfg_stats.num_merged_labels++;
return false;
}
else
return true;
}
else if (gimple_code (stmt) == GIMPLE_CALL)
{
if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
/* setjmp acts similar to a nonlocal GOTO target and thus should
start a new block. */
return true;
if (gimple_call_internal_p (stmt, IFN_PHI)
&& prev_stmt
&& gimple_code (prev_stmt) != GIMPLE_LABEL
&& (gimple_code (prev_stmt) != GIMPLE_CALL
|| ! gimple_call_internal_p (prev_stmt, IFN_PHI)))
/* PHI nodes start a new block unless preceeded by a label
or another PHI. */
return true;
}
return false;
}
/* Return true if T should end a basic block. */
bool
stmt_ends_bb_p (gimple *t)
{
return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
}
/* Remove block annotations and other data structures. */
void
delete_tree_cfg_annotations (struct function *fn)
{
vec_free (label_to_block_map_for_fn (fn));
}
/* Return the virtual phi in BB. */
gphi *
get_virtual_phi (basic_block bb)
{
for (gphi_iterator gsi = gsi_start_phis (bb);
!gsi_end_p (gsi);
gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
if (virtual_operand_p (PHI_RESULT (phi)))
return phi;
}
return NULL;
}
/* Return the first statement in basic block BB. */
gimple *
first_stmt (basic_block bb)
{
gimple_stmt_iterator i = gsi_start_bb (bb);
gimple *stmt = NULL;
while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
{
gsi_next (&i);
stmt = NULL;
}
return stmt;
}
/* Return the first non-label statement in basic block BB. */
static gimple *
first_non_label_stmt (basic_block bb)
{
gimple_stmt_iterator i = gsi_start_bb (bb);
while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
gsi_next (&i);
return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
}
/* Return the last statement in basic block BB. */
gimple *
last_stmt (basic_block bb)
{
gimple_stmt_iterator i = gsi_last_bb (bb);
gimple *stmt = NULL;
while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
{
gsi_prev (&i);
stmt = NULL;
}
return stmt;
}
/* Return the last statement of an otherwise empty block. Return NULL
if the block is totally empty, or if it contains more than one
statement. */
gimple *
last_and_only_stmt (basic_block bb)
{
gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
gimple *last, *prev;
if (gsi_end_p (i))
return NULL;
last = gsi_stmt (i);
gsi_prev_nondebug (&i);
if (gsi_end_p (i))
return last;
/* Empty statements should no longer appear in the instruction stream.
Everything that might have appeared before should be deleted by
remove_useless_stmts, and the optimizers should just gsi_remove
instead of smashing with build_empty_stmt.
Thus the only thing that should appear here in a block containing
one executable statement is a label. */
prev = gsi_stmt (i);
if (gimple_code (prev) == GIMPLE_LABEL)
return last;
else
return NULL;
}
/* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
static void
reinstall_phi_args (edge new_edge, edge old_edge)
{
edge_var_map *vm;
int i;
gphi_iterator phis;
vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
if (!v)
return;
for (i = 0, phis = gsi_start_phis (new_edge->dest);
v->iterate (i, &vm) && !gsi_end_p (phis);
i++, gsi_next (&phis))
{
gphi *phi = phis.phi ();
tree result = redirect_edge_var_map_result (vm);
tree arg = redirect_edge_var_map_def (vm);
gcc_assert (result == gimple_phi_result (phi));
add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
}
redirect_edge_var_map_clear (old_edge);
}
/* Returns the basic block after which the new basic block created
by splitting edge EDGE_IN should be placed. Tries to keep the new block
near its "logical" location. This is of most help to humans looking
at debugging dumps. */
basic_block
split_edge_bb_loc (edge edge_in)
{
basic_block dest = edge_in->dest;
basic_block dest_prev = dest->prev_bb;
if (dest_prev)
{
edge e = find_edge (dest_prev, dest);
if (e && !(e->flags & EDGE_COMPLEX))
return edge_in->src;
}
return dest_prev;
}
/* Split a (typically critical) edge EDGE_IN. Return the new block.
Abort on abnormal edges. */
static basic_block
gimple_split_edge (edge edge_in)
{
basic_block new_bb, after_bb, dest;
edge new_edge, e;
/* Abnormal edges cannot be split. */
gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
dest = edge_in->dest;
after_bb = split_edge_bb_loc (edge_in);
new_bb = create_empty_bb (after_bb);
new_bb->count = edge_in->count ();
e = redirect_edge_and_branch (edge_in, new_bb);
gcc_assert (e == edge_in);
new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU);
reinstall_phi_args (new_edge, e);
return new_bb;
}
/* Verify properties of the address expression T with base object BASE. */
static tree
verify_address (tree t, tree base)
{
bool old_constant;
bool old_side_effects;
bool new_constant;
bool new_side_effects;
old_constant = TREE_CONSTANT (t);
old_side_effects = TREE_SIDE_EFFECTS (t);
recompute_tree_invariant_for_addr_expr (t);
new_side_effects = TREE_SIDE_EFFECTS (t);
new_constant = TREE_CONSTANT (t);
if (old_constant != new_constant)
{
error ("constant not recomputed when ADDR_EXPR changed");
return t;
}
if (old_side_effects != new_side_effects)
{
error ("side effects not recomputed when ADDR_EXPR changed");
return t;
}
if (!(VAR_P (base)
|| TREE_CODE (base) == PARM_DECL
|| TREE_CODE (base) == RESULT_DECL))
return NULL_TREE;
if (DECL_GIMPLE_REG_P (base))
{
error ("DECL_GIMPLE_REG_P set on a variable with address taken");
return base;
}
return NULL_TREE;
}
/* Callback for walk_tree, check that all elements with address taken are
properly noticed as such. The DATA is an int* that is 1 if TP was seen
inside a PHI node. */
static tree
verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
{
tree t = *tp, x;
if (TYPE_P (t))
*walk_subtrees = 0;
/* Check operand N for being valid GIMPLE and give error MSG if not. */
#define CHECK_OP(N, MSG) \
do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
{ error (MSG); return TREE_OPERAND (t, N); }} while (0)
switch (TREE_CODE (t))
{
case SSA_NAME:
if (SSA_NAME_IN_FREE_LIST (t))
{
error ("SSA name in freelist but still referenced");
return *tp;
}
break;
case PARM_DECL:
case VAR_DECL:
case RESULT_DECL:
{
tree context = decl_function_context (t);
if (context != cfun->decl
&& !SCOPE_FILE_SCOPE_P (context)
&& !TREE_STATIC (t)
&& !DECL_EXTERNAL (t))
{
error ("Local declaration from a different function");
return t;
}
}
break;
case INDIRECT_REF:
error ("INDIRECT_REF in gimple IL");
return t;
case MEM_REF:
x = TREE_OPERAND (t, 0);
if (!POINTER_TYPE_P (TREE_TYPE (x))
|| !is_gimple_mem_ref_addr (x))
{
error ("invalid first operand of MEM_REF");
return x;
}
if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
|| !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
{
error ("invalid offset operand of MEM_REF");
return TREE_OPERAND (t, 1);
}
if (TREE_CODE (x) == ADDR_EXPR)
{
tree va = verify_address (x, TREE_OPERAND (x, 0));
if (va)
return va;
x = TREE_OPERAND (x, 0);
}
walk_tree (&x, verify_expr, data, NULL);
*walk_subtrees = 0;
break;
case ASSERT_EXPR:
x = fold (ASSERT_EXPR_COND (t));
if (x == boolean_false_node)
{
error ("ASSERT_EXPR with an always-false condition");
return *tp;
}
break;
case MODIFY_EXPR:
error ("MODIFY_EXPR not expected while having tuples");
return *tp;
case ADDR_EXPR:
{
tree tem;
gcc_assert (is_gimple_address (t));
/* Skip any references (they will be checked when we recurse down the
tree) and ensure that any variable used as a prefix is marked
addressable. */
for (x = TREE_OPERAND (t, 0);
handled_component_p (x);
x = TREE_OPERAND (x, 0))
;
if ((tem = verify_address (t, x)))
return tem;
if (!(VAR_P (x)
|| TREE_CODE (x) == PARM_DECL
|| TREE_CODE (x) == RESULT_DECL))
return NULL;
if (!TREE_ADDRESSABLE (x))
{
error ("address taken, but ADDRESSABLE bit not set");
return x;
}
break;
}
case COND_EXPR:
x = COND_EXPR_COND (t);
if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
{
error ("non-integral used in condition");
return x;
}
if (!is_gimple_condexpr (x))
{
error ("invalid conditional operand");
return x;
}
break;
case NON_LVALUE_EXPR:
case TRUTH_NOT_EXPR:
gcc_unreachable ();
CASE_CONVERT:
case FIX_TRUNC_EXPR:
case FLOAT_EXPR:
case NEGATE_EXPR:
case ABS_EXPR:
case BIT_NOT_EXPR:
CHECK_OP (0, "invalid operand to unary operator");
break;
case REALPART_EXPR:
case IMAGPART_EXPR:
case BIT_FIELD_REF:
if (!is_gimple_reg_type (TREE_TYPE (t)))
{
error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
return t;
}
if (TREE_CODE (t) == BIT_FIELD_REF)
{
tree t0 = TREE_OPERAND (t, 0);
tree t1 = TREE_OPERAND (t, 1);
tree t2 = TREE_OPERAND (t, 2);
if (!tree_fits_uhwi_p (t1)
|| !tree_fits_uhwi_p (t2)
|| !types_compatible_p (bitsizetype, TREE_TYPE (t1))
|| !types_compatible_p (bitsizetype, TREE_TYPE (t2)))
{
error ("invalid position or size operand to BIT_FIELD_REF");
return t;
}
if (INTEGRAL_TYPE_P (TREE_TYPE (t))
&& (TYPE_PRECISION (TREE_TYPE (t))
!= tree_to_uhwi (t1)))
{
error ("integral result type precision does not match "
"field size of BIT_FIELD_REF");
return t;
}
else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
&& TYPE_MODE (TREE_TYPE (t)) != BLKmode
&& (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t)))
!= tree_to_uhwi (t1)))
{
error ("mode size of non-integral result does not "
"match field size of BIT_FIELD_REF");
return t;
}
if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
&& (tree_to_uhwi (t1) + tree_to_uhwi (t2)
> tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
{
error ("position plus size exceeds size of referenced object in "
"BIT_FIELD_REF");
return t;
}
}
t = TREE_OPERAND (t, 0);
/* Fall-through. */
case COMPONENT_REF:
case ARRAY_REF:
case ARRAY_RANGE_REF:
case VIEW_CONVERT_EXPR:
/* We have a nest of references. Verify that each of the operands
that determine where to reference is either a constant or a variable,
verify that the base is valid, and then show we've already checked
the subtrees. */
while (handled_component_p (t))
{
if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
CHECK_OP (2, "invalid COMPONENT_REF offset operator");
else if (TREE_CODE (t) == ARRAY_REF
|| TREE_CODE (t) == ARRAY_RANGE_REF)
{
CHECK_OP (1, "invalid array index");
if (TREE_OPERAND (t, 2))
CHECK_OP (2, "invalid array lower bound");
if (TREE_OPERAND (t, 3))
CHECK_OP (3, "invalid array stride");
}
else if (TREE_CODE (t) == BIT_FIELD_REF
|| TREE_CODE (t) == REALPART_EXPR
|| TREE_CODE (t) == IMAGPART_EXPR)
{
error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
"REALPART_EXPR");
return t;
}
t = TREE_OPERAND (t, 0);
}
if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
{
error ("invalid reference prefix");
return t;
}
walk_tree (&t, verify_expr, data, NULL);
*walk_subtrees = 0;
break;
case PLUS_EXPR:
case MINUS_EXPR:
/* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
POINTER_PLUS_EXPR. */
if (POINTER_TYPE_P (TREE_TYPE (t)))
{
error ("invalid operand to plus/minus, type is a pointer");
return t;
}
CHECK_OP (0, "invalid operand to binary operator");
CHECK_OP (1, "invalid operand to binary operator");
break;
case POINTER_DIFF_EXPR:
if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0)))
|| !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
{
error ("invalid operand to pointer diff, operand is not a pointer");
return t;
}
if (TREE_CODE (TREE_TYPE (t)) != INTEGER_TYPE
|| TYPE_UNSIGNED (TREE_TYPE (t))
|| (TYPE_PRECISION (TREE_TYPE (t))
!= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (t, 0)))))
{
error ("invalid type for pointer diff");
return t;
}
CHECK_OP (0, "invalid operand to pointer diff");
CHECK_OP (1, "invalid operand to pointer diff");
break;
case POINTER_PLUS_EXPR:
/* Check to make sure the first operand is a pointer or reference type. */
if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
{
error ("invalid operand to pointer plus, first operand is not a pointer");
return t;
}
/* Check to make sure the second operand is a ptrofftype. */
if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
{
error ("invalid operand to pointer plus, second operand is not an "
"integer type of appropriate width");
return t;
}
/* FALLTHROUGH */
case LT_EXPR:
case LE_EXPR:
case GT_EXPR:
case GE_EXPR:
case EQ_EXPR:
case NE_EXPR:
case UNORDERED_EXPR:
case ORDERED_EXPR:
case UNLT_EXPR:
case UNLE_EXPR:
case UNGT_EXPR:
case UNGE_EXPR:
case UNEQ_EXPR:
case LTGT_EXPR:
case MULT_EXPR:
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case TRUNC_MOD_EXPR:
case CEIL_MOD_EXPR:
case FLOOR_MOD_EXPR:
case ROUND_MOD_EXPR:
case RDIV_EXPR:
case EXACT_DIV_EXPR:
case MIN_EXPR:
case MAX_EXPR:
case LSHIFT_EXPR:
case RSHIFT_EXPR:
case LROTATE_EXPR:
case RROTATE_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case BIT_AND_EXPR:
CHECK_OP (0, "invalid operand to binary operator");
CHECK_OP (1, "invalid operand to binary operator");
break;
case CONSTRUCTOR:
if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
*walk_subtrees = 0;
break;
case CASE_LABEL_EXPR:
if (CASE_CHAIN (t))
{
error ("invalid CASE_CHAIN");
return t;
}
break;
default:
break;
}
return NULL;
#undef CHECK_OP
}
/* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
Returns true if there is an error, otherwise false. */
static bool
verify_types_in_gimple_min_lval (tree expr)
{
tree op;
if (is_gimple_id (expr))
return false;
if (TREE_CODE (expr) != TARGET_MEM_REF
&& TREE_CODE (expr) != MEM_REF)
{
error ("invalid expression for min lvalue");
return true;
}
/* TARGET_MEM_REFs are strange beasts. */
if (TREE_CODE (expr) == TARGET_MEM_REF)
return false;
op = TREE_OPERAND (expr, 0);
if (!is_gimple_val (op))
{
error ("invalid operand in indirect reference");
debug_generic_stmt (op);
return true;
}
/* Memory references now generally can involve a value conversion. */
return false;
}
/* Verify if EXPR is a valid GIMPLE reference expression. If
REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
if there is an error, otherwise false. */
static bool
verify_types_in_gimple_reference (tree expr, bool require_lvalue)
{
while (handled_component_p (expr))
{
tree op = TREE_OPERAND (expr, 0);
if (TREE_CODE (expr) == ARRAY_REF
|| TREE_CODE (expr) == ARRAY_RANGE_REF)
{
if (!is_gimple_val (TREE_OPERAND (expr, 1))
|| (TREE_OPERAND (expr, 2)
&& !is_gimple_val (TREE_OPERAND (expr, 2)))
|| (TREE_OPERAND (expr, 3)
&& !is_gimple_val (TREE_OPERAND (expr, 3))))
{
error ("invalid operands to array reference");
debug_generic_stmt (expr);
return true;
}
}
/* Verify if the reference array element types are compatible. */
if (TREE_CODE (expr) == ARRAY_REF
&& !useless_type_conversion_p (TREE_TYPE (expr),
TREE_TYPE (TREE_TYPE (op))))
{
error ("type mismatch in array reference");
debug_generic_stmt (TREE_TYPE (expr));
debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));