| /* Translation of CLAST (CLooG AST) to Gimple. |
| Copyright (C) 2009-2013 Free Software Foundation, Inc. |
| Contributed by Sebastian Pop <sebastian.pop@amd.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| |
| #ifdef HAVE_cloog |
| #include <isl/set.h> |
| #include <isl/map.h> |
| #include <isl/union_map.h> |
| #include <isl/list.h> |
| #include <isl/constraint.h> |
| #include <isl/ilp.h> |
| #include <isl/aff.h> |
| #include <cloog/cloog.h> |
| #include <cloog/isl/domain.h> |
| #ifdef HAVE_ISL_SCHED_CONSTRAINTS_COMPUTE_SCHEDULE |
| #include <isl/deprecated/int.h> |
| #include <isl/lp.h> |
| #include <isl/deprecated/ilp_int.h> |
| #endif |
| #endif |
| |
| #include "system.h" |
| #include "coretypes.h" |
| #include "diagnostic-core.h" |
| #include "tree-flow.h" |
| #include "tree-pass.h" |
| #include "cfgloop.h" |
| #include "tree-chrec.h" |
| #include "tree-data-ref.h" |
| #include "tree-scalar-evolution.h" |
| #include "sese.h" |
| |
| #ifdef HAVE_cloog |
| #include "cloog/cloog.h" |
| #include "graphite-poly.h" |
| #include "graphite-clast-to-gimple.h" |
| |
| typedef const struct clast_expr *clast_name_p; |
| |
| #ifndef CLOOG_LANGUAGE_C |
| #define CLOOG_LANGUAGE_C LANGUAGE_C |
| #endif |
| |
| |
| /* Converts a GMP constant VAL to a tree and returns it. */ |
| |
| static tree |
| gmp_cst_to_tree (tree type, mpz_t val) |
| { |
| tree t = type ? type : integer_type_node; |
| mpz_t tmp; |
| double_int di; |
| |
| mpz_init (tmp); |
| mpz_set (tmp, val); |
| di = mpz_get_double_int (t, tmp, true); |
| mpz_clear (tmp); |
| |
| return double_int_to_tree (t, di); |
| } |
| |
| /* Sets RES to the min of V1 and V2. */ |
| |
| static void |
| value_min (mpz_t res, mpz_t v1, mpz_t v2) |
| { |
| if (mpz_cmp (v1, v2) < 0) |
| mpz_set (res, v1); |
| else |
| mpz_set (res, v2); |
| } |
| |
| /* Sets RES to the max of V1 and V2. */ |
| |
| static void |
| value_max (mpz_t res, mpz_t v1, mpz_t v2) |
| { |
| if (mpz_cmp (v1, v2) < 0) |
| mpz_set (res, v2); |
| else |
| mpz_set (res, v1); |
| } |
| |
| |
| /* This flag is set when an error occurred during the translation of |
| CLAST to Gimple. */ |
| static bool gloog_error; |
| |
| /* Verifies properties that GRAPHITE should maintain during translation. */ |
| |
| static inline void |
| graphite_verify (void) |
| { |
| #ifdef ENABLE_CHECKING |
| verify_loop_structure (); |
| verify_loop_closed_ssa (true); |
| #endif |
| } |
| |
| /* Stores the INDEX in a vector and the loop nesting LEVEL for a given |
| clast NAME. BOUND_ONE and BOUND_TWO represent the exact lower and |
| upper bounds that can be inferred from the polyhedral representation. */ |
| |
| typedef struct clast_name_index { |
| int index; |
| int level; |
| mpz_t bound_one, bound_two; |
| const char *name; |
| /* If free_name is set, the content of name was allocated by us and needs |
| to be freed. */ |
| char *free_name; |
| } *clast_name_index_p; |
| |
| /* Returns a pointer to a new element of type clast_name_index_p built |
| from NAME, INDEX, LEVEL, BOUND_ONE, and BOUND_TWO. */ |
| |
| static inline clast_name_index_p |
| new_clast_name_index (const char *name, int index, int level, |
| mpz_t bound_one, mpz_t bound_two) |
| { |
| clast_name_index_p res = XNEW (struct clast_name_index); |
| char *new_name = XNEWVEC (char, strlen (name) + 1); |
| strcpy (new_name, name); |
| |
| res->name = new_name; |
| res->free_name = new_name; |
| res->level = level; |
| res->index = index; |
| mpz_init (res->bound_one); |
| mpz_init (res->bound_two); |
| mpz_set (res->bound_one, bound_one); |
| mpz_set (res->bound_two, bound_two); |
| return res; |
| } |
| |
| /* Free the memory taken by a clast_name_index struct. */ |
| |
| static void |
| free_clast_name_index (void *ptr) |
| { |
| struct clast_name_index *c = (struct clast_name_index *) ptr; |
| if (c->free_name) |
| free (c->free_name); |
| mpz_clear (c->bound_one); |
| mpz_clear (c->bound_two); |
| free (ptr); |
| } |
| |
| /* For a given clast NAME, returns -1 if NAME is not in the |
| INDEX_TABLE, otherwise returns the loop level for the induction |
| variable NAME, or if it is a parameter, the parameter number in the |
| vector of parameters. */ |
| |
| static inline int |
| clast_name_to_level (clast_name_p name, htab_t index_table) |
| { |
| struct clast_name_index tmp; |
| PTR *slot; |
| |
| gcc_assert (name->type == clast_expr_name); |
| tmp.name = ((const struct clast_name *) name)->name; |
| tmp.free_name = NULL; |
| |
| slot = htab_find_slot (index_table, &tmp, NO_INSERT); |
| |
| if (slot && *slot) |
| return ((struct clast_name_index *) *slot)->level; |
| |
| return -1; |
| } |
| |
| /* For a given clast NAME, returns -1 if it does not correspond to any |
| parameter, or otherwise, returns the index in the PARAMS or |
| SCATTERING_DIMENSIONS vector. */ |
| |
| static inline int |
| clast_name_to_index (struct clast_name *name, htab_t index_table) |
| { |
| struct clast_name_index tmp; |
| PTR *slot; |
| |
| tmp.name = ((const struct clast_name *) name)->name; |
| tmp.free_name = NULL; |
| |
| slot = htab_find_slot (index_table, &tmp, NO_INSERT); |
| |
| if (slot && *slot) |
| return ((struct clast_name_index *) *slot)->index; |
| |
| return -1; |
| } |
| |
| /* For a given clast NAME, initializes the lower and upper bounds BOUND_ONE |
| and BOUND_TWO stored in the INDEX_TABLE. Returns true when NAME has been |
| found in the INDEX_TABLE, false otherwise. */ |
| |
| static inline bool |
| clast_name_to_lb_ub (struct clast_name *name, htab_t index_table, |
| mpz_t bound_one, mpz_t bound_two) |
| { |
| struct clast_name_index tmp; |
| PTR *slot; |
| |
| tmp.name = name->name; |
| tmp.free_name = NULL; |
| |
| slot = htab_find_slot (index_table, &tmp, NO_INSERT); |
| |
| if (slot && *slot) |
| { |
| mpz_set (bound_one, ((struct clast_name_index *) *slot)->bound_one); |
| mpz_set (bound_two, ((struct clast_name_index *) *slot)->bound_two); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Records in INDEX_TABLE the INDEX and LEVEL for NAME. */ |
| |
| static inline void |
| save_clast_name_index (htab_t index_table, const char *name, |
| int index, int level, mpz_t bound_one, mpz_t bound_two) |
| { |
| struct clast_name_index tmp; |
| PTR *slot; |
| |
| tmp.name = name; |
| tmp.free_name = NULL; |
| slot = htab_find_slot (index_table, &tmp, INSERT); |
| |
| if (slot) |
| { |
| free (*slot); |
| |
| *slot = new_clast_name_index (name, index, level, bound_one, bound_two); |
| } |
| } |
| |
| /* Computes a hash function for database element ELT. */ |
| |
| static inline hashval_t |
| clast_name_index_elt_info (const void *elt) |
| { |
| const struct clast_name_index *e = ((const struct clast_name_index *) elt); |
| hashval_t hash = 0; |
| |
| int length = strlen (e->name); |
| int i; |
| |
| for (i = 0; i < length; ++i) |
| hash = hash | (e->name[i] << (i % 4)); |
| |
| return hash; |
| } |
| |
| /* Compares database elements E1 and E2. */ |
| |
| static inline int |
| eq_clast_name_indexes (const void *e1, const void *e2) |
| { |
| const struct clast_name_index *elt1 = (const struct clast_name_index *) e1; |
| const struct clast_name_index *elt2 = (const struct clast_name_index *) e2; |
| |
| return strcmp (elt1->name, elt2->name) == 0; |
| } |
| |
| |
| |
| /* NEWIVS_INDEX binds CLooG's scattering name to the index of the tree |
| induction variable in NEWIVS. |
| |
| PARAMS_INDEX binds CLooG's parameter name to the index of the tree |
| parameter in PARAMS. */ |
| |
| typedef struct ivs_params { |
| vec<tree> params, *newivs; |
| htab_t newivs_index, params_index; |
| sese region; |
| } *ivs_params_p; |
| |
| /* Returns the tree variable from the name NAME that was given in |
| Cloog representation. */ |
| |
| static tree |
| clast_name_to_gcc (struct clast_name *name, ivs_params_p ip) |
| { |
| int index; |
| |
| if (ip->params.exists () && ip->params_index) |
| { |
| index = clast_name_to_index (name, ip->params_index); |
| |
| if (index >= 0) |
| return ip->params[index]; |
| } |
| |
| gcc_assert (ip->newivs && ip->newivs_index); |
| index = clast_name_to_index (name, ip->newivs_index); |
| gcc_assert (index >= 0); |
| |
| return (*ip->newivs)[index]; |
| } |
| |
| /* Returns the maximal precision type for expressions TYPE1 and TYPE2. */ |
| |
| static tree |
| max_precision_type (tree type1, tree type2) |
| { |
| enum machine_mode mode; |
| int p1, p2, precision; |
| tree type; |
| |
| if (POINTER_TYPE_P (type1)) |
| return type1; |
| |
| if (POINTER_TYPE_P (type2)) |
| return type2; |
| |
| if (TYPE_UNSIGNED (type1) |
| && TYPE_UNSIGNED (type2)) |
| return TYPE_PRECISION (type1) > TYPE_PRECISION (type2) ? type1 : type2; |
| |
| p1 = TYPE_PRECISION (type1); |
| p2 = TYPE_PRECISION (type2); |
| |
| if (p1 > p2) |
| precision = TYPE_UNSIGNED (type1) ? p1 * 2 : p1; |
| else |
| precision = TYPE_UNSIGNED (type2) ? p2 * 2 : p2; |
| |
| if (precision > BITS_PER_WORD) |
| { |
| gloog_error = true; |
| return integer_type_node; |
| } |
| |
| mode = smallest_mode_for_size (precision, MODE_INT); |
| precision = GET_MODE_PRECISION (mode); |
| type = build_nonstandard_integer_type (precision, false); |
| |
| if (!type) |
| { |
| gloog_error = true; |
| return integer_type_node; |
| } |
| |
| return type; |
| } |
| |
| static tree |
| clast_to_gcc_expression (tree, struct clast_expr *, ivs_params_p); |
| |
| /* Converts a Cloog reduction expression R with reduction operation OP |
| to a GCC expression tree of type TYPE. */ |
| |
| static tree |
| clast_to_gcc_expression_red (tree type, enum tree_code op, |
| struct clast_reduction *r, ivs_params_p ip) |
| { |
| int i; |
| tree res = clast_to_gcc_expression (type, r->elts[0], ip); |
| tree operand_type = (op == POINTER_PLUS_EXPR) ? sizetype : type; |
| |
| for (i = 1; i < r->n; i++) |
| { |
| tree t = clast_to_gcc_expression (operand_type, r->elts[i], ip); |
| res = fold_build2 (op, type, res, t); |
| } |
| |
| return res; |
| } |
| |
| /* Converts a Cloog AST expression E back to a GCC expression tree of |
| type TYPE. */ |
| |
| static tree |
| clast_to_gcc_expression (tree type, struct clast_expr *e, ivs_params_p ip) |
| { |
| switch (e->type) |
| { |
| case clast_expr_name: |
| { |
| return clast_name_to_gcc ((struct clast_name *) e, ip); |
| } |
| case clast_expr_term: |
| { |
| struct clast_term *t = (struct clast_term *) e; |
| |
| if (t->var) |
| { |
| if (mpz_cmp_si (t->val, 1) == 0) |
| { |
| tree name = clast_to_gcc_expression (type, t->var, ip); |
| |
| if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type)) |
| name = convert_to_ptrofftype (name); |
| |
| name = fold_convert (type, name); |
| return name; |
| } |
| |
| else if (mpz_cmp_si (t->val, -1) == 0) |
| { |
| tree name = clast_to_gcc_expression (type, t->var, ip); |
| |
| if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type)) |
| name = convert_to_ptrofftype (name); |
| |
| name = fold_convert (type, name); |
| |
| return fold_build1 (NEGATE_EXPR, type, name); |
| } |
| else |
| { |
| tree name = clast_to_gcc_expression (type, t->var, ip); |
| tree cst = gmp_cst_to_tree (type, t->val); |
| |
| if (POINTER_TYPE_P (TREE_TYPE (name)) != POINTER_TYPE_P (type)) |
| name = convert_to_ptrofftype (name); |
| |
| name = fold_convert (type, name); |
| |
| if (!POINTER_TYPE_P (type)) |
| return fold_build2 (MULT_EXPR, type, cst, name); |
| |
| gloog_error = true; |
| return cst; |
| } |
| } |
| else |
| return gmp_cst_to_tree (type, t->val); |
| } |
| |
| case clast_expr_red: |
| { |
| struct clast_reduction *r = (struct clast_reduction *) e; |
| |
| switch (r->type) |
| { |
| case clast_red_sum: |
| return clast_to_gcc_expression_red |
| (type, POINTER_TYPE_P (type) ? POINTER_PLUS_EXPR : PLUS_EXPR, |
| r, ip); |
| |
| case clast_red_min: |
| return clast_to_gcc_expression_red (type, MIN_EXPR, r, ip); |
| |
| case clast_red_max: |
| return clast_to_gcc_expression_red (type, MAX_EXPR, r, ip); |
| |
| default: |
| gcc_unreachable (); |
| } |
| break; |
| } |
| |
| case clast_expr_bin: |
| { |
| struct clast_binary *b = (struct clast_binary *) e; |
| struct clast_expr *lhs = (struct clast_expr *) b->LHS; |
| tree tl = clast_to_gcc_expression (type, lhs, ip); |
| tree tr = gmp_cst_to_tree (type, b->RHS); |
| |
| switch (b->type) |
| { |
| case clast_bin_fdiv: |
| return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr); |
| |
| case clast_bin_cdiv: |
| return fold_build2 (CEIL_DIV_EXPR, type, tl, tr); |
| |
| case clast_bin_div: |
| return fold_build2 (EXACT_DIV_EXPR, type, tl, tr); |
| |
| case clast_bin_mod: |
| return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr); |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| return NULL_TREE; |
| } |
| |
| /* Return a type that could represent the values between BOUND_ONE and |
| BOUND_TWO. */ |
| |
| static tree |
| type_for_interval (mpz_t bound_one, mpz_t bound_two) |
| { |
| bool unsigned_p; |
| tree type; |
| enum machine_mode mode; |
| int wider_precision; |
| int precision = MAX (mpz_sizeinbase (bound_one, 2), |
| mpz_sizeinbase (bound_two, 2)); |
| |
| if (precision > BITS_PER_WORD) |
| { |
| gloog_error = true; |
| return integer_type_node; |
| } |
| |
| if (mpz_cmp (bound_one, bound_two) <= 0) |
| unsigned_p = (mpz_sgn (bound_one) >= 0); |
| else |
| unsigned_p = (mpz_sgn (bound_two) >= 0); |
| |
| mode = smallest_mode_for_size (precision, MODE_INT); |
| wider_precision = GET_MODE_PRECISION (mode); |
| |
| /* As we want to generate signed types as much as possible, try to |
| fit the interval [bound_one, bound_two] in a signed type. For example, |
| supposing that we have the interval [0, 100], instead of |
| generating unsigned char, we want to generate a signed char. */ |
| if (unsigned_p && precision < wider_precision) |
| unsigned_p = false; |
| |
| type = build_nonstandard_integer_type (wider_precision, unsigned_p); |
| |
| if (!type) |
| { |
| gloog_error = true; |
| return integer_type_node; |
| } |
| |
| return type; |
| } |
| |
| /* Return a type that could represent the integer value VAL, or |
| otherwise return NULL_TREE. */ |
| |
| static tree |
| type_for_value (mpz_t val) |
| { |
| return type_for_interval (val, val); |
| } |
| |
| static tree |
| type_for_clast_expr (struct clast_expr *, ivs_params_p, mpz_t, mpz_t); |
| |
| /* Return the type for the clast_term T. Initializes BOUND_ONE and |
| BOUND_TWO to the bounds of the term. */ |
| |
| static tree |
| type_for_clast_term (struct clast_term *t, ivs_params_p ip, mpz_t bound_one, |
| mpz_t bound_two) |
| { |
| tree type; |
| gcc_assert (t->expr.type == clast_expr_term); |
| |
| if (!t->var) |
| { |
| mpz_set (bound_one, t->val); |
| mpz_set (bound_two, t->val); |
| return type_for_value (t->val); |
| } |
| |
| type = type_for_clast_expr (t->var, ip, bound_one, bound_two); |
| |
| mpz_mul (bound_one, bound_one, t->val); |
| mpz_mul (bound_two, bound_two, t->val); |
| |
| return max_precision_type (type, type_for_interval (bound_one, bound_two)); |
| } |
| |
| /* Return the type for the clast_reduction R. Initializes BOUND_ONE |
| and BOUND_TWO to the bounds of the reduction expression. */ |
| |
| static tree |
| type_for_clast_red (struct clast_reduction *r, ivs_params_p ip, |
| mpz_t bound_one, mpz_t bound_two) |
| { |
| int i; |
| tree type = type_for_clast_expr (r->elts[0], ip, bound_one, bound_two); |
| mpz_t b1, b2, m1, m2; |
| |
| if (r->n == 1) |
| return type; |
| |
| mpz_init (b1); |
| mpz_init (b2); |
| mpz_init (m1); |
| mpz_init (m2); |
| |
| for (i = 1; i < r->n; i++) |
| { |
| tree t = type_for_clast_expr (r->elts[i], ip, b1, b2); |
| type = max_precision_type (type, t); |
| |
| switch (r->type) |
| { |
| case clast_red_sum: |
| value_min (m1, bound_one, bound_two); |
| value_min (m2, b1, b2); |
| mpz_add (bound_one, m1, m2); |
| |
| value_max (m1, bound_one, bound_two); |
| value_max (m2, b1, b2); |
| mpz_add (bound_two, m1, m2); |
| break; |
| |
| case clast_red_min: |
| value_min (bound_one, bound_one, bound_two); |
| value_min (bound_two, b1, b2); |
| break; |
| |
| case clast_red_max: |
| value_max (bound_one, bound_one, bound_two); |
| value_max (bound_two, b1, b2); |
| break; |
| |
| default: |
| gcc_unreachable (); |
| break; |
| } |
| } |
| |
| mpz_clear (b1); |
| mpz_clear (b2); |
| mpz_clear (m1); |
| mpz_clear (m2); |
| |
| /* Return a type that can represent the result of the reduction. */ |
| return max_precision_type (type, type_for_interval (bound_one, bound_two)); |
| } |
| |
| /* Return the type for the clast_binary B used in STMT. */ |
| |
| static tree |
| type_for_clast_bin (struct clast_binary *b, ivs_params_p ip, mpz_t bound_one, |
| mpz_t bound_two) |
| { |
| mpz_t one; |
| tree l = type_for_clast_expr ((struct clast_expr *) b->LHS, ip, |
| bound_one, bound_two); |
| tree r = type_for_value (b->RHS); |
| tree type = max_precision_type (l, r); |
| |
| switch (b->type) |
| { |
| case clast_bin_fdiv: |
| mpz_mdiv (bound_one, bound_one, b->RHS); |
| mpz_mdiv (bound_two, bound_two, b->RHS); |
| break; |
| |
| case clast_bin_cdiv: |
| mpz_mdiv (bound_one, bound_one, b->RHS); |
| mpz_mdiv (bound_two, bound_two, b->RHS); |
| mpz_init (one); |
| mpz_add (bound_one, bound_one, one); |
| mpz_add (bound_two, bound_two, one); |
| mpz_clear (one); |
| break; |
| |
| case clast_bin_div: |
| mpz_div (bound_one, bound_one, b->RHS); |
| mpz_div (bound_two, bound_two, b->RHS); |
| break; |
| |
| case clast_bin_mod: |
| mpz_mod (bound_one, bound_one, b->RHS); |
| mpz_mod (bound_two, bound_two, b->RHS); |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| /* Return a type that can represent the result of the reduction. */ |
| return max_precision_type (type, type_for_interval (bound_one, bound_two)); |
| } |
| |
| /* Return the type for the clast_name NAME. Initializes BOUND_ONE and |
| BOUND_TWO to the bounds of the term. */ |
| |
| static tree |
| type_for_clast_name (struct clast_name *name, ivs_params_p ip, mpz_t bound_one, |
| mpz_t bound_two) |
| { |
| bool found = false; |
| |
| if (ip->params.exists () && ip->params_index) |
| found = clast_name_to_lb_ub (name, ip->params_index, bound_one, bound_two); |
| |
| if (!found) |
| { |
| gcc_assert (ip->newivs && ip->newivs_index); |
| found = clast_name_to_lb_ub (name, ip->newivs_index, bound_one, |
| bound_two); |
| gcc_assert (found); |
| } |
| |
| return TREE_TYPE (clast_name_to_gcc (name, ip)); |
| } |
| |
| /* Returns the type for the CLAST expression E when used in statement |
| STMT. */ |
| |
| static tree |
| type_for_clast_expr (struct clast_expr *e, ivs_params_p ip, mpz_t bound_one, |
| mpz_t bound_two) |
| { |
| switch (e->type) |
| { |
| case clast_expr_term: |
| return type_for_clast_term ((struct clast_term *) e, ip, |
| bound_one, bound_two); |
| |
| case clast_expr_red: |
| return type_for_clast_red ((struct clast_reduction *) e, ip, |
| bound_one, bound_two); |
| |
| case clast_expr_bin: |
| return type_for_clast_bin ((struct clast_binary *) e, ip, |
| bound_one, bound_two); |
| |
| case clast_expr_name: |
| return type_for_clast_name ((struct clast_name *) e, ip, |
| bound_one, bound_two); |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| return NULL_TREE; |
| } |
| |
| /* Returns true if the clast expression E is a constant with VALUE. */ |
| |
| static bool |
| clast_expr_const_value_p (struct clast_expr *e, int value) |
| { |
| struct clast_term *t; |
| if (e->type != clast_expr_term) |
| return false; |
| t = (struct clast_term *)e; |
| if (t->var) |
| return false; |
| return 0 == mpz_cmp_si (t->val, value); |
| } |
| |
| /* Translates a clast equation CLEQ to a tree. */ |
| |
| static tree |
| graphite_translate_clast_equation (struct clast_equation *cleq, |
| ivs_params_p ip) |
| { |
| enum tree_code comp; |
| tree type, lhs, rhs, ltype, rtype; |
| mpz_t bound_one, bound_two; |
| struct clast_expr *clhs, *crhs; |
| |
| clhs = cleq->LHS; |
| crhs = cleq->RHS; |
| if (cleq->sign == 0) |
| comp = EQ_EXPR; |
| else if (cleq->sign > 0) |
| comp = GE_EXPR; |
| else |
| comp = LE_EXPR; |
| |
| /* Special cases to reduce range of arguments to hopefully |
| don't need types with larger precision than the input. */ |
| if (crhs->type == clast_expr_red |
| && comp != EQ_EXPR) |
| { |
| struct clast_reduction *r = (struct clast_reduction *) crhs; |
| /* X >= A+1 --> X > A and |
| X <= A-1 --> X < A */ |
| if (r->n == 2 |
| && r->type == clast_red_sum |
| && clast_expr_const_value_p (r->elts[1], comp == GE_EXPR ? 1 : -1)) |
| { |
| crhs = r->elts[0]; |
| comp = comp == GE_EXPR ? GT_EXPR : LT_EXPR; |
| } |
| } |
| |
| mpz_init (bound_one); |
| mpz_init (bound_two); |
| |
| ltype = type_for_clast_expr (clhs, ip, bound_one, bound_two); |
| rtype = type_for_clast_expr (crhs, ip, bound_one, bound_two); |
| |
| mpz_clear (bound_one); |
| mpz_clear (bound_two); |
| type = max_precision_type (ltype, rtype); |
| |
| lhs = clast_to_gcc_expression (type, clhs, ip); |
| rhs = clast_to_gcc_expression (type, crhs, ip); |
| |
| return fold_build2 (comp, boolean_type_node, lhs, rhs); |
| } |
| |
| /* Creates the test for the condition in STMT. */ |
| |
| static tree |
| graphite_create_guard_cond_expr (struct clast_guard *stmt, |
| ivs_params_p ip) |
| { |
| tree cond = NULL; |
| int i; |
| |
| for (i = 0; i < stmt->n; i++) |
| { |
| tree eq = graphite_translate_clast_equation (&stmt->eq[i], ip); |
| |
| if (cond) |
| cond = fold_build2 (TRUTH_AND_EXPR, TREE_TYPE (eq), cond, eq); |
| else |
| cond = eq; |
| } |
| |
| return cond; |
| } |
| |
| /* Creates a new if region corresponding to Cloog's guard. */ |
| |
| static edge |
| graphite_create_new_guard (edge entry_edge, struct clast_guard *stmt, |
| ivs_params_p ip) |
| { |
| tree cond_expr = graphite_create_guard_cond_expr (stmt, ip); |
| edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr); |
| return exit_edge; |
| } |
| |
| /* Compute the lower bound LOW and upper bound UP for the parameter |
| PARAM in scop SCOP based on the constraints in the context. */ |
| |
| static void |
| compute_bounds_for_param (scop_p scop, int param, mpz_t low, mpz_t up) |
| { |
| isl_int v; |
| isl_aff *aff = isl_aff_zero_on_domain |
| (isl_local_space_from_space (isl_set_get_space (scop->context))); |
| |
| aff = isl_aff_add_coefficient_si (aff, isl_dim_param, param, 1); |
| |
| isl_int_init (v); |
| isl_set_min (scop->context, aff, &v); |
| isl_int_get_gmp (v, low); |
| isl_set_max (scop->context, aff, &v); |
| isl_int_get_gmp (v, up); |
| isl_int_clear (v); |
| isl_aff_free (aff); |
| } |
| |
| /* Compute the lower bound LOW and upper bound UP for the induction |
| variable of loop LOOP. |
| |
| FIXME: This one is not entirely correct, as min/max expressions in the |
| calculation can yield to incorrect results. To be completely |
| correct, we need to evaluate each subexpression generated by |
| CLooG. CLooG does not yet support this, so this is as good as |
| it can be. */ |
| |
| static void |
| compute_bounds_for_loop (struct clast_for *loop, mpz_t low, mpz_t up) |
| { |
| isl_set *domain; |
| isl_aff *dimension; |
| isl_local_space *local_space; |
| isl_int isl_value; |
| enum isl_lp_result lp_result; |
| |
| domain = isl_set_copy (isl_set_from_cloog_domain (loop->domain)); |
| local_space = isl_local_space_from_space (isl_set_get_space (domain)); |
| dimension = isl_aff_zero_on_domain (local_space); |
| dimension = isl_aff_add_coefficient_si (dimension, isl_dim_in, |
| isl_set_dim (domain, isl_dim_set) - 1, |
| 1); |
| |
| isl_int_init (isl_value); |
| |
| lp_result = isl_set_min (domain, dimension, &isl_value); |
| assert (lp_result == isl_lp_ok); |
| isl_int_get_gmp (isl_value, low); |
| |
| lp_result = isl_set_max (domain, dimension, &isl_value); |
| assert (lp_result == isl_lp_ok); |
| isl_int_get_gmp (isl_value, up); |
| |
| isl_int_clear (isl_value); |
| isl_set_free (domain); |
| isl_aff_free (dimension); |
| } |
| |
| /* Returns the type for the induction variable for the loop translated |
| from STMT_FOR. */ |
| |
| static tree |
| type_for_clast_for (struct clast_for *stmt_for, ivs_params_p ip) |
| { |
| mpz_t bound_one, bound_two; |
| tree lb_type, ub_type; |
| |
| mpz_init (bound_one); |
| mpz_init (bound_two); |
| |
| lb_type = type_for_clast_expr (stmt_for->LB, ip, bound_one, bound_two); |
| ub_type = type_for_clast_expr (stmt_for->UB, ip, bound_one, bound_two); |
| |
| mpz_clear (bound_one); |
| mpz_clear (bound_two); |
| |
| return max_precision_type (lb_type, ub_type); |
| } |
| |
| /* Creates a new LOOP corresponding to Cloog's STMT. Inserts an |
| induction variable for the new LOOP. New LOOP is attached to CFG |
| starting at ENTRY_EDGE. LOOP is inserted into the loop tree and |
| becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds |
| CLooG's scattering name to the induction variable created for the |
| loop of STMT. The new induction variable is inserted in the NEWIVS |
| vector and is of type TYPE. */ |
| |
| static struct loop * |
| graphite_create_new_loop (edge entry_edge, struct clast_for *stmt, |
| loop_p outer, tree type, tree lb, tree ub, |
| int level, ivs_params_p ip) |
| { |
| mpz_t low, up; |
| |
| tree stride = gmp_cst_to_tree (type, stmt->stride); |
| tree ivvar = create_tmp_var (type, "graphite_IV"); |
| tree iv, iv_after_increment; |
| loop_p loop = create_empty_loop_on_edge |
| (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment, |
| outer ? outer : entry_edge->src->loop_father); |
| |
| mpz_init (low); |
| mpz_init (up); |
| compute_bounds_for_loop (stmt, low, up); |
| save_clast_name_index (ip->newivs_index, stmt->iterator, |
| (*ip->newivs).length (), level, low, up); |
| mpz_clear (low); |
| mpz_clear (up); |
| (*ip->newivs).safe_push (iv); |
| return loop; |
| } |
| |
| /* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the |
| induction variables of the loops around GBB in SESE. */ |
| |
| static void |
| build_iv_mapping (vec<tree> iv_map, struct clast_user_stmt *user_stmt, |
| ivs_params_p ip) |
| { |
| struct clast_stmt *t; |
| int depth = 0; |
| CloogStatement *cs = user_stmt->statement; |
| poly_bb_p pbb = (poly_bb_p) cs->usr; |
| gimple_bb_p gbb = PBB_BLACK_BOX (pbb); |
| mpz_t bound_one, bound_two; |
| |
| mpz_init (bound_one); |
| mpz_init (bound_two); |
| |
| for (t = user_stmt->substitutions; t; t = t->next, depth++) |
| { |
| struct clast_expr *expr = (struct clast_expr *) |
| ((struct clast_assignment *)t)->RHS; |
| tree type = type_for_clast_expr (expr, ip, bound_one, bound_two); |
| tree new_name = clast_to_gcc_expression (type, expr, ip); |
| loop_p old_loop = gbb_loop_at_index (gbb, ip->region, depth); |
| |
| iv_map[old_loop->num] = new_name; |
| } |
| |
| mpz_clear (bound_one); |
| mpz_clear (bound_two); |
| } |
| |
| /* Construct bb_pbb_def with BB and PBB. */ |
| |
| static bb_pbb_def * |
| new_bb_pbb_def (basic_block bb, poly_bb_p pbb) |
| { |
| bb_pbb_def *bb_pbb_p; |
| |
| bb_pbb_p = XNEW (bb_pbb_def); |
| bb_pbb_p->bb = bb; |
| bb_pbb_p->pbb = pbb; |
| |
| return bb_pbb_p; |
| } |
| |
| /* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */ |
| |
| static void |
| mark_bb_with_pbb (poly_bb_p pbb, basic_block bb, htab_t bb_pbb_mapping) |
| { |
| bb_pbb_def tmp; |
| PTR *x; |
| |
| tmp.bb = bb; |
| x = htab_find_slot (bb_pbb_mapping, &tmp, INSERT); |
| |
| if (x && !*x) |
| *x = new_bb_pbb_def (bb, pbb); |
| } |
| |
| /* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */ |
| |
| poly_bb_p |
| find_pbb_via_hash (htab_t bb_pbb_mapping, basic_block bb) |
| { |
| bb_pbb_def tmp; |
| PTR *slot; |
| |
| tmp.bb = bb; |
| slot = htab_find_slot (bb_pbb_mapping, &tmp, NO_INSERT); |
| |
| if (slot && *slot) |
| return ((bb_pbb_def *) *slot)->pbb; |
| |
| return NULL; |
| } |
| |
| /* Return the scop of the loop and initialize PBBS the set of |
| poly_bb_p that belong to the LOOP. BB_PBB_MAPPING is a map created |
| by the CLAST code generator between a generated basic_block and its |
| related poly_bb_p. */ |
| |
| scop_p |
| get_loop_body_pbbs (loop_p loop, htab_t bb_pbb_mapping, |
| vec<poly_bb_p> *pbbs) |
| { |
| unsigned i; |
| basic_block *bbs = get_loop_body_in_dom_order (loop); |
| scop_p scop = NULL; |
| |
| for (i = 0; i < loop->num_nodes; i++) |
| { |
| poly_bb_p pbb = find_pbb_via_hash (bb_pbb_mapping, bbs[i]); |
| |
| if (pbb == NULL) |
| continue; |
| |
| scop = PBB_SCOP (pbb); |
| (*pbbs).safe_push (pbb); |
| } |
| |
| free (bbs); |
| return scop; |
| } |
| |
| /* Translates a clast user statement STMT to gimple. |
| |
| - NEXT_E is the edge where new generated code should be attached. |
| - CONTEXT_LOOP is the loop in which the generated code will be placed |
| - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ |
| |
| static edge |
| translate_clast_user (struct clast_user_stmt *stmt, edge next_e, |
| htab_t bb_pbb_mapping, ivs_params_p ip) |
| { |
| int i, nb_loops; |
| basic_block new_bb; |
| poly_bb_p pbb = (poly_bb_p) stmt->statement->usr; |
| gimple_bb_p gbb = PBB_BLACK_BOX (pbb); |
| vec<tree> iv_map; |
| |
| if (GBB_BB (gbb) == ENTRY_BLOCK_PTR) |
| return next_e; |
| |
| nb_loops = number_of_loops (); |
| iv_map.create (nb_loops); |
| for (i = 0; i < nb_loops; i++) |
| iv_map.quick_push (NULL_TREE); |
| |
| build_iv_mapping (iv_map, stmt, ip); |
| next_e = copy_bb_and_scalar_dependences (GBB_BB (gbb), ip->region, |
| next_e, iv_map, &gloog_error); |
| iv_map.release (); |
| |
| new_bb = next_e->src; |
| mark_bb_with_pbb (pbb, new_bb, bb_pbb_mapping); |
| mark_virtual_operands_for_renaming (cfun); |
| update_ssa (TODO_update_ssa); |
| |
| return next_e; |
| } |
| |
| /* Creates a new if region protecting the loop to be executed, if the execution |
| count is zero (lb > ub). */ |
| |
| static edge |
| graphite_create_new_loop_guard (edge entry_edge, struct clast_for *stmt, |
| tree *type, tree *lb, tree *ub, |
| ivs_params_p ip) |
| { |
| tree cond_expr; |
| edge exit_edge; |
| |
| *type = type_for_clast_for (stmt, ip); |
| *lb = clast_to_gcc_expression (*type, stmt->LB, ip); |
| *ub = clast_to_gcc_expression (*type, stmt->UB, ip); |
| |
| /* When ub is simply a constant or a parameter, use lb <= ub. */ |
| if (TREE_CODE (*ub) == INTEGER_CST || TREE_CODE (*ub) == SSA_NAME) |
| cond_expr = fold_build2 (LE_EXPR, boolean_type_node, *lb, *ub); |
| else |
| { |
| tree one = (POINTER_TYPE_P (*type) |
| ? convert_to_ptrofftype (integer_one_node) |
| : fold_convert (*type, integer_one_node)); |
| /* Adding +1 and using LT_EXPR helps with loop latches that have a |
| loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes |
| 2^k-1 due to integer overflow, and the condition lb <= ub is true, |
| even if we do not want this. However lb < ub + 1 is false, as |
| expected. */ |
| tree ub_one = fold_build2 (POINTER_TYPE_P (*type) ? POINTER_PLUS_EXPR |
| : PLUS_EXPR, *type, *ub, one); |
| |
| cond_expr = fold_build2 (LT_EXPR, boolean_type_node, *lb, ub_one); |
| } |
| |
| exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr); |
| |
| return exit_edge; |
| } |
| |
| static edge |
| translate_clast (loop_p, struct clast_stmt *, edge, htab_t, int, ivs_params_p); |
| |
| /* Create the loop for a clast for statement. |
| |
| - NEXT_E is the edge where new generated code should be attached. |
| - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ |
| |
| static edge |
| translate_clast_for_loop (loop_p context_loop, struct clast_for *stmt, |
| edge next_e, htab_t bb_pbb_mapping, int level, |
| tree type, tree lb, tree ub, ivs_params_p ip) |
| { |
| struct loop *loop = graphite_create_new_loop (next_e, stmt, context_loop, |
| type, lb, ub, level, ip); |
| edge last_e = single_exit (loop); |
| edge to_body = single_succ_edge (loop->header); |
| basic_block after = to_body->dest; |
| |
| /* Create a basic block for loop close phi nodes. */ |
| last_e = single_succ_edge (split_edge (last_e)); |
| |
| /* Translate the body of the loop. */ |
| next_e = translate_clast (loop, stmt->body, to_body, bb_pbb_mapping, |
| level + 1, ip); |
| redirect_edge_succ_nodup (next_e, after); |
| set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src); |
| |
| if (flag_loop_parallelize_all |
| && loop_is_parallel_p (loop, bb_pbb_mapping, level)) |
| loop->can_be_parallel = true; |
| |
| return last_e; |
| } |
| |
| /* Translates a clast for statement STMT to gimple. First a guard is created |
| protecting the loop, if it is executed zero times. In this guard we create |
| the real loop structure. |
| |
| - NEXT_E is the edge where new generated code should be attached. |
| - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ |
| |
| static edge |
| translate_clast_for (loop_p context_loop, struct clast_for *stmt, edge next_e, |
| htab_t bb_pbb_mapping, int level, ivs_params_p ip) |
| { |
| tree type, lb, ub; |
| edge last_e = graphite_create_new_loop_guard (next_e, stmt, &type, |
| &lb, &ub, ip); |
| edge true_e = get_true_edge_from_guard_bb (next_e->dest); |
| |
| translate_clast_for_loop (context_loop, stmt, true_e, bb_pbb_mapping, level, |
| type, lb, ub, ip); |
| return last_e; |
| } |
| |
| /* Translates a clast assignment STMT to gimple. |
| |
| - NEXT_E is the edge where new generated code should be attached. |
| - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ |
| |
| static edge |
| translate_clast_assignment (struct clast_assignment *stmt, edge next_e, |
| int level, ivs_params_p ip) |
| { |
| gimple_seq stmts; |
| mpz_t bound_one, bound_two; |
| tree type, new_name, var; |
| edge res = single_succ_edge (split_edge (next_e)); |
| struct clast_expr *expr = (struct clast_expr *) stmt->RHS; |
| |
| mpz_init (bound_one); |
| mpz_init (bound_two); |
| type = type_for_clast_expr (expr, ip, bound_one, bound_two); |
| var = create_tmp_var (type, "graphite_var"); |
| new_name = force_gimple_operand (clast_to_gcc_expression (type, expr, ip), |
| &stmts, true, var); |
| if (stmts) |
| { |
| gsi_insert_seq_on_edge (next_e, stmts); |
| gsi_commit_edge_inserts (); |
| } |
| |
| save_clast_name_index (ip->newivs_index, stmt->LHS, |
| (*ip->newivs).length (), level, |
| bound_one, bound_two); |
| (*ip->newivs).safe_push (new_name); |
| |
| mpz_clear (bound_one); |
| mpz_clear (bound_two); |
| |
| return res; |
| } |
| |
| /* Translates a clast guard statement STMT to gimple. |
| |
| - NEXT_E is the edge where new generated code should be attached. |
| - CONTEXT_LOOP is the loop in which the generated code will be placed |
| - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ |
| |
| static edge |
| translate_clast_guard (loop_p context_loop, struct clast_guard *stmt, |
| edge next_e, htab_t bb_pbb_mapping, int level, |
| ivs_params_p ip) |
| { |
| edge last_e = graphite_create_new_guard (next_e, stmt, ip); |
| edge true_e = get_true_edge_from_guard_bb (next_e->dest); |
| |
| translate_clast (context_loop, stmt->then, true_e, bb_pbb_mapping, level, ip); |
| return last_e; |
| } |
| |
| /* Translates a CLAST statement STMT to GCC representation in the |
| context of a SESE. |
| |
| - NEXT_E is the edge where new generated code should be attached. |
| - CONTEXT_LOOP is the loop in which the generated code will be placed |
| - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */ |
| |
| static edge |
| translate_clast (loop_p context_loop, struct clast_stmt *stmt, edge next_e, |
| htab_t bb_pbb_mapping, int level, ivs_params_p ip) |
| { |
| if (!stmt) |
| return next_e; |
| |
| if (CLAST_STMT_IS_A (stmt, stmt_root)) |
| ; /* Do nothing. */ |
| |
| else if (CLAST_STMT_IS_A (stmt, stmt_user)) |
| next_e = translate_clast_user ((struct clast_user_stmt *) stmt, |
| next_e, bb_pbb_mapping, ip); |
| |
| else if (CLAST_STMT_IS_A (stmt, stmt_for)) |
| next_e = translate_clast_for (context_loop, (struct clast_for *) stmt, |
| next_e, bb_pbb_mapping, level, ip); |
| |
| else if (CLAST_STMT_IS_A (stmt, stmt_guard)) |
| next_e = translate_clast_guard (context_loop, (struct clast_guard *) stmt, |
| next_e, bb_pbb_mapping, level, ip); |
| |
| else if (CLAST_STMT_IS_A (stmt, stmt_block)) |
| next_e = translate_clast (context_loop, ((struct clast_block *) stmt)->body, |
| next_e, bb_pbb_mapping, level, ip); |
| |
| else if (CLAST_STMT_IS_A (stmt, stmt_ass)) |
| next_e = translate_clast_assignment ((struct clast_assignment *) stmt, |
| next_e, level, ip); |
| else |
| gcc_unreachable(); |
| |
| recompute_all_dominators (); |
| graphite_verify (); |
| |
| return translate_clast (context_loop, stmt->next, next_e, bb_pbb_mapping, |
| level, ip); |
| } |
| |
| /* Add parameter and iterator names to the CloogUnionDomain. */ |
| |
| static CloogUnionDomain * |
| add_names_to_union_domain (scop_p scop, CloogUnionDomain *union_domain, |
| int nb_scattering_dims, htab_t params_index) |
| { |
| sese region = SCOP_REGION (scop); |
| int i; |
| int nb_iterators = scop_max_loop_depth (scop); |
| int nb_parameters = SESE_PARAMS (region).length (); |
| mpz_t bound_one, bound_two; |
| |
| mpz_init (bound_one); |
| mpz_init (bound_two); |
| |
| for (i = 0; i < nb_parameters; i++) |
| { |
| tree param = SESE_PARAMS (region)[i]; |
| const char *name = get_name (param); |
| int len; |
| char *parameter; |
| |
| if (!name) |
| name = "T"; |
| |
| len = strlen (name); |
| len += 17; |
| parameter = XNEWVEC (char, len + 1); |
| snprintf (parameter, len, "%s_%d", name, SSA_NAME_VERSION (param)); |
| save_clast_name_index (params_index, parameter, i, i, bound_one, |
| bound_two); |
| union_domain = cloog_union_domain_set_name (union_domain, CLOOG_PARAM, i, |
| parameter); |
| compute_bounds_for_param (scop, i, bound_one, bound_two); |
| free (parameter); |
| } |
| |
| mpz_clear (bound_one); |
| mpz_clear (bound_two); |
| |
| for (i = 0; i < nb_iterators; i++) |
| { |
| int len = 4 + 16; |
| char *iterator; |
| iterator = XNEWVEC (char, len); |
| snprintf (iterator, len, "git_%d", i); |
| union_domain = cloog_union_domain_set_name (union_domain, CLOOG_ITER, i, |
| iterator); |
| free (iterator); |
| } |
| |
| for (i = 0; i < nb_scattering_dims; i++) |
| { |
| int len = 5 + 16; |
| char *scattering; |
| scattering = XNEWVEC (char, len); |
| snprintf (scattering, len, "scat_%d", i); |
| union_domain = cloog_union_domain_set_name (union_domain, CLOOG_SCAT, i, |
| scattering); |
| free (scattering); |
| } |
| |
| return union_domain; |
| } |
| |
| /* Initialize a CLooG input file. */ |
| |
| static FILE * |
| init_cloog_input_file (int scop_number) |
| { |
| FILE *graphite_out_file; |
| int len = strlen (dump_base_name); |
| char *dumpname = XNEWVEC (char, len + 25); |
| char *s_scop_number = XNEWVEC (char, 15); |
| |
| memcpy (dumpname, dump_base_name, len + 1); |
| strip_off_ending (dumpname, len); |
| sprintf (s_scop_number, ".%d", scop_number); |
| strcat (dumpname, s_scop_number); |
| strcat (dumpname, ".cloog"); |
| graphite_out_file = fopen (dumpname, "w+b"); |
| |
| if (graphite_out_file == 0) |
| fatal_error ("can%'t open %s for writing: %m", dumpname); |
| |
| free (dumpname); |
| |
| return graphite_out_file; |
| } |
| |
| /* Extend the scattering to NEW_DIMS scattering dimensions. */ |
| |
| static |
| isl_map *extend_scattering(isl_map *scattering, int new_dims) |
| { |
| int old_dims, i; |
| isl_space *space; |
| isl_basic_map *change_scattering; |
| isl_map *change_scattering_map; |
| |
| old_dims = isl_map_dim (scattering, isl_dim_out); |
| |
| space = isl_space_alloc (isl_map_get_ctx (scattering), 0, old_dims, new_dims); |
| change_scattering = isl_basic_map_universe (isl_space_copy (space)); |
| |
| for (i = 0; i < old_dims; i++) |
| { |
| isl_constraint *c; |
| c = isl_equality_alloc |
| (isl_local_space_from_space (isl_space_copy (space))); |
| isl_constraint_set_coefficient_si (c, isl_dim_in, i, 1); |
| isl_constraint_set_coefficient_si (c, isl_dim_out, i, -1); |
| change_scattering = isl_basic_map_add_constraint (change_scattering, c); |
| } |
| |
| for (i = old_dims; i < new_dims; i++) |
| { |
| isl_constraint *c; |
| c = isl_equality_alloc |
| (isl_local_space_from_space (isl_space_copy (space))); |
| isl_constraint_set_coefficient_si (c, isl_dim_out, i, 1); |
| change_scattering = isl_basic_map_add_constraint (change_scattering, c); |
| } |
| |
| change_scattering_map = isl_map_from_basic_map (change_scattering); |
| change_scattering_map = isl_map_align_params (change_scattering_map, space); |
| return isl_map_apply_range (scattering, change_scattering_map); |
| } |
| |
| /* Build cloog union domain for SCoP. */ |
| |
| static CloogUnionDomain * |
| build_cloog_union_domain (scop_p scop, int nb_scattering_dims) |
| { |
| int i; |
| poly_bb_p pbb; |
| CloogUnionDomain *union_domain = |
| cloog_union_domain_alloc (scop_nb_params (scop)); |
| |
| FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb) |
| { |
| CloogDomain *domain; |
| CloogScattering *scattering; |
| |
| /* Dead code elimination: when the domain of a PBB is empty, |
| don't generate code for the PBB. */ |
| if (isl_set_is_empty(pbb->domain)) |
| continue; |
| |
| domain = cloog_domain_from_isl_set(isl_set_copy(pbb->domain)); |
| scattering = cloog_scattering_from_isl_map(extend_scattering(isl_map_copy(pbb->transformed), |
| nb_scattering_dims)); |
| |
| union_domain = cloog_union_domain_add_domain (union_domain, "", domain, |
| scattering, pbb); |
| } |
| |
| return union_domain; |
| } |
| |
| /* Return the options that will be used in GLOOG. */ |
| |
| static CloogOptions * |
| set_cloog_options (void) |
| { |
| CloogOptions *options = cloog_options_malloc (cloog_state); |
| |
| /* Change cloog output language to C. If we do use FORTRAN instead, cloog |
| will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if |
| we pass an incomplete program to cloog. */ |
| options->language = CLOOG_LANGUAGE_C; |
| |
| /* Enable complex equality spreading: removes dummy statements |
| (assignments) in the generated code which repeats the |
| substitution equations for statements. This is useless for |
| GLooG. */ |
| options->esp = 1; |
| |
| /* Silence CLooG to avoid failing tests due to debug output to stderr. */ |
| options->quiet = 1; |
| |
| /* Allow cloog to build strides with a stride width different to one. |
| This example has stride = 4: |
| |
| for (i = 0; i < 20; i += 4) |
| A */ |
| options->strides = 1; |
| |
| /* We want the clast to provide the iteration domains of the executed loops. |
| This allows us to derive minimal/maximal values for the induction |
| variables. */ |
| options->save_domains = 1; |
| |
| /* Disable optimizations and make cloog generate source code closer to the |
| input. This is useful for debugging, but later we want the optimized |
| code. |
| |
| XXX: We can not disable optimizations, as loop blocking is not working |
| without them. */ |
| if (0) |
| { |
| options->f = -1; |
| options->l = INT_MAX; |
| } |
| |
| return options; |
| } |
| |
| /* Prints STMT to STDERR. */ |
| |
| void |
| print_clast_stmt (FILE *file, struct clast_stmt *stmt) |
| { |
| CloogOptions *options = set_cloog_options (); |
| |
| clast_pprint (file, stmt, 0, options); |
| cloog_options_free (options); |
| } |
| |
| /* Prints STMT to STDERR. */ |
| |
| DEBUG_FUNCTION void |
| debug_clast_stmt (struct clast_stmt *stmt) |
| { |
| print_clast_stmt (stderr, stmt); |
| } |
| |
| /* Get the maximal number of scattering dimensions in the scop SCOP. */ |
| |
| static |
| int get_max_scattering_dimensions (scop_p scop) |
| { |
| int i; |
| poly_bb_p pbb; |
| int scattering_dims = 0; |
| |
| FOR_EACH_VEC_ELT (SCOP_BBS (scop), i, pbb) |
| { |
| int pbb_scatt_dims = isl_map_dim (pbb->transformed, isl_dim_out); |
| if (pbb_scatt_dims > scattering_dims) |
| scattering_dims = pbb_scatt_dims; |
| } |
| |
| return scattering_dims; |
| } |
| |
| static CloogInput * |
| generate_cloog_input (scop_p scop, htab_t params_index) |
| { |
| CloogUnionDomain *union_domain; |
| CloogInput *cloog_input; |
| CloogDomain *context; |
| int nb_scattering_dims = get_max_scattering_dimensions (scop); |
| |
| union_domain = build_cloog_union_domain (scop, nb_scattering_dims); |
| union_domain = add_names_to_union_domain (scop, union_domain, |
| nb_scattering_dims, |
| params_index); |
| context = cloog_domain_from_isl_set (isl_set_copy (scop->context)); |
| |
| cloog_input = cloog_input_alloc (context, union_domain); |
| |
| return cloog_input; |
| } |
| |
| /* Translate SCOP to a CLooG program and clast. These two |
| representations should be freed together: a clast cannot be used |
| without a program. */ |
| |
| static struct clast_stmt * |
| scop_to_clast (scop_p scop, htab_t params_index) |
| { |
| CloogInput *cloog_input; |
| struct clast_stmt *clast; |
| CloogOptions *options = set_cloog_options (); |
| |
| cloog_input = generate_cloog_input (scop, params_index); |
| |
| /* Dump a .cloog input file, if requested. This feature is only |
| enabled in the Graphite branch. */ |
| if (0) |
| { |
| static size_t file_scop_number = 0; |
| FILE *cloog_file = init_cloog_input_file (file_scop_number); |
| cloog_input_dump_cloog (cloog_file, cloog_input, options); |
| } |
| |
| clast = cloog_clast_create_from_input (cloog_input, options); |
| |
| cloog_options_free (options); |
| return clast; |
| } |
| |
| /* Prints to FILE the code generated by CLooG for SCOP. */ |
| |
| void |
| print_generated_program (FILE *file, scop_p scop) |
| { |
| CloogOptions *options = set_cloog_options (); |
| htab_t params_index; |
| struct clast_stmt *clast; |
| |
| params_index = htab_create (10, clast_name_index_elt_info, |
| eq_clast_name_indexes, free_clast_name_index); |
| |
| clast = scop_to_clast (scop, params_index); |
| |
| fprintf (file, " (clast: \n"); |
| clast_pprint (file, clast, 0, options); |
| fprintf (file, " )\n"); |
| |
| cloog_options_free (options); |
| cloog_clast_free (clast); |
| } |
| |
| /* Prints to STDERR the code generated by CLooG for SCOP. */ |
| |
| DEBUG_FUNCTION void |
| debug_generated_program (scop_p scop) |
| { |
| print_generated_program (stderr, scop); |
| } |
| |
| /* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for |
| the given SCOP. Return true if code generation succeeded. |
| BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping. |
| */ |
| |
| bool |
| gloog (scop_p scop, htab_t bb_pbb_mapping) |
| { |
| vec<tree> newivs; |
| newivs.create (10); |
| loop_p context_loop; |
| sese region = SCOP_REGION (scop); |
| ifsese if_region = NULL; |
| htab_t newivs_index, params_index; |
| struct clast_stmt *clast; |
| struct ivs_params ip; |
| |
| timevar_push (TV_GRAPHITE_CODE_GEN); |
| gloog_error = false; |
| |
| params_index = htab_create (10, clast_name_index_elt_info, |
| eq_clast_name_indexes, free_clast_name_index); |
| |
| clast = scop_to_clast (scop, params_index); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "\nCLAST generated by CLooG: \n"); |
| print_clast_stmt (dump_file, clast); |
| fprintf (dump_file, "\n"); |
| } |
| |
| recompute_all_dominators (); |
| graphite_verify (); |
| |
| if_region = move_sese_in_condition (region); |
| sese_insert_phis_for_liveouts (region, |
| if_region->region->exit->src, |
| if_region->false_region->exit, |
| if_region->true_region->exit); |
| recompute_all_dominators (); |
| graphite_verify (); |
| |
| context_loop = SESE_ENTRY (region)->src->loop_father; |
| newivs_index = htab_create (10, clast_name_index_elt_info, |
| eq_clast_name_indexes, free_clast_name_index); |
| |
| ip.newivs = &newivs; |
| ip.newivs_index = newivs_index; |
| ip.params = SESE_PARAMS (region); |
| ip.params_index = params_index; |
| ip.region = region; |
| |
| translate_clast (context_loop, clast, if_region->true_region->entry, |
| bb_pbb_mapping, 0, &ip); |
| graphite_verify (); |
| scev_reset (); |
| recompute_all_dominators (); |
| graphite_verify (); |
| |
| if (gloog_error) |
| set_ifsese_condition (if_region, integer_zero_node); |
| |
| free (if_region->true_region); |
| free (if_region->region); |
| free (if_region); |
| |
| htab_delete (newivs_index); |
| htab_delete (params_index); |
| newivs.release (); |
| cloog_clast_free (clast); |
| timevar_pop (TV_GRAPHITE_CODE_GEN); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| loop_p loop; |
| loop_iterator li; |
| int num_no_dependency = 0; |
| |
| FOR_EACH_LOOP (li, loop, 0) |
| if (loop->can_be_parallel) |
| num_no_dependency++; |
| |
| fprintf (dump_file, "\n%d loops carried no dependency.\n", |
| num_no_dependency); |
| } |
| |
| return !gloog_error; |
| } |
| #endif |