blob: 866cff0edb045b606556f7ba8c800f48b1fd85ea [file] [log] [blame]
/* Scalar Replacement of Aggregates (SRA) converts some structure
references into scalar references, exposing them to the scalar
optimizers.
Copyright (C) 2008-2017 Free Software Foundation, Inc.
Contributed by Martin Jambor <mjambor@suse.cz>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
twice, once in the early stages of compilation (early SRA) and once in the
late stages (late SRA). The aim of both is to turn references to scalar
parts of aggregates into uses of independent scalar variables.
The two passes are nearly identical, the only difference is that early SRA
does not scalarize unions which are used as the result in a GIMPLE_RETURN
statement because together with inlining this can lead to weird type
conversions.
Both passes operate in four stages:
1. The declarations that have properties which make them candidates for
scalarization are identified in function find_var_candidates(). The
candidates are stored in candidate_bitmap.
2. The function body is scanned. In the process, declarations which are
used in a manner that prevent their scalarization are removed from the
candidate bitmap. More importantly, for every access into an aggregate,
an access structure (struct access) is created by create_access() and
stored in a vector associated with the aggregate. Among other
information, the aggregate declaration, the offset and size of the access
and its type are stored in the structure.
On a related note, assign_link structures are created for every assign
statement between candidate aggregates and attached to the related
accesses.
3. The vectors of accesses are analyzed. They are first sorted according to
their offset and size and then scanned for partially overlapping accesses
(i.e. those which overlap but one is not entirely within another). Such
an access disqualifies the whole aggregate from being scalarized.
If there is no such inhibiting overlap, a representative access structure
is chosen for every unique combination of offset and size. Afterwards,
the pass builds a set of trees from these structures, in which children
of an access are within their parent (in terms of offset and size).
Then accesses are propagated whenever possible (i.e. in cases when it
does not create a partially overlapping access) across assign_links from
the right hand side to the left hand side.
Then the set of trees for each declaration is traversed again and those
accesses which should be replaced by a scalar are identified.
4. The function is traversed again, and for every reference into an
aggregate that has some component which is about to be scalarized,
statements are amended and new statements are created as necessary.
Finally, if a parameter got scalarized, the scalar replacements are
initialized with values from respective parameter aggregates. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "predict.h"
#include "alloc-pool.h"
#include "tree-pass.h"
#include "ssa.h"
#include "cgraph.h"
#include "gimple-pretty-print.h"
#include "alias.h"
#include "fold-const.h"
#include "tree-eh.h"
#include "stor-layout.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "gimple-walk.h"
#include "tree-cfg.h"
#include "tree-dfa.h"
#include "tree-ssa.h"
#include "symbol-summary.h"
#include "ipa-param-manipulation.h"
#include "ipa-prop.h"
#include "params.h"
#include "dbgcnt.h"
#include "tree-inline.h"
#include "ipa-fnsummary.h"
#include "ipa-utils.h"
#include "builtins.h"
/* Enumeration of all aggregate reductions we can do. */
enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
SRA_MODE_INTRA }; /* late intraprocedural SRA */
/* Global variable describing which aggregate reduction we are performing at
the moment. */
static enum sra_mode sra_mode;
struct assign_link;
/* ACCESS represents each access to an aggregate variable (as a whole or a
part). It can also represent a group of accesses that refer to exactly the
same fragment of an aggregate (i.e. those that have exactly the same offset
and size). Such representatives for a single aggregate, once determined,
are linked in a linked list and have the group fields set.
Moreover, when doing intraprocedural SRA, a tree is built from those
representatives (by the means of first_child and next_sibling pointers), in
which all items in a subtree are "within" the root, i.e. their offset is
greater or equal to offset of the root and offset+size is smaller or equal
to offset+size of the root. Children of an access are sorted by offset.
Note that accesses to parts of vector and complex number types always
represented by an access to the whole complex number or a vector. It is a
duty of the modifying functions to replace them appropriately. */
struct access
{
/* Values returned by `get_ref_base_and_extent' for each component reference
If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
`SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
HOST_WIDE_INT offset;
HOST_WIDE_INT size;
tree base;
/* Expression. It is context dependent so do not use it to create new
expressions to access the original aggregate. See PR 42154 for a
testcase. */
tree expr;
/* Type. */
tree type;
/* The statement this access belongs to. */
gimple *stmt;
/* Next group representative for this aggregate. */
struct access *next_grp;
/* Pointer to the group representative. Pointer to itself if the struct is
the representative. */
struct access *group_representative;
/* After access tree has been constructed, this points to the parent of the
current access, if there is one. NULL for roots. */
struct access *parent;
/* If this access has any children (in terms of the definition above), this
points to the first one. */
struct access *first_child;
/* In intraprocedural SRA, pointer to the next sibling in the access tree as
described above. In IPA-SRA this is a pointer to the next access
belonging to the same group (having the same representative). */
struct access *next_sibling;
/* Pointers to the first and last element in the linked list of assign
links. */
struct assign_link *first_link, *last_link;
/* Pointer to the next access in the work queue. */
struct access *next_queued;
/* Replacement variable for this access "region." Never to be accessed
directly, always only by the means of get_access_replacement() and only
when grp_to_be_replaced flag is set. */
tree replacement_decl;
/* Is this access an access to a non-addressable field? */
unsigned non_addressable : 1;
/* Is this access made in reverse storage order? */
unsigned reverse : 1;
/* Is this particular access write access? */
unsigned write : 1;
/* Is this access currently in the work queue? */
unsigned grp_queued : 1;
/* Does this group contain a write access? This flag is propagated down the
access tree. */
unsigned grp_write : 1;
/* Does this group contain a read access? This flag is propagated down the
access tree. */
unsigned grp_read : 1;
/* Does this group contain a read access that comes from an assignment
statement? This flag is propagated down the access tree. */
unsigned grp_assignment_read : 1;
/* Does this group contain a write access that comes from an assignment
statement? This flag is propagated down the access tree. */
unsigned grp_assignment_write : 1;
/* Does this group contain a read access through a scalar type? This flag is
not propagated in the access tree in any direction. */
unsigned grp_scalar_read : 1;
/* Does this group contain a write access through a scalar type? This flag
is not propagated in the access tree in any direction. */
unsigned grp_scalar_write : 1;
/* Is this access an artificial one created to scalarize some record
entirely? */
unsigned grp_total_scalarization : 1;
/* Other passes of the analysis use this bit to make function
analyze_access_subtree create scalar replacements for this group if
possible. */
unsigned grp_hint : 1;
/* Is the subtree rooted in this access fully covered by scalar
replacements? */
unsigned grp_covered : 1;
/* If set to true, this access and all below it in an access tree must not be
scalarized. */
unsigned grp_unscalarizable_region : 1;
/* Whether data have been written to parts of the aggregate covered by this
access which is not to be scalarized. This flag is propagated up in the
access tree. */
unsigned grp_unscalarized_data : 1;
/* Does this access and/or group contain a write access through a
BIT_FIELD_REF? */
unsigned grp_partial_lhs : 1;
/* Set when a scalar replacement should be created for this variable. */
unsigned grp_to_be_replaced : 1;
/* Set when we want a replacement for the sole purpose of having it in
generated debug statements. */
unsigned grp_to_be_debug_replaced : 1;
/* Should TREE_NO_WARNING of a replacement be set? */
unsigned grp_no_warning : 1;
/* Is it possible that the group refers to data which might be (directly or
otherwise) modified? */
unsigned grp_maybe_modified : 1;
/* Set when this is a representative of a pointer to scalar (i.e. by
reference) parameter which we consider for turning into a plain scalar
(i.e. a by value parameter). */
unsigned grp_scalar_ptr : 1;
/* Set when we discover that this pointer is not safe to dereference in the
caller. */
unsigned grp_not_necessarilly_dereferenced : 1;
};
typedef struct access *access_p;
/* Alloc pool for allocating access structures. */
static object_allocator<struct access> access_pool ("SRA accesses");
/* A structure linking lhs and rhs accesses from an aggregate assignment. They
are used to propagate subaccesses from rhs to lhs as long as they don't
conflict with what is already there. */
struct assign_link
{
struct access *lacc, *racc;
struct assign_link *next;
};
/* Alloc pool for allocating assign link structures. */
static object_allocator<assign_link> assign_link_pool ("SRA links");
/* Base (tree) -> Vector (vec<access_p> *) map. */
static hash_map<tree, auto_vec<access_p> > *base_access_vec;
/* Candidate hash table helpers. */
struct uid_decl_hasher : nofree_ptr_hash <tree_node>
{
static inline hashval_t hash (const tree_node *);
static inline bool equal (const tree_node *, const tree_node *);
};
/* Hash a tree in a uid_decl_map. */
inline hashval_t
uid_decl_hasher::hash (const tree_node *item)
{
return item->decl_minimal.uid;
}
/* Return true if the DECL_UID in both trees are equal. */
inline bool
uid_decl_hasher::equal (const tree_node *a, const tree_node *b)
{
return (a->decl_minimal.uid == b->decl_minimal.uid);
}
/* Set of candidates. */
static bitmap candidate_bitmap;
static hash_table<uid_decl_hasher> *candidates;
/* For a candidate UID return the candidates decl. */
static inline tree
candidate (unsigned uid)
{
tree_node t;
t.decl_minimal.uid = uid;
return candidates->find_with_hash (&t, static_cast <hashval_t> (uid));
}
/* Bitmap of candidates which we should try to entirely scalarize away and
those which cannot be (because they are and need be used as a whole). */
static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
/* Bitmap of candidates in the constant pool, which cannot be scalarized
because this would produce non-constant expressions (e.g. Ada). */
static bitmap disqualified_constants;
/* Obstack for creation of fancy names. */
static struct obstack name_obstack;
/* Head of a linked list of accesses that need to have its subaccesses
propagated to their assignment counterparts. */
static struct access *work_queue_head;
/* Number of parameters of the analyzed function when doing early ipa SRA. */
static int func_param_count;
/* scan_function sets the following to true if it encounters a call to
__builtin_apply_args. */
static bool encountered_apply_args;
/* Set by scan_function when it finds a recursive call. */
static bool encountered_recursive_call;
/* Set by scan_function when it finds a recursive call with less actual
arguments than formal parameters.. */
static bool encountered_unchangable_recursive_call;
/* This is a table in which for each basic block and parameter there is a
distance (offset + size) in that parameter which is dereferenced and
accessed in that BB. */
static HOST_WIDE_INT *bb_dereferences;
/* Bitmap of BBs that can cause the function to "stop" progressing by
returning, throwing externally, looping infinitely or calling a function
which might abort etc.. */
static bitmap final_bbs;
/* Representative of no accesses at all. */
static struct access no_accesses_representant;
/* Predicate to test the special value. */
static inline bool
no_accesses_p (struct access *access)
{
return access == &no_accesses_representant;
}
/* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
representative fields are dumped, otherwise those which only describe the
individual access are. */
static struct
{
/* Number of processed aggregates is readily available in
analyze_all_variable_accesses and so is not stored here. */
/* Number of created scalar replacements. */
int replacements;
/* Number of times sra_modify_expr or sra_modify_assign themselves changed an
expression. */
int exprs;
/* Number of statements created by generate_subtree_copies. */
int subtree_copies;
/* Number of statements created by load_assign_lhs_subreplacements. */
int subreplacements;
/* Number of times sra_modify_assign has deleted a statement. */
int deleted;
/* Number of times sra_modify_assign has to deal with subaccesses of LHS and
RHS reparately due to type conversions or nonexistent matching
references. */
int separate_lhs_rhs_handling;
/* Number of parameters that were removed because they were unused. */
int deleted_unused_parameters;
/* Number of scalars passed as parameters by reference that have been
converted to be passed by value. */
int scalar_by_ref_to_by_val;
/* Number of aggregate parameters that were replaced by one or more of their
components. */
int aggregate_params_reduced;
/* Numbber of components created when splitting aggregate parameters. */
int param_reductions_created;
} sra_stats;
static void
dump_access (FILE *f, struct access *access, bool grp)
{
fprintf (f, "access { ");
fprintf (f, "base = (%d)'", DECL_UID (access->base));
print_generic_expr (f, access->base);
fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
fprintf (f, ", expr = ");
print_generic_expr (f, access->expr);
fprintf (f, ", type = ");
print_generic_expr (f, access->type);
fprintf (f, ", non_addressable = %d, reverse = %d",
access->non_addressable, access->reverse);
if (grp)
fprintf (f, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, "
"grp_assignment_write = %d, grp_scalar_read = %d, "
"grp_scalar_write = %d, grp_total_scalarization = %d, "
"grp_hint = %d, grp_covered = %d, "
"grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
"grp_partial_lhs = %d, grp_to_be_replaced = %d, "
"grp_to_be_debug_replaced = %d, grp_maybe_modified = %d, "
"grp_not_necessarilly_dereferenced = %d\n",
access->grp_read, access->grp_write, access->grp_assignment_read,
access->grp_assignment_write, access->grp_scalar_read,
access->grp_scalar_write, access->grp_total_scalarization,
access->grp_hint, access->grp_covered,
access->grp_unscalarizable_region, access->grp_unscalarized_data,
access->grp_partial_lhs, access->grp_to_be_replaced,
access->grp_to_be_debug_replaced, access->grp_maybe_modified,
access->grp_not_necessarilly_dereferenced);
else
fprintf (f, ", write = %d, grp_total_scalarization = %d, "
"grp_partial_lhs = %d\n",
access->write, access->grp_total_scalarization,
access->grp_partial_lhs);
}
/* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
static void
dump_access_tree_1 (FILE *f, struct access *access, int level)
{
do
{
int i;
for (i = 0; i < level; i++)
fputs ("* ", f);
dump_access (f, access, true);
if (access->first_child)
dump_access_tree_1 (f, access->first_child, level + 1);
access = access->next_sibling;
}
while (access);
}
/* Dump all access trees for a variable, given the pointer to the first root in
ACCESS. */
static void
dump_access_tree (FILE *f, struct access *access)
{
for (; access; access = access->next_grp)
dump_access_tree_1 (f, access, 0);
}
/* Return true iff ACC is non-NULL and has subaccesses. */
static inline bool
access_has_children_p (struct access *acc)
{
return acc && acc->first_child;
}
/* Return true iff ACC is (partly) covered by at least one replacement. */
static bool
access_has_replacements_p (struct access *acc)
{
struct access *child;
if (acc->grp_to_be_replaced)
return true;
for (child = acc->first_child; child; child = child->next_sibling)
if (access_has_replacements_p (child))
return true;
return false;
}
/* Return a vector of pointers to accesses for the variable given in BASE or
NULL if there is none. */
static vec<access_p> *
get_base_access_vector (tree base)
{
return base_access_vec->get (base);
}
/* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
in ACCESS. Return NULL if it cannot be found. */
static struct access *
find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
HOST_WIDE_INT size)
{
while (access && (access->offset != offset || access->size != size))
{
struct access *child = access->first_child;
while (child && (child->offset + child->size <= offset))
child = child->next_sibling;
access = child;
}
return access;
}
/* Return the first group representative for DECL or NULL if none exists. */
static struct access *
get_first_repr_for_decl (tree base)
{
vec<access_p> *access_vec;
access_vec = get_base_access_vector (base);
if (!access_vec)
return NULL;
return (*access_vec)[0];
}
/* Find an access representative for the variable BASE and given OFFSET and
SIZE. Requires that access trees have already been built. Return NULL if
it cannot be found. */
static struct access *
get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
HOST_WIDE_INT size)
{
struct access *access;
access = get_first_repr_for_decl (base);
while (access && (access->offset + access->size <= offset))
access = access->next_grp;
if (!access)
return NULL;
return find_access_in_subtree (access, offset, size);
}
/* Add LINK to the linked list of assign links of RACC. */
static void
add_link_to_rhs (struct access *racc, struct assign_link *link)
{
gcc_assert (link->racc == racc);
if (!racc->first_link)
{
gcc_assert (!racc->last_link);
racc->first_link = link;
}
else
racc->last_link->next = link;
racc->last_link = link;
link->next = NULL;
}
/* Move all link structures in their linked list in OLD_RACC to the linked list
in NEW_RACC. */
static void
relink_to_new_repr (struct access *new_racc, struct access *old_racc)
{
if (!old_racc->first_link)
{
gcc_assert (!old_racc->last_link);
return;
}
if (new_racc->first_link)
{
gcc_assert (!new_racc->last_link->next);
gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
new_racc->last_link->next = old_racc->first_link;
new_racc->last_link = old_racc->last_link;
}
else
{
gcc_assert (!new_racc->last_link);
new_racc->first_link = old_racc->first_link;
new_racc->last_link = old_racc->last_link;
}
old_racc->first_link = old_racc->last_link = NULL;
}
/* Add ACCESS to the work queue (which is actually a stack). */
static void
add_access_to_work_queue (struct access *access)
{
if (access->first_link && !access->grp_queued)
{
gcc_assert (!access->next_queued);
access->next_queued = work_queue_head;
access->grp_queued = 1;
work_queue_head = access;
}
}
/* Pop an access from the work queue, and return it, assuming there is one. */
static struct access *
pop_access_from_work_queue (void)
{
struct access *access = work_queue_head;
work_queue_head = access->next_queued;
access->next_queued = NULL;
access->grp_queued = 0;
return access;
}
/* Allocate necessary structures. */
static void
sra_initialize (void)
{
candidate_bitmap = BITMAP_ALLOC (NULL);
candidates = new hash_table<uid_decl_hasher>
(vec_safe_length (cfun->local_decls) / 2);
should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
disqualified_constants = BITMAP_ALLOC (NULL);
gcc_obstack_init (&name_obstack);
base_access_vec = new hash_map<tree, auto_vec<access_p> >;
memset (&sra_stats, 0, sizeof (sra_stats));
encountered_apply_args = false;
encountered_recursive_call = false;
encountered_unchangable_recursive_call = false;
}
/* Deallocate all general structures. */
static void
sra_deinitialize (void)
{
BITMAP_FREE (candidate_bitmap);
delete candidates;
candidates = NULL;
BITMAP_FREE (should_scalarize_away_bitmap);
BITMAP_FREE (cannot_scalarize_away_bitmap);
BITMAP_FREE (disqualified_constants);
access_pool.release ();
assign_link_pool.release ();
obstack_free (&name_obstack, NULL);
delete base_access_vec;
}
/* Return true if DECL is a VAR_DECL in the constant pool, false otherwise. */
static bool constant_decl_p (tree decl)
{
return VAR_P (decl) && DECL_IN_CONSTANT_POOL (decl);
}
/* Remove DECL from candidates for SRA and write REASON to the dump file if
there is one. */
static void
disqualify_candidate (tree decl, const char *reason)
{
if (bitmap_clear_bit (candidate_bitmap, DECL_UID (decl)))
candidates->remove_elt_with_hash (decl, DECL_UID (decl));
if (constant_decl_p (decl))
bitmap_set_bit (disqualified_constants, DECL_UID (decl));
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "! Disqualifying ");
print_generic_expr (dump_file, decl);
fprintf (dump_file, " - %s\n", reason);
}
}
/* Return true iff the type contains a field or an element which does not allow
scalarization. */
static bool
type_internals_preclude_sra_p (tree type, const char **msg)
{
tree fld;
tree et;
switch (TREE_CODE (type))
{
case RECORD_TYPE:
case UNION_TYPE:
case QUAL_UNION_TYPE:
for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
if (TREE_CODE (fld) == FIELD_DECL)
{
tree ft = TREE_TYPE (fld);
if (TREE_THIS_VOLATILE (fld))
{
*msg = "volatile structure field";
return true;
}
if (!DECL_FIELD_OFFSET (fld))
{
*msg = "no structure field offset";
return true;
}
if (!DECL_SIZE (fld))
{
*msg = "zero structure field size";
return true;
}
if (!tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
{
*msg = "structure field offset not fixed";
return true;
}
if (!tree_fits_uhwi_p (DECL_SIZE (fld)))
{
*msg = "structure field size not fixed";
return true;
}
if (!tree_fits_shwi_p (bit_position (fld)))
{
*msg = "structure field size too big";
return true;
}
if (AGGREGATE_TYPE_P (ft)
&& int_bit_position (fld) % BITS_PER_UNIT != 0)
{
*msg = "structure field is bit field";
return true;
}
if (AGGREGATE_TYPE_P (ft) && type_internals_preclude_sra_p (ft, msg))
return true;
}
return false;
case ARRAY_TYPE:
et = TREE_TYPE (type);
if (TYPE_VOLATILE (et))
{
*msg = "element type is volatile";
return true;
}
if (AGGREGATE_TYPE_P (et) && type_internals_preclude_sra_p (et, msg))
return true;
return false;
default:
return false;
}
}
/* If T is an SSA_NAME, return NULL if it is not a default def or return its
base variable if it is. Return T if it is not an SSA_NAME. */
static tree
get_ssa_base_param (tree t)
{
if (TREE_CODE (t) == SSA_NAME)
{
if (SSA_NAME_IS_DEFAULT_DEF (t))
return SSA_NAME_VAR (t);
else
return NULL_TREE;
}
return t;
}
/* Mark a dereference of BASE of distance DIST in a basic block tht STMT
belongs to, unless the BB has already been marked as a potentially
final. */
static void
mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple *stmt)
{
basic_block bb = gimple_bb (stmt);
int idx, parm_index = 0;
tree parm;
if (bitmap_bit_p (final_bbs, bb->index))
return;
for (parm = DECL_ARGUMENTS (current_function_decl);
parm && parm != base;
parm = DECL_CHAIN (parm))
parm_index++;
gcc_assert (parm_index < func_param_count);
idx = bb->index * func_param_count + parm_index;
if (bb_dereferences[idx] < dist)
bb_dereferences[idx] = dist;
}
/* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
the three fields. Also add it to the vector of accesses corresponding to
the base. Finally, return the new access. */
static struct access *
create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
{
struct access *access = access_pool.allocate ();
memset (access, 0, sizeof (struct access));
access->base = base;
access->offset = offset;
access->size = size;
base_access_vec->get_or_insert (base).safe_push (access);
return access;
}
static bool maybe_add_sra_candidate (tree);
/* Create and insert access for EXPR. Return created access, or NULL if it is
not possible. Also scan for uses of constant pool as we go along and add
to candidates. */
static struct access *
create_access (tree expr, gimple *stmt, bool write)
{
struct access *access;
HOST_WIDE_INT offset, size, max_size;
tree base = expr;
bool reverse, ptr, unscalarizable_region = false;
base = get_ref_base_and_extent (expr, &offset, &size, &max_size, &reverse);
if (sra_mode == SRA_MODE_EARLY_IPA
&& TREE_CODE (base) == MEM_REF)
{
base = get_ssa_base_param (TREE_OPERAND (base, 0));
if (!base)
return NULL;
ptr = true;
}
else
ptr = false;
/* For constant-pool entries, check we can substitute the constant value. */
if (constant_decl_p (base)
&& (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA))
{
gcc_assert (!bitmap_bit_p (disqualified_constants, DECL_UID (base)));
if (expr != base
&& !is_gimple_reg_type (TREE_TYPE (expr))
&& dump_file && (dump_flags & TDF_DETAILS))
{
/* This occurs in Ada with accesses to ARRAY_RANGE_REFs,
and elements of multidimensional arrays (which are
multi-element arrays in their own right). */
fprintf (dump_file, "Allowing non-reg-type load of part"
" of constant-pool entry: ");
print_generic_expr (dump_file, expr);
}
maybe_add_sra_candidate (base);
}
if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
return NULL;
if (sra_mode == SRA_MODE_EARLY_IPA)
{
if (size < 0 || size != max_size)
{
disqualify_candidate (base, "Encountered a variable sized access.");
return NULL;
}
if (TREE_CODE (expr) == COMPONENT_REF
&& DECL_BIT_FIELD (TREE_OPERAND (expr, 1)))
{
disqualify_candidate (base, "Encountered a bit-field access.");
return NULL;
}
gcc_checking_assert ((offset % BITS_PER_UNIT) == 0);
if (ptr)
mark_parm_dereference (base, offset + size, stmt);
}
else
{
if (size != max_size)
{
size = max_size;
unscalarizable_region = true;
}
if (size < 0)
{
disqualify_candidate (base, "Encountered an unconstrained access.");
return NULL;
}
}
access = create_access_1 (base, offset, size);
access->expr = expr;
access->type = TREE_TYPE (expr);
access->write = write;
access->grp_unscalarizable_region = unscalarizable_region;
access->stmt = stmt;
access->reverse = reverse;
if (TREE_CODE (expr) == COMPONENT_REF
&& DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1)))
access->non_addressable = 1;
return access;
}
/* Return true iff TYPE is scalarizable - i.e. a RECORD_TYPE or fixed-length
ARRAY_TYPE with fields that are either of gimple register types (excluding
bit-fields) or (recursively) scalarizable types. CONST_DECL must be true if
we are considering a decl from constant pool. If it is false, char arrays
will be refused. */
static bool
scalarizable_type_p (tree type, bool const_decl)
{
gcc_assert (!is_gimple_reg_type (type));
if (type_contains_placeholder_p (type))
return false;
switch (TREE_CODE (type))
{
case RECORD_TYPE:
for (tree fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
if (TREE_CODE (fld) == FIELD_DECL)
{
tree ft = TREE_TYPE (fld);
if (DECL_BIT_FIELD (fld))
return false;
if (!is_gimple_reg_type (ft)
&& !scalarizable_type_p (ft, const_decl))
return false;
}
return true;
case ARRAY_TYPE:
{
HOST_WIDE_INT min_elem_size;
if (const_decl)
min_elem_size = 0;
else
min_elem_size = BITS_PER_UNIT;
if (TYPE_DOMAIN (type) == NULL_TREE
|| !tree_fits_shwi_p (TYPE_SIZE (type))
|| !tree_fits_shwi_p (TYPE_SIZE (TREE_TYPE (type)))
|| (tree_to_shwi (TYPE_SIZE (TREE_TYPE (type))) <= min_elem_size)
|| !tree_fits_shwi_p (TYPE_MIN_VALUE (TYPE_DOMAIN (type))))
return false;
if (tree_to_shwi (TYPE_SIZE (type)) == 0
&& TYPE_MAX_VALUE (TYPE_DOMAIN (type)) == NULL_TREE)
/* Zero-element array, should not prevent scalarization. */
;
else if ((tree_to_shwi (TYPE_SIZE (type)) <= 0)
|| !tree_fits_shwi_p (TYPE_MAX_VALUE (TYPE_DOMAIN (type))))
/* Variable-length array, do not allow scalarization. */
return false;
tree elem = TREE_TYPE (type);
if (!is_gimple_reg_type (elem)
&& !scalarizable_type_p (elem, const_decl))
return false;
return true;
}
default:
return false;
}
}
static void scalarize_elem (tree, HOST_WIDE_INT, HOST_WIDE_INT, bool, tree, tree);
/* Create total_scalarization accesses for all scalar fields of a member
of type DECL_TYPE conforming to scalarizable_type_p. BASE
must be the top-most VAR_DECL representing the variable; within that,
OFFSET locates the member and REF must be the memory reference expression for
the member. */
static void
completely_scalarize (tree base, tree decl_type, HOST_WIDE_INT offset, tree ref)
{
switch (TREE_CODE (decl_type))
{
case RECORD_TYPE:
for (tree fld = TYPE_FIELDS (decl_type); fld; fld = DECL_CHAIN (fld))
if (TREE_CODE (fld) == FIELD_DECL)
{
HOST_WIDE_INT pos = offset + int_bit_position (fld);
tree ft = TREE_TYPE (fld);
tree nref = build3 (COMPONENT_REF, ft, ref, fld, NULL_TREE);
scalarize_elem (base, pos, tree_to_uhwi (DECL_SIZE (fld)),
TYPE_REVERSE_STORAGE_ORDER (decl_type),
nref, ft);
}
break;
case ARRAY_TYPE:
{
tree elemtype = TREE_TYPE (decl_type);
tree elem_size = TYPE_SIZE (elemtype);
gcc_assert (elem_size && tree_fits_shwi_p (elem_size));
HOST_WIDE_INT el_size = tree_to_shwi (elem_size);
gcc_assert (el_size > 0);
tree minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (decl_type));
gcc_assert (TREE_CODE (minidx) == INTEGER_CST);
tree maxidx = TYPE_MAX_VALUE (TYPE_DOMAIN (decl_type));
/* Skip (some) zero-length arrays; others have MAXIDX == MINIDX - 1. */
if (maxidx)
{
gcc_assert (TREE_CODE (maxidx) == INTEGER_CST);
tree domain = TYPE_DOMAIN (decl_type);
/* MINIDX and MAXIDX are inclusive, and must be interpreted in
DOMAIN (e.g. signed int, whereas min/max may be size_int). */
offset_int idx = wi::to_offset (minidx);
offset_int max = wi::to_offset (maxidx);
if (!TYPE_UNSIGNED (domain))
{
idx = wi::sext (idx, TYPE_PRECISION (domain));
max = wi::sext (max, TYPE_PRECISION (domain));
}
for (int el_off = offset; idx <= max; ++idx)
{
tree nref = build4 (ARRAY_REF, elemtype,
ref,
wide_int_to_tree (domain, idx),
NULL_TREE, NULL_TREE);
scalarize_elem (base, el_off, el_size,
TYPE_REVERSE_STORAGE_ORDER (decl_type),
nref, elemtype);
el_off += el_size;
}
}
}
break;
default:
gcc_unreachable ();
}
}
/* Create total_scalarization accesses for a member of type TYPE, which must
satisfy either is_gimple_reg_type or scalarizable_type_p. BASE must be the
top-most VAR_DECL representing the variable; within that, POS and SIZE locate
the member, REVERSE gives its torage order. and REF must be the reference
expression for it. */
static void
scalarize_elem (tree base, HOST_WIDE_INT pos, HOST_WIDE_INT size, bool reverse,
tree ref, tree type)
{
if (is_gimple_reg_type (type))
{
struct access *access = create_access_1 (base, pos, size);
access->expr = ref;
access->type = type;
access->grp_total_scalarization = 1;
access->reverse = reverse;
/* Accesses for intraprocedural SRA can have their stmt NULL. */
}
else
completely_scalarize (base, type, pos, ref);
}
/* Create a total_scalarization access for VAR as a whole. VAR must be of a
RECORD_TYPE or ARRAY_TYPE conforming to scalarizable_type_p. */
static void
create_total_scalarization_access (tree var)
{
HOST_WIDE_INT size = tree_to_uhwi (DECL_SIZE (var));
struct access *access;
access = create_access_1 (var, 0, size);
access->expr = var;
access->type = TREE_TYPE (var);
access->grp_total_scalarization = 1;
}
/* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it. */
static inline bool
contains_view_convert_expr_p (const_tree ref)
{
while (handled_component_p (ref))
{
if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
return true;
ref = TREE_OPERAND (ref, 0);
}
return false;
}
/* Search the given tree for a declaration by skipping handled components and
exclude it from the candidates. */
static void
disqualify_base_of_expr (tree t, const char *reason)
{
t = get_base_address (t);
if (sra_mode == SRA_MODE_EARLY_IPA
&& TREE_CODE (t) == MEM_REF)
t = get_ssa_base_param (TREE_OPERAND (t, 0));
if (t && DECL_P (t))
disqualify_candidate (t, reason);
}
/* Scan expression EXPR and create access structures for all accesses to
candidates for scalarization. Return the created access or NULL if none is
created. */
static struct access *
build_access_from_expr_1 (tree expr, gimple *stmt, bool write)
{
struct access *ret = NULL;
bool partial_ref;
if (TREE_CODE (expr) == BIT_FIELD_REF
|| TREE_CODE (expr) == IMAGPART_EXPR
|| TREE_CODE (expr) == REALPART_EXPR)
{
expr = TREE_OPERAND (expr, 0);
partial_ref = true;
}
else
partial_ref = false;
if (storage_order_barrier_p (expr))
{
disqualify_base_of_expr (expr, "storage order barrier.");
return NULL;
}
/* We need to dive through V_C_Es in order to get the size of its parameter
and not the result type. Ada produces such statements. We are also
capable of handling the topmost V_C_E but not any of those buried in other
handled components. */
if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
expr = TREE_OPERAND (expr, 0);
if (contains_view_convert_expr_p (expr))
{
disqualify_base_of_expr (expr, "V_C_E under a different handled "
"component.");
return NULL;
}
if (TREE_THIS_VOLATILE (expr))
{
disqualify_base_of_expr (expr, "part of a volatile reference.");
return NULL;
}
switch (TREE_CODE (expr))
{
case MEM_REF:
if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR
&& sra_mode != SRA_MODE_EARLY_IPA)
return NULL;
/* fall through */
case VAR_DECL:
case PARM_DECL:
case RESULT_DECL:
case COMPONENT_REF:
case ARRAY_REF:
case ARRAY_RANGE_REF:
ret = create_access (expr, stmt, write);
break;
default:
break;
}
if (write && partial_ref && ret)
ret->grp_partial_lhs = 1;
return ret;
}
/* Scan expression EXPR and create access structures for all accesses to
candidates for scalarization. Return true if any access has been inserted.
STMT must be the statement from which the expression is taken, WRITE must be
true if the expression is a store and false otherwise. */
static bool
build_access_from_expr (tree expr, gimple *stmt, bool write)
{
struct access *access;
access = build_access_from_expr_1 (expr, stmt, write);
if (access)
{
/* This means the aggregate is accesses as a whole in a way other than an
assign statement and thus cannot be removed even if we had a scalar
replacement for everything. */
if (cannot_scalarize_away_bitmap)
bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
return true;
}
return false;
}
/* Return the single non-EH successor edge of BB or NULL if there is none or
more than one. */
static edge
single_non_eh_succ (basic_block bb)
{
edge e, res = NULL;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, bb->succs)
if (!(e->flags & EDGE_EH))
{
if (res)
return NULL;
res = e;
}
return res;
}
/* Disqualify LHS and RHS for scalarization if STMT has to terminate its BB and
there is no alternative spot where to put statements SRA might need to
generate after it. The spot we are looking for is an edge leading to a
single non-EH successor, if it exists and is indeed single. RHS may be
NULL, in that case ignore it. */
static bool
disqualify_if_bad_bb_terminating_stmt (gimple *stmt, tree lhs, tree rhs)
{
if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
&& stmt_ends_bb_p (stmt))
{
if (single_non_eh_succ (gimple_bb (stmt)))
return false;
disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
if (rhs)
disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
return true;
}
return false;
}
/* Return true if the nature of BASE is such that it contains data even if
there is no write to it in the function. */
static bool
comes_initialized_p (tree base)
{
return TREE_CODE (base) == PARM_DECL || constant_decl_p (base);
}
/* Scan expressions occurring in STMT, create access structures for all accesses
to candidates for scalarization and remove those candidates which occur in
statements or expressions that prevent them from being split apart. Return
true if any access has been inserted. */
static bool
build_accesses_from_assign (gimple *stmt)
{
tree lhs, rhs;
struct access *lacc, *racc;
if (!gimple_assign_single_p (stmt)
/* Scope clobbers don't influence scalarization. */
|| gimple_clobber_p (stmt))
return false;
lhs = gimple_assign_lhs (stmt);
rhs = gimple_assign_rhs1 (stmt);
if (disqualify_if_bad_bb_terminating_stmt (stmt, lhs, rhs))
return false;
racc = build_access_from_expr_1 (rhs, stmt, false);
lacc = build_access_from_expr_1 (lhs, stmt, true);
if (lacc)
{
lacc->grp_assignment_write = 1;
if (storage_order_barrier_p (rhs))
lacc->grp_unscalarizable_region = 1;
}
if (racc)
{
racc->grp_assignment_read = 1;
if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt)
&& !is_gimple_reg_type (racc->type))
bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base));
if (storage_order_barrier_p (lhs))
racc->grp_unscalarizable_region = 1;
}
if (lacc && racc
&& (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
&& !lacc->grp_unscalarizable_region
&& !racc->grp_unscalarizable_region
&& AGGREGATE_TYPE_P (TREE_TYPE (lhs))
&& lacc->size == racc->size
&& useless_type_conversion_p (lacc->type, racc->type))
{
struct assign_link *link;
link = assign_link_pool.allocate ();
memset (link, 0, sizeof (struct assign_link));
link->lacc = lacc;
link->racc = racc;
add_link_to_rhs (racc, link);
add_access_to_work_queue (racc);
/* Let's delay marking the areas as written until propagation of accesses
across link, unless the nature of rhs tells us that its data comes
from elsewhere. */
if (!comes_initialized_p (racc->base))
lacc->write = false;
}
return lacc || racc;
}
/* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
static bool
asm_visit_addr (gimple *, tree op, tree, void *)
{
op = get_base_address (op);
if (op
&& DECL_P (op))
disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
return false;
}
/* Return true iff callsite CALL has at least as many actual arguments as there
are formal parameters of the function currently processed by IPA-SRA and
that their types match. */
static inline bool
callsite_arguments_match_p (gimple *call)
{
if (gimple_call_num_args (call) < (unsigned) func_param_count)
return false;
tree parm;
int i;
for (parm = DECL_ARGUMENTS (current_function_decl), i = 0;
parm;
parm = DECL_CHAIN (parm), i++)
{
tree arg = gimple_call_arg (call, i);
if (!useless_type_conversion_p (TREE_TYPE (parm), TREE_TYPE (arg)))
return false;
}
return true;
}
/* Scan function and look for interesting expressions and create access
structures for them. Return true iff any access is created. */
static bool
scan_function (void)
{
basic_block bb;
bool ret = false;
FOR_EACH_BB_FN (bb, cfun)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
tree t;
unsigned i;
if (final_bbs && stmt_can_throw_external (stmt))
bitmap_set_bit (final_bbs, bb->index);
switch (gimple_code (stmt))
{
case GIMPLE_RETURN:
t = gimple_return_retval (as_a <greturn *> (stmt));
if (t != NULL_TREE)
ret |= build_access_from_expr (t, stmt, false);
if (final_bbs)
bitmap_set_bit (final_bbs, bb->index);
break;
case GIMPLE_ASSIGN:
ret |= build_accesses_from_assign (stmt);
break;
case GIMPLE_CALL:
for (i = 0; i < gimple_call_num_args (stmt); i++)
ret |= build_access_from_expr (gimple_call_arg (stmt, i),
stmt, false);
if (sra_mode == SRA_MODE_EARLY_IPA)
{
tree dest = gimple_call_fndecl (stmt);
int flags = gimple_call_flags (stmt);
if (dest)
{
if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
&& DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
encountered_apply_args = true;
if (recursive_call_p (current_function_decl, dest))
{
encountered_recursive_call = true;
if (!callsite_arguments_match_p (stmt))
encountered_unchangable_recursive_call = true;
}
}
if (final_bbs
&& (flags & (ECF_CONST | ECF_PURE)) == 0)
bitmap_set_bit (final_bbs, bb->index);
}
t = gimple_call_lhs (stmt);
if (t && !disqualify_if_bad_bb_terminating_stmt (stmt, t, NULL))
ret |= build_access_from_expr (t, stmt, true);
break;
case GIMPLE_ASM:
{
gasm *asm_stmt = as_a <gasm *> (stmt);
walk_stmt_load_store_addr_ops (asm_stmt, NULL, NULL, NULL,
asm_visit_addr);
if (final_bbs)
bitmap_set_bit (final_bbs, bb->index);
for (i = 0; i < gimple_asm_ninputs (asm_stmt); i++)
{
t = TREE_VALUE (gimple_asm_input_op (asm_stmt, i));
ret |= build_access_from_expr (t, asm_stmt, false);
}
for (i = 0; i < gimple_asm_noutputs (asm_stmt); i++)
{
t = TREE_VALUE (gimple_asm_output_op (asm_stmt, i));
ret |= build_access_from_expr (t, asm_stmt, true);
}
}
break;
default:
break;
}
}
}
return ret;
}
/* Helper of QSORT function. There are pointers to accesses in the array. An
access is considered smaller than another if it has smaller offset or if the
offsets are the same but is size is bigger. */
static int
compare_access_positions (const void *a, const void *b)
{
const access_p *fp1 = (const access_p *) a;
const access_p *fp2 = (const access_p *) b;
const access_p f1 = *fp1;
const access_p f2 = *fp2;
if (f1->offset != f2->offset)
return f1->offset < f2->offset ? -1 : 1;
if (f1->size == f2->size)
{
if (f1->type == f2->type)
return 0;
/* Put any non-aggregate type before any aggregate type. */
else if (!is_gimple_reg_type (f1->type)
&& is_gimple_reg_type (f2->type))
return 1;
else if (is_gimple_reg_type (f1->type)
&& !is_gimple_reg_type (f2->type))
return -1;
/* Put any complex or vector type before any other scalar type. */
else if (TREE_CODE (f1->type) != COMPLEX_TYPE
&& TREE_CODE (f1->type) != VECTOR_TYPE
&& (TREE_CODE (f2->type) == COMPLEX_TYPE
|| TREE_CODE (f2->type) == VECTOR_TYPE))
return 1;
else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
|| TREE_CODE (f1->type) == VECTOR_TYPE)
&& TREE_CODE (f2->type) != COMPLEX_TYPE
&& TREE_CODE (f2->type) != VECTOR_TYPE)
return -1;
/* Put any integral type before any non-integral type. When splicing, we
make sure that those with insufficient precision and occupying the
same space are not scalarized. */
else if (INTEGRAL_TYPE_P (f1->type)
&& !INTEGRAL_TYPE_P (f2->type))
return -1;
else if (!INTEGRAL_TYPE_P (f1->type)
&& INTEGRAL_TYPE_P (f2->type))
return 1;
/* Put the integral type with the bigger precision first. */
else if (INTEGRAL_TYPE_P (f1->type)
&& INTEGRAL_TYPE_P (f2->type)
&& (TYPE_PRECISION (f2->type) != TYPE_PRECISION (f1->type)))
return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
/* Stabilize the sort. */
return TYPE_UID (f1->type) - TYPE_UID (f2->type);
}
/* We want the bigger accesses first, thus the opposite operator in the next
line: */
return f1->size > f2->size ? -1 : 1;
}
/* Append a name of the declaration to the name obstack. A helper function for
make_fancy_name. */
static void
make_fancy_decl_name (tree decl)
{
char buffer[32];
tree name = DECL_NAME (decl);
if (name)
obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
IDENTIFIER_LENGTH (name));
else
{
sprintf (buffer, "D%u", DECL_UID (decl));
obstack_grow (&name_obstack, buffer, strlen (buffer));
}
}
/* Helper for make_fancy_name. */
static void
make_fancy_name_1 (tree expr)
{
char buffer[32];
tree index;
if (DECL_P (expr))
{
make_fancy_decl_name (expr);
return;
}
switch (TREE_CODE (expr))
{
case COMPONENT_REF:
make_fancy_name_1 (TREE_OPERAND (expr, 0));
obstack_1grow (&name_obstack, '$');
make_fancy_decl_name (TREE_OPERAND (expr, 1));
break;
case ARRAY_REF:
make_fancy_name_1 (TREE_OPERAND (expr, 0));
obstack_1grow (&name_obstack, '$');
/* Arrays with only one element may not have a constant as their
index. */
index = TREE_OPERAND (expr, 1);
if (TREE_CODE (index) != INTEGER_CST)
break;
sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
obstack_grow (&name_obstack, buffer, strlen (buffer));
break;
case ADDR_EXPR:
make_fancy_name_1 (TREE_OPERAND (expr, 0));
break;
case MEM_REF:
make_fancy_name_1 (TREE_OPERAND (expr, 0));
if (!integer_zerop (TREE_OPERAND (expr, 1)))
{
obstack_1grow (&name_obstack, '$');
sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
obstack_grow (&name_obstack, buffer, strlen (buffer));
}
break;
case BIT_FIELD_REF:
case REALPART_EXPR:
case IMAGPART_EXPR:
gcc_unreachable (); /* we treat these as scalars. */
break;
default:
break;
}
}
/* Create a human readable name for replacement variable of ACCESS. */
static char *
make_fancy_name (tree expr)
{
make_fancy_name_1 (expr);
obstack_1grow (&name_obstack, '\0');
return XOBFINISH (&name_obstack, char *);
}
/* Construct a MEM_REF that would reference a part of aggregate BASE of type
EXP_TYPE at the given OFFSET and with storage order REVERSE. If BASE is
something for which get_addr_base_and_unit_offset returns NULL, gsi must
be non-NULL and is used to insert new statements either before or below
the current one as specified by INSERT_AFTER. This function is not capable
of handling bitfields. */
tree
build_ref_for_offset (location_t loc, tree base, HOST_WIDE_INT offset,
bool reverse, tree exp_type, gimple_stmt_iterator *gsi,
bool insert_after)
{
tree prev_base = base;
tree off;
tree mem_ref;
HOST_WIDE_INT base_offset;
unsigned HOST_WIDE_INT misalign;
unsigned int align;
/* Preserve address-space information. */
addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (base));
if (as != TYPE_ADDR_SPACE (exp_type))
exp_type = build_qualified_type (exp_type,
TYPE_QUALS (exp_type)
| ENCODE_QUAL_ADDR_SPACE (as));
gcc_checking_assert (offset % BITS_PER_UNIT == 0);
get_object_alignment_1 (base, &align, &misalign);
base = get_addr_base_and_unit_offset (base, &base_offset);
/* get_addr_base_and_unit_offset returns NULL for references with a variable
offset such as array[var_index]. */
if (!base)
{
gassign *stmt;
tree tmp, addr;
gcc_checking_assert (gsi);
tmp = make_ssa_name (build_pointer_type (TREE_TYPE (prev_base)));
addr = build_fold_addr_expr (unshare_expr (prev_base));
STRIP_USELESS_TYPE_CONVERSION (addr);
stmt = gimple_build_assign (tmp, addr);
gimple_set_location (stmt, loc);
if (insert_after)
gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
else
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
off = build_int_cst (reference_alias_ptr_type (prev_base),
offset / BITS_PER_UNIT);
base = tmp;
}
else if (TREE_CODE (base) == MEM_REF)
{
off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
base_offset + offset / BITS_PER_UNIT);
off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
base = unshare_expr (TREE_OPERAND (base, 0));
}
else
{
off = build_int_cst (reference_alias_ptr_type (prev_base),
base_offset + offset / BITS_PER_UNIT);
base = build_fold_addr_expr (unshare_expr (base));
}
misalign = (misalign + offset) & (align - 1);
if (misalign != 0)
align = least_bit_hwi (misalign);
if (align != TYPE_ALIGN (exp_type))
exp_type = build_aligned_type (exp_type, align);
mem_ref = fold_build2_loc (loc, MEM_REF, exp_type, base, off);
REF_REVERSE_STORAGE_ORDER (mem_ref) = reverse;
if (TREE_THIS_VOLATILE (prev_base))
TREE_THIS_VOLATILE (mem_ref) = 1;
if (TREE_SIDE_EFFECTS (prev_base))
TREE_SIDE_EFFECTS (mem_ref) = 1;
return mem_ref;
}
/* Construct a memory reference to a part of an aggregate BASE at the given
OFFSET and of the same type as MODEL. In case this is a reference to a
bit-field, the function will replicate the last component_ref of model's
expr to access it. GSI and INSERT_AFTER have the same meaning as in
build_ref_for_offset. */
static tree
build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
struct access *model, gimple_stmt_iterator *gsi,
bool insert_after)
{
if (TREE_CODE (model->expr) == COMPONENT_REF
&& DECL_BIT_FIELD (TREE_OPERAND (model->expr, 1)))
{
/* This access represents a bit-field. */
tree t, exp_type, fld = TREE_OPERAND (model->expr, 1);
offset -= int_bit_position (fld);
exp_type = TREE_TYPE (TREE_OPERAND (model->expr, 0));
t = build_ref_for_offset (loc, base, offset, model->reverse, exp_type,
gsi, insert_after);
/* The flag will be set on the record type. */
REF_REVERSE_STORAGE_ORDER (t) = 0;
return fold_build3_loc (loc, COMPONENT_REF, TREE_TYPE (fld), t, fld,
NULL_TREE);
}
else
return
build_ref_for_offset (loc, base, offset, model->reverse, model->type,
gsi, insert_after);
}
/* Attempt to build a memory reference that we could but into a gimple
debug_bind statement. Similar to build_ref_for_model but punts if it has to
create statements and return s NULL instead. This function also ignores
alignment issues and so its results should never end up in non-debug
statements. */
static tree
build_debug_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
struct access *model)
{
HOST_WIDE_INT base_offset;
tree off;
if (TREE_CODE (model->expr) == COMPONENT_REF
&& DECL_BIT_FIELD (TREE_OPERAND (model->expr, 1)))
return NULL_TREE;
base = get_addr_base_and_unit_offset (base, &base_offset);
if (!base)
return NULL_TREE;
if (TREE_CODE (base) == MEM_REF)
{
off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
base_offset + offset / BITS_PER_UNIT);
off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
base = unshare_expr (TREE_OPERAND (base, 0));
}
else
{
off = build_int_cst (reference_alias_ptr_type (base),
base_offset + offset / BITS_PER_UNIT);
base = build_fold_addr_expr (unshare_expr (base));
}
return fold_build2_loc (loc, MEM_REF, model->type, base, off);
}
/* Construct a memory reference consisting of component_refs and array_refs to
a part of an aggregate *RES (which is of type TYPE). The requested part
should have type EXP_TYPE at be the given OFFSET. This function might not
succeed, it returns true when it does and only then *RES points to something
meaningful. This function should be used only to build expressions that we
might need to present to user (e.g. in warnings). In all other situations,
build_ref_for_model or build_ref_for_offset should be used instead. */
static bool
build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset,
tree exp_type)
{
while (1)
{
tree fld;
tree tr_size, index, minidx;
HOST_WIDE_INT el_size;
if (offset == 0 && exp_type
&& types_compatible_p (exp_type, type))
return true;
switch (TREE_CODE (type))
{
case UNION_TYPE:
case QUAL_UNION_TYPE:
case RECORD_TYPE:
for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
{
HOST_WIDE_INT pos, size;
tree tr_pos, expr, *expr_ptr;
if (TREE_CODE (fld) != FIELD_DECL)
continue;
tr_pos = bit_position (fld);
if (!tr_pos || !tree_fits_uhwi_p (tr_pos))
continue;
pos = tree_to_uhwi (tr_pos);
gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
tr_size = DECL_SIZE (fld);
if (!tr_size || !tree_fits_uhwi_p (tr_size))
continue;
size = tree_to_uhwi (tr_size);
if (size == 0)
{
if (pos != offset)
continue;
}
else if (pos > offset || (pos + size) <= offset)
continue;
expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
NULL_TREE);
expr_ptr = &expr;
if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld),
offset - pos, exp_type))
{
*res = expr;
return true;
}
}
return false;
case ARRAY_TYPE:
tr_size = TYPE_SIZE (TREE_TYPE (type));
if (!tr_size || !tree_fits_uhwi_p (tr_size))
return false;
el_size = tree_to_uhwi (tr_size);
minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
return false;
index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
if (!integer_zerop (minidx))
index = int_const_binop (PLUS_EXPR, index, minidx);
*res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
NULL_TREE, NULL_TREE);
offset = offset % el_size;
type = TREE_TYPE (type);
break;
default:
if (offset != 0)
return false;
if (exp_type)
return false;
else
return true;
}
}
}
/* Return true iff TYPE is stdarg va_list type. */
static inline bool
is_va_list_type (tree type)
{
return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
}
/* Print message to dump file why a variable was rejected. */
static void
reject (tree var, const char *msg)
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Rejected (%d): %s: ", DECL_UID (var), msg);
print_generic_expr (dump_file, var);
fprintf (dump_file, "\n");
}
}
/* Return true if VAR is a candidate for SRA. */
static bool
maybe_add_sra_candidate (tree var)
{
tree type = TREE_TYPE (var);
const char *msg;
tree_node **slot;
if (!AGGREGATE_TYPE_P (type))
{
reject (var, "not aggregate");
return false;
}
/* Allow constant-pool entries (that "need to live in memory")
unless we are doing IPA SRA. */
if (needs_to_live_in_memory (var)
&& (sra_mode == SRA_MODE_EARLY_IPA || !constant_decl_p (var)))
{
reject (var, "needs to live in memory");
return false;
}
if (TREE_THIS_VOLATILE (var))
{
reject (var, "is volatile");
return false;
}
if (!COMPLETE_TYPE_P (type))
{
reject (var, "has incomplete type");
return false;
}
if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
{
reject (var, "type size not fixed");
return false;
}
if (tree_to_uhwi (TYPE_SIZE (type)) == 0)
{
reject (var, "type size is zero");
return false;
}
if (type_internals_preclude_sra_p (type, &msg))
{
reject (var, msg);
return false;
}
if (/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
we also want to schedule it rather late. Thus we ignore it in
the early pass. */
(sra_mode == SRA_MODE_EARLY_INTRA
&& is_va_list_type (type)))
{
reject (var, "is va_list");
return false;
}
bitmap_set_bit (candidate_bitmap, DECL_UID (var));
slot = candidates->find_slot_with_hash (var, DECL_UID (var), INSERT);
*slot = var;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
print_generic_expr (dump_file, var);
fprintf (dump_file, "\n");
}
return true;
}
/* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
those with type which is suitable for scalarization. */
static bool
find_var_candidates (void)
{
tree var, parm;
unsigned int i;
bool ret = false;
for (parm = DECL_ARGUMENTS (current_function_decl);
parm;
parm = DECL_CHAIN (parm))
ret |= maybe_add_sra_candidate (parm);
FOR_EACH_LOCAL_DECL (cfun, i, var)
{
if (!VAR_P (var))
continue;
ret |= maybe_add_sra_candidate (var);
}
return ret;
}
/* Sort all accesses for the given variable, check for partial overlaps and
return NULL if there are any. If there are none, pick a representative for
each combination of offset and size and create a linked list out of them.
Return the pointer to the first representative and make sure it is the first
one in the vector of accesses. */
static struct access *
sort_and_splice_var_accesses (tree var)
{
int i, j, access_count;
struct access *res, **prev_acc_ptr = &res;
vec<access_p> *access_vec;
bool first = true;
HOST_WIDE_INT low = -1, high = 0;
access_vec = get_base_access_vector (var);
if (!access_vec)
return NULL;
access_count = access_vec->length ();
/* Sort by <OFFSET, SIZE>. */
access_vec->qsort (compare_access_positions);
i = 0;
while (i < access_count)
{
struct access *access = (*access_vec)[i];
bool grp_write = access->write;
bool grp_read = !access->write;
bool grp_scalar_write = access->write
&& is_gimple_reg_type (access->type);
bool grp_scalar_read = !access->write
&& is_gimple_reg_type (access->type);
bool grp_assignment_read = access->grp_assignment_read;
bool grp_assignment_write = access->grp_assignment_write;
bool multiple_scalar_reads = false;
bool total_scalarization = access->grp_total_scalarization;
bool grp_partial_lhs = access->grp_partial_lhs;
bool first_scalar = is_gimple_reg_type (access->type);
bool unscalarizable_region = access->grp_unscalarizable_region;
bool bf_non_full_precision
= (INTEGRAL_TYPE_P (access->type)
&& TYPE_PRECISION (access->type) != access->size
&& TREE_CODE (access->expr) == COMPONENT_REF
&& DECL_BIT_FIELD (TREE_OPERAND (access->expr, 1)));
if (first || access->offset >= high)
{
first = false;
low = access->offset;
high = access->offset + access->size;
}
else if (access->offset > low && access->offset + access->size > high)
return NULL;
else
gcc_assert (access->offset >= low
&& access->offset + access->size <= high);
j = i + 1;
while (j < access_count)
{
struct access *ac2 = (*access_vec)[j];
if (ac2->offset != access->offset || ac2->size != access->size)
break;
if (ac2->write)
{
grp_write = true;
grp_scalar_write = (grp_scalar_write
|| is_gimple_reg_type (ac2->type));
}
else
{
grp_read = true;
if (is_gimple_reg_type (ac2->type))
{
if (grp_scalar_read)
multiple_scalar_reads = true;
else
grp_scalar_read = true;
}
}
grp_assignment_read |= ac2->grp_assignment_read;
grp_assignment_write |= ac2->grp_assignment_write;
grp_partial_lhs |= ac2->grp_partial_lhs;
unscalarizable_region |= ac2->grp_unscalarizable_region;
total_scalarization |= ac2->grp_total_scalarization;
relink_to_new_repr (access, ac2);
/* If there are both aggregate-type and scalar-type accesses with
this combination of size and offset, the comparison function
should have put the scalars first. */
gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
/* It also prefers integral types to non-integral. However, when the
precision of the selected type does not span the entire area and
should also be used for a non-integer (i.e. float), we must not
let that happen. Normally analyze_access_subtree expands the type
to cover the entire area but for bit-fields it doesn't. */
if (bf_non_full_precision && !INTEGRAL_TYPE_P (ac2->type))
{
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Cannot scalarize the following access "
"because insufficient precision integer type was "
"selected.\n ");
dump_access (dump_file, access, false);
}
unscalarizable_region = true;
}
ac2->group_representative = access;
j++;
}
i = j;
access->group_representative = access;
access->grp_write = grp_write;
access->grp_read = grp_read;
access->grp_scalar_read = grp_scalar_read;
access->grp_scalar_write = grp_scalar_write;
access->grp_assignment_read = grp_assignment_read;
access->grp_assignment_write = grp_assignment_write;
access->grp_hint = total_scalarization
|| (multiple_scalar_reads && !constant_decl_p (var));
access->grp_total_scalarization = total_scalarization;
access->grp_partial_lhs = grp_partial_lhs;
access->grp_unscalarizable_region = unscalarizable_region;
*prev_acc_ptr = access;
prev_acc_ptr = &access->next_grp;
}
gcc_assert (res == (*access_vec)[0]);
return res;
}
/* Create a variable for the given ACCESS which determines the type, name and a
few other properties. Return the variable declaration and store it also to
ACCESS->replacement. */
static tree
create_access_replacement (struct access *access)
{
tree repl;
if (access->grp_to_be_debug_replaced)
{
repl = create_tmp_var_raw (access->type);
DECL_CONTEXT (repl) = current_function_decl;
}
else
/* Drop any special alignment on the type if it's not on the main
variant. This avoids issues with weirdo ABIs like AAPCS. */
repl = create_tmp_var (build_qualified_type
(TYPE_MAIN_VARIANT (access->type),
TYPE_QUALS (access->type)), "SR");
if (TREE_CODE (access->type) == COMPLEX_TYPE
|| TREE_CODE (access->type) == VECTOR_TYPE)
{
if (!access->grp_partial_lhs)
DECL_GIMPLE_REG_P (repl) = 1;
}
else if (access->grp_partial_lhs
&& is_gimple_reg_type (access->type))
TREE_ADDRESSABLE (repl) = 1;
DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
DECL_ARTIFICIAL (repl) = 1;
DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
if (DECL_NAME (access->base)
&& !DECL_IGNORED_P (access->base)
&& !DECL_ARTIFICIAL (access->base))
{
char *pretty_name = make_fancy_name (access->expr);
tree debug_expr = unshare_expr_without_location (access->expr), d;
bool fail = false;
DECL_NAME (repl) = get_identifier (pretty_name);
DECL_NAMELESS (repl) = 1;
obstack_free (&name_obstack, pretty_name);
/* Get rid of any SSA_NAMEs embedded in debug_expr,
as DECL_DEBUG_EXPR isn't considered when looking for still
used SSA_NAMEs and thus they could be freed. All debug info
generation cares is whether something is constant or variable
and that get_ref_base_and_extent works properly on the
expression. It cannot handle accesses at a non-constant offset
though, so just give up in those cases. */
for (d = debug_expr;
!fail && (handled_component_p (d) || TREE_CODE (d) == MEM_REF);
d = TREE_OPERAND (d, 0))
switch (TREE_CODE (d))
{
case ARRAY_REF:
case ARRAY_RANGE_REF:
if (TREE_OPERAND (d, 1)
&& TREE_CODE (TREE_OPERAND (d, 1)) != INTEGER_CST)
fail = true;
if (TREE_OPERAND (d, 3)
&& TREE_CODE (TREE_OPERAND (d, 3)) != INTEGER_CST)
fail = true;
/* FALLTHRU */
case COMPONENT_REF:
if (TREE_OPERAND (d, 2)
&& TREE_CODE (TREE_OPERAND (d, 2)) != INTEGER_CST)
fail = true;
break;
case MEM_REF:
if (TREE_CODE (TREE_OPERAND (d, 0)) != ADDR_EXPR)
fail = true;
else
d = TREE_OPERAND (d, 0);
break;
default:
break;
}
if (!fail)
{
SET_DECL_DEBUG_EXPR (repl, debug_expr);
DECL_HAS_DEBUG_EXPR_P (repl) = 1;
}
if (access->grp_no_warning)
TREE_NO_WARNING (repl) = 1;
else
TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
}
else
TREE_NO_WARNING (repl) = 1;
if (dump_file)
{
if (access->grp_to_be_debug_replaced)
{
fprintf (dump_file, "Created a debug-only replacement for ");
print_generic_expr (dump_file, access->base);
fprintf (dump_file, " offset: %u, size: %u\n",
(unsigned) access->offset, (unsigned) access->size);
}
else
{
fprintf (dump_file, "Created a replacement for ");
print_generic_expr (dump_file, access->base);
fprintf (dump_file, " offset: %u, size: %u: ",
(unsigned) access->offset, (unsigned) access->size);
print_generic_expr (dump_file, repl);
fprintf (dump_file, "\n");
}
}
sra_stats.replacements++;
return repl;
}
/* Return ACCESS scalar replacement, which must exist. */
static inline tree
get_access_replacement (struct access *access)
{
gcc_checking_assert (access->replacement_decl);
return access->replacement_decl;
}
/* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
linked list along the way. Stop when *ACCESS is NULL or the access pointed
to it is not "within" the root. Return false iff some accesses partially
overlap. */
static bool
build_access_subtree (struct access **access)
{
struct access *root = *access, *last_child = NULL;
HOST_WIDE_INT limit = root->offset + root->size;
*access = (*access)->next_grp;
while (*access && (*access)->offset + (*access)->size <= limit)
{
if (!last_child)
root->first_child = *access;
else
last_child->next_sibling = *access;
last_child = *access;
(*access)->parent = root;
(*access)->grp_write |= root->grp_write;
if (!build_access_subtree (access))
return false;
}
if (*access && (*access)->offset < limit)
return false;
return true;
}
/* Build a tree of access representatives, ACCESS is the pointer to the first
one, others are linked in a list by the next_grp field. Return false iff
some accesses partially overlap. */
static bool
build_access_trees (struct access *access)
{
while (access)
{
struct access *root = access;
if (!build_access_subtree (&access))
return false;
root->next_grp = access;
}
return true;
}
/* Return true if expr contains some ARRAY_REFs into a variable bounded
array. */
static bool
expr_with_var_bounded_array_refs_p (tree expr)
{
while (handled_component_p (expr))
{
if (TREE_CODE (expr) == ARRAY_REF
&& !tree_fits_shwi_p (array_ref_low_bound (expr)))
return true;
expr = TREE_OPERAND (expr, 0);
}
return false;
}
/* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
sorts of access flags appropriately along the way, notably always set
grp_read and grp_assign_read according to MARK_READ and grp_write when
MARK_WRITE is true.
Creating a replacement for a scalar access is considered beneficial if its
grp_hint is set (this means we are either attempting total scalarization or
there is more than one direct read access) or according to the following
table:
Access written to through a scalar type (once or more times)
|
| Written to in an assignment statement
| |
| | Access read as scalar _once_
| | |
| | | Read in an assignment statement
| | | |
| | | | Scalarize Comment
-----------------------------------------------------------------------------
0 0 0 0 No access for the scalar
0 0 0 1 No access for the scalar
0 0 1 0 No Single read - won't help
0 0 1 1 No The same case
0 1 0 0 No access for the scalar
0 1 0 1 No access for the scalar
0 1 1 0 Yes s = *g; return s.i;
0 1 1 1 Yes The same case as above
1 0 0 0 No Won't help
1 0 0 1 Yes s.i = 1; *g = s;
1 0 1 0 Yes s.i = 5; g = s.i;
1 0 1 1 Yes The same case as above
1 1 0 0 No Won't help.
1 1 0 1 Yes s.i = 1; *g = s;
1 1 1 0 Yes s = *g; return s.i;
1 1 1 1 Yes Any of the above yeses */
static bool
analyze_access_subtree (struct access *root, struct access *parent,
bool allow_replacements)
{
struct access *child;
HOST_WIDE_INT limit = root->offset + root->size;
HOST_WIDE_INT covered_to = root->offset;
bool scalar = is_gimple_reg_type (root->type);
bool hole = false, sth_created = false;
if (parent)
{
if (parent->grp_read)
root->grp_read = 1;
if (parent->grp_assignment_read)
root->grp_assignment_read = 1;
if (parent->grp_write)
root->grp_write = 1;
if (parent->grp_assignment_write)
root->grp_assignment_write = 1;
if (parent->grp_total_scalarization)
root->grp_total_scalarization = 1;
}
if (root->grp_unscalarizable_region)
allow_replacements = false;
if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
allow_replacements = false;
for (child = root->first_child; child; child = child->next_sibling)
{
hole |= covered_to < child->offset;
sth_created |= analyze_access_subtree (child, root,
allow_replacements && !scalar);
root->grp_unscalarized_data |= child->grp_unscalarized_data;
root->grp_total_scalarization &= child->grp_total_scalarization;
if (child->grp_covered)
covered_to += child->size;
else
hole = true;
}
if (allow_replacements && scalar && !root->first_child
&& (root->grp_hint
|| ((root->grp_scalar_read || root->grp_assignment_read)
&& (root->grp_scalar_write || root->grp_assignment_write))))
{
/* Always create access replacements that cover the whole access.
For integral types this means the precision has to match.
Avoid assumptions based on the integral type kind, too. */
if (INTEGRAL_TYPE_P (root->type)
&& (TREE_CODE (root->type) != INTEGER_TYPE
|| TYPE_PRECISION (root->type) != root->size)
/* But leave bitfield accesses alone. */
&& (TREE_CODE (root->expr) != COMPONENT_REF
|| !DECL_BIT_FIELD (TREE_OPERAND (root->expr, 1))))
{
tree rt = root->type;
gcc_assert ((root->offset % BITS_PER_UNIT) == 0
&& (root->size % BITS_PER_UNIT) == 0);
root->type = build_nonstandard_integer_type (root->size,
TYPE_UNSIGNED (rt));
root->expr = build_ref_for_offset (UNKNOWN_LOCATION, root->base,
root->offset, root->reverse,
root->type, NULL, false);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Changing the type of a replacement for ");
print_generic_expr (dump_file, root->base);
fprintf (dump_file, " offset: %u, size: %u ",
(unsigned) root->offset, (unsigned) root->size);
fprintf (dump_file, " to an integer.\n");
}
}
root->grp_to_be_replaced = 1;
root->replacement_decl = create_access_replacement (root);
sth_created = true;
hole = false;
}
else
{
if (allow_replacements
&& scalar && !root->first_child
&& (root->grp_scalar_write || root->grp_assignment_write)
&& !bitmap_bit_p (cannot_scalarize_away_bitmap,
DECL_UID (root->base)))
{
gcc_checking_assert (!root->grp_scalar_read
&& !root->grp_assignment_read);
sth_created = true;
if (MAY_HAVE_DEBUG_STMTS)
{
root->grp_to_be_debug_replaced = 1;
root->replacement_decl = create_access_replacement (root);
}
}
if (covered_to < limit)
hole = true;
if (scalar || !allow_replacements)
root->grp_total_scalarization = 0;
}
if (!hole || root->grp_total_scalarization)
root->grp_covered = 1;
else if (root->grp_write || comes_initialized_p (root->base))
root->grp_unscalarized_data = 1; /* not covered and written to */
return sth_created;
}
/* Analyze all access trees linked by next_grp by the means of
analyze_access_subtree. */
static bool
analyze_access_trees (struct access *access)
{
bool ret = false;
while (access)
{
if (analyze_access_subtree (access, NULL, true))
ret = true;
access = access->next_grp;
}
return ret;
}
/* Return true iff a potential new child of LACC at offset OFFSET and with size
SIZE would conflict with an already existing one. If exactly such a child
already exists in LACC, store a pointer to it in EXACT_MATCH. */
static bool
child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
HOST_WIDE_INT size, struct access **exact_match)
{
struct access *child;
for (child = lacc->first_child; child; child = child->next_sibling)
{
if (child->offset == norm_offset && child->size == size)
{
*exact_match = child;
return true;
}
if (child->offset < norm_offset + size
&& child->offset + child->size > norm_offset)
return true;
}
return false;
}
/* Create a new child access of PARENT, with all properties just like MODEL
except for its offset and with its grp_write false and grp_read true.
Return the new access or NULL if it cannot be created. Note that this
access is created long after all splicing and sorting, it's not located in
any access vector and is automatically a representative of its group. Set
the gpr_write flag of the new accesss if SET_GRP_WRITE is true. */
static struct access *
create_artificial_child_access (struct access *parent, struct access *model,
HOST_WIDE_INT new_offset,
bool set_grp_write)
{
struct access **child;
tree expr = parent->base;
gcc_assert (!model->grp_unscalarizable_region);
struct access *access = access_pool.allocate ();
memset (access, 0, sizeof (struct access));
if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
model->type))
{
access->grp_no_warning = true;
expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base,
new_offset, model, NULL, false);
}
access->base = parent->base;
access->expr = expr;
access->offset = new_offset;
access->size = model->size;
access->type = model->type;
access->grp_write = set_grp_write;
access->grp_read = false;
access->reverse = model->reverse;
child = &parent->first_child;
while (*child && (*child)->offset < new_offset)
child = &(*child)->next_sibling;
access->next_sibling = *child;
*child = access;
return access;
}
/* Beginning with ACCESS, traverse its whole access subtree and mark all
sub-trees as written to. If any of them has not been marked so previously
and has assignment links leading from it, re-enqueue it. */
static void
subtree_mark_written_and_enqueue (struct access *access)
{
if (access->grp_write)
return;
access->grp_write = true;
add_access_to_work_queue (access);
struct access *child;
for (child = access->first_child; child; child = child->next_sibling)
subtree_mark_written_and_enqueue (child);
}
/* Propagate subaccesses and grp_write flags of RACC across an assignment link
to LACC. Enqueue sub-accesses as necessary so that the write flag is
propagated transitively. Return true if anything changed. Additionally, if
RACC is a scalar access but LACC is not, change the type of the latter, if
possible. */
static bool
propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
{
struct access *rchild;
HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
bool ret = false;
/* IF the LHS is still not marked as being written to, we only need to do so
if the RHS at this level actually was. */
if (!lacc->grp_write)
{
gcc_checking_assert (!comes_initialized_p (racc->base));
if (racc->grp_write)
{
subtree_mark_written_and_enqueue (lacc);
ret = true;
}
}
if (is_gimple_reg_type (lacc->type)
|| lacc->grp_unscalarizable_region
|| racc->grp_unscalarizable_region)
{
if (!lacc->grp_write)
{
ret = true;
subtree_mark_written_and_enqueue (lacc);
}
return ret;
}
if (is_gimple_reg_type (racc->type))
{
if (!lacc->grp_write)
{
ret = true;
subtree_mark_written_and_enqueue (lacc);
}
if (!lacc->first_child && !racc->first_child)
{
tree t = lacc->base;
lacc->type = racc->type;
if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t),
lacc->offset, racc->type))
lacc->expr = t;
else
{
lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base),
lacc->base, lacc->offset,
racc, NULL, false);
lacc->grp_no_warning = true;
}
}
return ret;
}
for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
{
struct access *new_acc = NULL;
HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
&new_acc))
{
if (new_acc)
{
if (!new_acc->grp_write && rchild->grp_write)
{
gcc_assert (!lacc->grp_write);
subtree_mark_written_and_enqueue (new_acc);
ret = true;
}
rchild->grp_hint = 1;
new_acc->grp_hint |= new_acc->grp_read;
if (rchild->first_child)
ret |= propagate_subaccesses_across_link (new_acc, rchild);
}
else
{
if (!lacc->grp_write)
{
ret = true;
subtree_mark_written_and_enqueue (lacc);
}
}
continue;
}
if (rchild->grp_unscalarizable_region)
{
if (rchild->grp_write && !lacc->grp_write)
{
ret = true;
subtree_mark_written_and_enqueue (lacc);
}
continue;
}
rchild->grp_hint = 1;
new_acc = create_artificial_child_access (lacc, rchild, norm_offset,
lacc->grp_write
|| rchild->grp_write);
gcc_checking_assert (new_acc);
if (racc->first_child)
propagate_subaccesses_across_link (new_acc, rchild);
add_access_to_work_queue (lacc);
ret = true;
}
return ret;
}
/* Propagate all subaccesses across assignment links. */
static void
propagate_all_subaccesses (void)
{
while (work_queue_head)
{
struct access *racc = pop_access_from_work_queue ();
struct assign_link *link;
if (racc->group_representative)
racc= racc->group_representative;
gcc_assert (racc->first_link);
for (link = racc->first_link; link; link = link->next)
{
struct access *lacc = link->lacc;
if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
continue;
lacc = lacc->group_representative;
bool reque_parents = false;
if (!bitmap_bit_p (candidate_bitmap, DECL_UID (racc->base)))
{
if (!lacc->grp_write)
{
subtree_mark_written_and_enqueue (lacc);
reque_parents = true;
}
}
else if (propagate_subaccesses_across_link (lacc, racc))
reque_parents = true;
if (reque_parents)
do
{
add_access_to_work_queue (lacc);
lacc = lacc->parent;
}
while (lacc);
}
}
}
/* Go through all accesses collected throughout the (intraprocedural) analysis
stage, exclude overlapping ones, identify representatives and build trees
out of them, making decisions about scalarization on the way. Return true
iff there are any to-be-scalarized variables after this stage. */
static bool
analyze_all_variable_accesses (void)
{
int res = 0;
bitmap tmp = BITMAP_ALLOC (NULL);
bitmap_iterator bi;
unsigned i;
bool optimize_speed_p = !optimize_function_for_size_p (cfun);
enum compiler_param param = optimize_speed_p
? PARAM_SRA_MAX_SCALARIZATION_SIZE_SPEED
: PARAM_SRA_MAX_SCALARIZATION_SIZE_SIZE;
/* If the user didn't set PARAM_SRA_MAX_SCALARIZATION_SIZE_<...>,
fall back to a target default. */
unsigned HOST_WIDE_INT max_scalarization_size
= global_options_set.x_param_values[param]
? PARAM_VALUE (param)
: get_move_ratio (optimize_speed_p) * UNITS_PER_WORD;
max_scalarization_size *= BITS_PER_UNIT;
EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
if (bitmap_bit_p (should_scalarize_away_bitmap, i)
&& !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
{
tree var = candidate (i);
if (VAR_P (var) && scalarizable_type_p (TREE_TYPE (var),
constant_decl_p (var)))
{
if (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (var)))
<= max_scalarization_size)
{
create_total_scalarization_access (var);
completely_scalarize (var, TREE_TYPE (var), 0, var);
statistics_counter_event (cfun,
"Totally-scalarized aggregates", 1);
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Will attempt to totally scalarize ");
print_generic_expr (dump_file, var);
fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
}
}
else if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Too big to totally scalarize: ");
print_generic_expr (dump_file, var);
fprintf (dump_file, " (UID: %u)\n", DECL_UID (var));
}
}
}
bitmap_copy (tmp, candidate_bitmap);
EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
{
tree var = candidate (i);
struct access *access;
access = sort_and_splice_var_accesses (var);
if (!access || !build_access_trees (access))
disqualify_candidate (var,
"No or inhibitingly overlapping accesses.");
}
propagate_all_subaccesses ();
bitmap_copy (tmp, candidate_bitmap);
EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
{
tree var = candidate (i);
struct access *access = get_first_repr_for_decl (var);
if (analyze_access_trees (access))
{
res++;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "\nAccess trees for ");
print_generic_expr (dump_file, var);
fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
dump_access_tree (dump_file, access);
fprintf (dump_file, "\n");
}
}
else
disqualify_candidate (var, "No scalar replacements to be created.");
}
BITMAP_FREE (tmp);
if (res)
{
statistics_counter_event (cfun, "Scalarized aggregates", res);
return true;
}
else
return false;
}
/* Generate statements copying scalar replacements of accesses within a subtree
into or out of AGG. ACCESS, all its children, siblings and their children
are to be processed. AGG is an aggregate type expression (can be a
declaration but does not have to be, it can for example also be a mem_ref or
a series of handled components). TOP_OFFSET is the offset of the processed
subtree which has to be subtracted from offsets of individual accesses to
get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
replacements in the interval <start_offset, start_offset + chunk_size>,
otherwise copy all. GSI is a statement iterator used to place the new
statements. WRITE should be true when the statements should write from AGG
to the replacement and false if vice versa. if INSERT_AFTER is true, new
statements will be added after the current statement in GSI, they will be
added before the statement otherwise. */
static void
generate_subtree_copies (struct access *access, tree agg,
HOST_WIDE_INT top_offset,
HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
gimple_stmt_iterator *gsi, bool write,
bool insert_after, location_t loc)
{
/* Never write anything into constant pool decls. See PR70602. */
if (!write && constant_decl_p (agg))
return;
do
{
if (chunk_size && access->offset >= start_offset + chunk_size)
return;
if (access->grp_to_be_replaced
&& (chunk_size == 0
|| access->offset + access->size > start_offset))
{
tree expr, repl = get_access_replacement (access);
gassign *stmt;
expr = build_ref_for_model (loc, agg, access->offset - top_offset,
access, gsi, insert_after);
if (write)
{
if (access->grp_partial_lhs)
expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
!insert_after,
insert_after ? GSI_NEW_STMT
: GSI_SAME_STMT);
stmt = gimple_build_assign (repl, expr);
}
else
{
TREE_NO_WARNING (repl) = 1;
if (access->grp_partial_lhs)
repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
!insert_after,
insert_after ? GSI_NEW_STMT
: GSI_SAME_STMT);
stmt = gimple_build_assign (expr, repl);
}
gimple_set_location (stmt, loc);
if (insert_after)
gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
else
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
update_stmt (stmt);
sra_stats.subtree_copies++;
}
else if (write
&& access->grp_to_be_debug_replaced
&& (chunk_size == 0
|| access->offset + access->size > start_offset))
{
gdebug *ds;
tree drhs = build_debug_ref_for_model (loc, agg,
access->offset - top_offset,
access);
ds = gimple_build_debug_bind (get_access_replacement (access),
drhs, gsi_stmt (*gsi));
if (insert_after)
gsi_insert_after (gsi, ds, GSI_NEW_STMT);
else
gsi_insert_before (gsi, ds, GSI_SAME_STMT);
}
if (access->first_child)
generate_subtree_copies (access->first_child, agg, top_offset,
start_offset, chunk_size, gsi,
write, insert_after, loc);
access = access->next_sibling;
}
while (access);
}
/* Assign zero to all scalar replacements in an access subtree. ACCESS is the
root of the subtree to be processed. GSI is the statement iterator used
for inserting statements which are added after the current statement if
INSERT_AFTER is true or before it otherwise. */
static void
init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
bool insert_after, location_t loc)
{
struct access *child;
if (access->grp_to_be_replaced)
{
gassign *stmt;
stmt = gimple_build_assign (get_access_replacement (access),
build_zero_cst (access->type));
if (insert_after)
gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
else
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
update_stmt (stmt);
gimple_set_location (stmt, loc);
}
else if (access->grp_to_be_debug_replaced)
{
gdebug *ds
= gimple_build_debug_bind (get_access_replacement (access),
build_zero_cst (access->type),
gsi_stmt (*gsi));
if (insert_after)
gsi_insert_after (gsi, ds, GSI_NEW_STMT);
else
gsi_insert_before (gsi, ds, GSI_SAME_STMT);
}
for (child = access->first_child; child; child = child->next_sibling)
init_subtree_with_zero (child, gsi, insert_after, loc);
}
/* Clobber all scalar replacements in an access subtree. ACCESS is the
root of the subtree to be processed. GSI is the statement iterator used
for inserting statements which are added after the current statement if
INSERT_AFTER is true or before it otherwise. */
static void
clobber_subtree (struct access *access, gimple_stmt_iterator *gsi,
bool insert_after, location_t loc)
{
struct access *child;
if (access->grp_to_be_replaced)
{
tree rep = get_access_replacement (access);
tree clobber = build_constructor (access->type, NULL);
TREE_THIS_VOLATILE (clobber) = 1;
gimple *stmt = gimple_build_assign (rep, clobber);
if (insert_after)
gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
else
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
update_stmt (stmt);
gimple_set_location (stmt, loc);
}
for (child = access->first_child; child; child = child->next_sibling)
clobber_subtree (child, gsi, insert_after, loc);
}
/* Search for an access representative for the given expression EXPR and
return it or NULL if it cannot be found. */
static struct access *
get_access_for_expr (tree expr)
{
HOST_WIDE_INT offset, size, max_size;
tree base;
bool reverse;
/* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
a different size than the size of its argument and we need the latter
one. */
if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
expr = TREE_OPERAND (expr, 0);
base = get_ref_base_and_extent (expr, &offset, &size, &max_size, &reverse);
if (max_size == -1 || !DECL_P (base))
return NULL;
if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
return NULL;
return get_var_base_offset_size_access (base, offset, max_size);
}
/* Replace the expression EXPR with a scalar replacement if there is one and
generate other statements to do type conversion or subtree copying if
necessary. GSI is used to place newly created statements, WRITE is true if
the expression is being written to (it is on a LHS of a statement or output
in an assembly statement). */
static bool
sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
{
location_t loc;
struct access *access;
tree type, bfr, orig_expr;
if (TREE_CODE (*expr) == BIT_FIELD_REF)
{
bfr = *expr;
expr = &TREE_OPERAND (*expr, 0);
}
else
bfr = NULL_TREE;
if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
expr = &TREE_OPERAND (*expr, 0);
access = get_access_for_expr (*expr);
if (!access)
return false;
type = TREE_TYPE (*expr);
orig_expr = *expr;
loc = gimple_location (gsi_stmt (*gsi));
gimple_stmt_iterator alt_gsi = gsi_none ();
if (write && stmt_ends_bb_p (gsi_stmt (*gsi)))
{
alt_gsi = gsi_start_edge (single_non_eh_succ (gsi_bb (*gsi)));
gsi = &alt_gsi;
}
if (access->grp_to_be_replaced)
{
tree repl = get_access_replacement (access);
/* If we replace a non-register typed access simply use the original
access expression to extract the scalar component afterwards.
This happens if scalarizing a function return value or parameter
like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
gcc.c-torture/compile/20011217-1.c.
We also want to use this when accessing a complex or vector which can
be accessed as a different type too, potentially creating a need for
type conversion (see PR42196) and when scalarized unions are involved
in assembler statements (see PR42398). */
if (!useless_type_conversion_p (type, access->type))
{
tree ref;
ref = build_ref_for_model (loc, orig_expr, 0, access, gsi, false);
if (write)
{
gassign *stmt;
if (access->grp_partial_lhs)
ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
false, GSI_NEW_STMT);
stmt = gimple_build_assign (repl, ref);
gimple_set_location (stmt, loc);
gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
}
else
{
gassign *stmt;
if (access->grp_partial_lhs)
repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
true, GSI_SAME_STMT);
stmt = gimple_build_assign (ref, repl);
gimple_set_location (stmt, loc);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
}
}
else
*expr = repl;
sra_stats.exprs++;
}
else if (write && access->grp_to_be_debug_replaced)
{
gdebug *ds = gimple_build_debug_bind (get_access_replacement (access),
NULL_TREE,
gsi_stmt (*gsi));
gsi_insert_after (gsi, ds, GSI_NEW_STMT);
}
if (access->first_child)
{
HOST_WIDE_INT start_offset, chunk_size;
if (bfr
&& tree_fits_uhwi_p (TREE_OPERAND (bfr, 1))
&& tree_fits_uhwi_p (TREE_OPERAND (bfr, 2)))
{
chunk_size = tree_to_uhwi (TREE_OPERAND (bfr, 1));
start_offset = access->offset
+ tree_to_uhwi (TREE_OPERAND (bfr, 2));
}
else
start_offset = chunk_size = 0;
generate_subtree_copies (access->first_child, orig_expr, access->offset,
start_offset, chunk_size, gsi, write, write,
loc);
}
return true;
}
/* Where scalar replacements of the RHS have been written to when a replacement
of a LHS of an assigments cannot be direclty loaded from a replacement of
the RHS. */
enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
SRA_UDH_RIGHT, /* Data flushed to the RHS. */
SRA_UDH_LEFT }; /* Data flushed to the LHS. */
struct subreplacement_assignment_data
{
/* Offset of the access representing the lhs of the assignment. */
HOST_WIDE_INT left_offset;
/* LHS and RHS of the original assignment. */
tree assignment_lhs, assignment_rhs;