| /* Utility routines for data type conversion for GCC. |
| Copyright (C) 1987-2019 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| |
| /* These routines are somewhat language-independent utility function |
| intended to be called by the language-specific convert () functions. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "target.h" |
| #include "tree.h" |
| #include "diagnostic-core.h" |
| #include "fold-const.h" |
| #include "stor-layout.h" |
| #include "convert.h" |
| #include "langhooks.h" |
| #include "builtins.h" |
| #include "ubsan.h" |
| #include "stringpool.h" |
| #include "attribs.h" |
| #include "asan.h" |
| #include "selftest.h" |
| |
| #define maybe_fold_build1_loc(FOLD_P, LOC, CODE, TYPE, EXPR) \ |
| ((FOLD_P) ? fold_build1_loc (LOC, CODE, TYPE, EXPR) \ |
| : build1_loc (LOC, CODE, TYPE, EXPR)) |
| #define maybe_fold_build2_loc(FOLD_P, LOC, CODE, TYPE, EXPR1, EXPR2) \ |
| ((FOLD_P) ? fold_build2_loc (LOC, CODE, TYPE, EXPR1, EXPR2) \ |
| : build2_loc (LOC, CODE, TYPE, EXPR1, EXPR2)) |
| |
| /* Convert EXPR to some pointer or reference type TYPE. |
| EXPR must be pointer, reference, integer, enumeral, or literal zero; |
| in other cases error is called. If FOLD_P is true, try to fold the |
| expression. */ |
| |
| static tree |
| convert_to_pointer_1 (tree type, tree expr, bool fold_p) |
| { |
| location_t loc = EXPR_LOCATION (expr); |
| if (TREE_TYPE (expr) == type) |
| return expr; |
| |
| switch (TREE_CODE (TREE_TYPE (expr))) |
| { |
| case POINTER_TYPE: |
| case REFERENCE_TYPE: |
| { |
| /* If the pointers point to different address spaces, conversion needs |
| to be done via a ADDR_SPACE_CONVERT_EXPR instead of a NOP_EXPR. */ |
| addr_space_t to_as = TYPE_ADDR_SPACE (TREE_TYPE (type)); |
| addr_space_t from_as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (expr))); |
| |
| if (to_as == from_as) |
| return maybe_fold_build1_loc (fold_p, loc, NOP_EXPR, type, expr); |
| else |
| return maybe_fold_build1_loc (fold_p, loc, ADDR_SPACE_CONVERT_EXPR, |
| type, expr); |
| } |
| |
| case INTEGER_TYPE: |
| case ENUMERAL_TYPE: |
| case BOOLEAN_TYPE: |
| { |
| /* If the input precision differs from the target pointer type |
| precision, first convert the input expression to an integer type of |
| the target precision. Some targets, e.g. VMS, need several pointer |
| sizes to coexist so the latter isn't necessarily POINTER_SIZE. */ |
| unsigned int pprec = TYPE_PRECISION (type); |
| unsigned int eprec = TYPE_PRECISION (TREE_TYPE (expr)); |
| |
| if (eprec != pprec) |
| expr |
| = maybe_fold_build1_loc (fold_p, loc, NOP_EXPR, |
| lang_hooks.types.type_for_size (pprec, 0), |
| expr); |
| } |
| return maybe_fold_build1_loc (fold_p, loc, CONVERT_EXPR, type, expr); |
| |
| default: |
| error ("cannot convert to a pointer type"); |
| return convert_to_pointer_1 (type, integer_zero_node, fold_p); |
| } |
| } |
| |
| /* Subroutine of the various convert_to_*_maybe_fold routines. |
| |
| If a location wrapper has been folded to a constant (presumably of |
| a different type), re-wrap the new constant with a location wrapper. */ |
| |
| tree |
| preserve_any_location_wrapper (tree result, tree orig_expr) |
| { |
| if (CONSTANT_CLASS_P (result) && location_wrapper_p (orig_expr)) |
| { |
| if (result == TREE_OPERAND (orig_expr, 0)) |
| return orig_expr; |
| else |
| return maybe_wrap_with_location (result, EXPR_LOCATION (orig_expr)); |
| } |
| |
| return result; |
| } |
| |
| /* A wrapper around convert_to_pointer_1 that always folds the |
| expression. */ |
| |
| tree |
| convert_to_pointer (tree type, tree expr) |
| { |
| return convert_to_pointer_1 (type, expr, true); |
| } |
| |
| /* A wrapper around convert_to_pointer_1 that only folds the |
| expression if DOFOLD, or if it is CONSTANT_CLASS_OR_WRAPPER_P. */ |
| |
| tree |
| convert_to_pointer_maybe_fold (tree type, tree expr, bool dofold) |
| { |
| tree result |
| = convert_to_pointer_1 (type, expr, |
| dofold || CONSTANT_CLASS_OR_WRAPPER_P (expr)); |
| return preserve_any_location_wrapper (result, expr); |
| } |
| |
| /* Convert EXPR to some floating-point type TYPE. |
| |
| EXPR must be float, fixed-point, integer, or enumeral; |
| in other cases error is called. If FOLD_P is true, try to fold |
| the expression. */ |
| |
| static tree |
| convert_to_real_1 (tree type, tree expr, bool fold_p) |
| { |
| enum built_in_function fcode = builtin_mathfn_code (expr); |
| tree itype = TREE_TYPE (expr); |
| location_t loc = EXPR_LOCATION (expr); |
| |
| if (TREE_CODE (expr) == COMPOUND_EXPR) |
| { |
| tree t = convert_to_real_1 (type, TREE_OPERAND (expr, 1), fold_p); |
| if (t == TREE_OPERAND (expr, 1)) |
| return expr; |
| return build2_loc (EXPR_LOCATION (expr), COMPOUND_EXPR, TREE_TYPE (t), |
| TREE_OPERAND (expr, 0), t); |
| } |
| |
| /* Disable until we figure out how to decide whether the functions are |
| present in runtime. */ |
| /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */ |
| if (optimize |
| && (TYPE_MODE (type) == TYPE_MODE (double_type_node) |
| || TYPE_MODE (type) == TYPE_MODE (float_type_node))) |
| { |
| switch (fcode) |
| { |
| #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L: |
| CASE_MATHFN (COSH) |
| CASE_MATHFN (EXP) |
| CASE_MATHFN (EXP10) |
| CASE_MATHFN (EXP2) |
| CASE_MATHFN (EXPM1) |
| CASE_MATHFN (GAMMA) |
| CASE_MATHFN (J0) |
| CASE_MATHFN (J1) |
| CASE_MATHFN (LGAMMA) |
| CASE_MATHFN (POW10) |
| CASE_MATHFN (SINH) |
| CASE_MATHFN (TGAMMA) |
| CASE_MATHFN (Y0) |
| CASE_MATHFN (Y1) |
| /* The above functions may set errno differently with float |
| input or output so this transformation is not safe with |
| -fmath-errno. */ |
| if (flag_errno_math) |
| break; |
| gcc_fallthrough (); |
| CASE_MATHFN (ACOS) |
| CASE_MATHFN (ACOSH) |
| CASE_MATHFN (ASIN) |
| CASE_MATHFN (ASINH) |
| CASE_MATHFN (ATAN) |
| CASE_MATHFN (ATANH) |
| CASE_MATHFN (CBRT) |
| CASE_MATHFN (COS) |
| CASE_MATHFN (ERF) |
| CASE_MATHFN (ERFC) |
| CASE_MATHFN (LOG) |
| CASE_MATHFN (LOG10) |
| CASE_MATHFN (LOG2) |
| CASE_MATHFN (LOG1P) |
| CASE_MATHFN (SIN) |
| CASE_MATHFN (TAN) |
| CASE_MATHFN (TANH) |
| /* The above functions are not safe to do this conversion. */ |
| if (!flag_unsafe_math_optimizations) |
| break; |
| gcc_fallthrough (); |
| CASE_MATHFN (SQRT) |
| CASE_MATHFN (FABS) |
| CASE_MATHFN (LOGB) |
| #undef CASE_MATHFN |
| if (call_expr_nargs (expr) != 1 |
| || !SCALAR_FLOAT_TYPE_P (TREE_TYPE (CALL_EXPR_ARG (expr, 0)))) |
| break; |
| { |
| tree arg0 = strip_float_extensions (CALL_EXPR_ARG (expr, 0)); |
| tree newtype = type; |
| |
| /* We have (outertype)sqrt((innertype)x). Choose the wider mode |
| from the both as the safe type for operation. */ |
| if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type)) |
| newtype = TREE_TYPE (arg0); |
| |
| /* We consider to convert |
| |
| (T1) sqrtT2 ((T2) exprT3) |
| to |
| (T1) sqrtT4 ((T4) exprT3) |
| |
| , where T1 is TYPE, T2 is ITYPE, T3 is TREE_TYPE (ARG0), |
| and T4 is NEWTYPE. All those types are of floating point types. |
| T4 (NEWTYPE) should be narrower than T2 (ITYPE). This conversion |
| is safe only if P1 >= P2*2+2, where P1 and P2 are precisions of |
| T2 and T4. See the following URL for a reference: |
| http://stackoverflow.com/questions/9235456/determining- |
| floating-point-square-root |
| */ |
| if ((fcode == BUILT_IN_SQRT || fcode == BUILT_IN_SQRTL) |
| && !flag_unsafe_math_optimizations) |
| { |
| /* The following conversion is unsafe even the precision condition |
| below is satisfied: |
| |
| (float) sqrtl ((long double) double_val) -> (float) sqrt (double_val) |
| */ |
| if (TYPE_MODE (type) != TYPE_MODE (newtype)) |
| break; |
| |
| int p1 = REAL_MODE_FORMAT (TYPE_MODE (itype))->p; |
| int p2 = REAL_MODE_FORMAT (TYPE_MODE (newtype))->p; |
| if (p1 < p2 * 2 + 2) |
| break; |
| } |
| |
| /* Be careful about integer to fp conversions. |
| These may overflow still. */ |
| if (FLOAT_TYPE_P (TREE_TYPE (arg0)) |
| && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype) |
| && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node) |
| || TYPE_MODE (newtype) == TYPE_MODE (float_type_node))) |
| { |
| tree fn = mathfn_built_in (newtype, fcode); |
| if (fn) |
| { |
| tree arg = convert_to_real_1 (newtype, arg0, fold_p); |
| expr = build_call_expr (fn, 1, arg); |
| if (newtype == type) |
| return expr; |
| } |
| } |
| } |
| default: |
| break; |
| } |
| } |
| |
| /* Propagate the cast into the operation. */ |
| if (itype != type && FLOAT_TYPE_P (type)) |
| switch (TREE_CODE (expr)) |
| { |
| /* Convert (float)-x into -(float)x. This is safe for |
| round-to-nearest rounding mode when the inner type is float. */ |
| case ABS_EXPR: |
| case NEGATE_EXPR: |
| if (!flag_rounding_math |
| && FLOAT_TYPE_P (itype) |
| && TYPE_PRECISION (type) < TYPE_PRECISION (itype)) |
| { |
| tree arg = convert_to_real_1 (type, TREE_OPERAND (expr, 0), |
| fold_p); |
| return build1 (TREE_CODE (expr), type, arg); |
| } |
| break; |
| /* Convert (outertype)((innertype0)a+(innertype1)b) |
| into ((newtype)a+(newtype)b) where newtype |
| is the widest mode from all of these. */ |
| case PLUS_EXPR: |
| case MINUS_EXPR: |
| case MULT_EXPR: |
| case RDIV_EXPR: |
| { |
| tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0)); |
| tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1)); |
| |
| if (FLOAT_TYPE_P (TREE_TYPE (arg0)) |
| && FLOAT_TYPE_P (TREE_TYPE (arg1)) |
| && DECIMAL_FLOAT_TYPE_P (itype) == DECIMAL_FLOAT_TYPE_P (type)) |
| { |
| tree newtype = type; |
| |
| if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode |
| || TYPE_MODE (TREE_TYPE (arg1)) == SDmode |
| || TYPE_MODE (type) == SDmode) |
| newtype = dfloat32_type_node; |
| if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode |
| || TYPE_MODE (TREE_TYPE (arg1)) == DDmode |
| || TYPE_MODE (type) == DDmode) |
| newtype = dfloat64_type_node; |
| if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode |
| || TYPE_MODE (TREE_TYPE (arg1)) == TDmode |
| || TYPE_MODE (type) == TDmode) |
| newtype = dfloat128_type_node; |
| if (newtype == dfloat32_type_node |
| || newtype == dfloat64_type_node |
| || newtype == dfloat128_type_node) |
| { |
| expr = build2 (TREE_CODE (expr), newtype, |
| convert_to_real_1 (newtype, arg0, |
| fold_p), |
| convert_to_real_1 (newtype, arg1, |
| fold_p)); |
| if (newtype == type) |
| return expr; |
| break; |
| } |
| |
| if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype)) |
| newtype = TREE_TYPE (arg0); |
| if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype)) |
| newtype = TREE_TYPE (arg1); |
| /* Sometimes this transformation is safe (cannot |
| change results through affecting double rounding |
| cases) and sometimes it is not. If NEWTYPE is |
| wider than TYPE, e.g. (float)((long double)double |
| + (long double)double) converted to |
| (float)(double + double), the transformation is |
| unsafe regardless of the details of the types |
| involved; double rounding can arise if the result |
| of NEWTYPE arithmetic is a NEWTYPE value half way |
| between two representable TYPE values but the |
| exact value is sufficiently different (in the |
| right direction) for this difference to be |
| visible in ITYPE arithmetic. If NEWTYPE is the |
| same as TYPE, however, the transformation may be |
| safe depending on the types involved: it is safe |
| if the ITYPE has strictly more than twice as many |
| mantissa bits as TYPE, can represent infinities |
| and NaNs if the TYPE can, and has sufficient |
| exponent range for the product or ratio of two |
| values representable in the TYPE to be within the |
| range of normal values of ITYPE. */ |
| if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype) |
| && (flag_unsafe_math_optimizations |
| || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type) |
| && real_can_shorten_arithmetic (TYPE_MODE (itype), |
| TYPE_MODE (type)) |
| && !excess_precision_type (newtype)))) |
| { |
| expr = build2 (TREE_CODE (expr), newtype, |
| convert_to_real_1 (newtype, arg0, |
| fold_p), |
| convert_to_real_1 (newtype, arg1, |
| fold_p)); |
| if (newtype == type) |
| return expr; |
| } |
| } |
| } |
| break; |
| default: |
| break; |
| } |
| |
| switch (TREE_CODE (TREE_TYPE (expr))) |
| { |
| case REAL_TYPE: |
| /* Ignore the conversion if we don't need to store intermediate |
| results and neither type is a decimal float. */ |
| return build1_loc (loc, |
| (flag_float_store |
| || DECIMAL_FLOAT_TYPE_P (type) |
| || DECIMAL_FLOAT_TYPE_P (itype)) |
| ? CONVERT_EXPR : NOP_EXPR, type, expr); |
| |
| case INTEGER_TYPE: |
| case ENUMERAL_TYPE: |
| case BOOLEAN_TYPE: |
| return build1 (FLOAT_EXPR, type, expr); |
| |
| case FIXED_POINT_TYPE: |
| return build1 (FIXED_CONVERT_EXPR, type, expr); |
| |
| case COMPLEX_TYPE: |
| return convert (type, |
| maybe_fold_build1_loc (fold_p, loc, REALPART_EXPR, |
| TREE_TYPE (TREE_TYPE (expr)), |
| expr)); |
| |
| case POINTER_TYPE: |
| case REFERENCE_TYPE: |
| error ("pointer value used where a floating point value was expected"); |
| return convert_to_real_1 (type, integer_zero_node, fold_p); |
| |
| default: |
| error ("aggregate value used where a float was expected"); |
| return convert_to_real_1 (type, integer_zero_node, fold_p); |
| } |
| } |
| |
| /* A wrapper around convert_to_real_1 that always folds the |
| expression. */ |
| |
| tree |
| convert_to_real (tree type, tree expr) |
| { |
| return convert_to_real_1 (type, expr, true); |
| } |
| |
| /* A wrapper around convert_to_real_1 that only folds the |
| expression if DOFOLD, or if it is CONSTANT_CLASS_OR_WRAPPER_P. */ |
| |
| tree |
| convert_to_real_maybe_fold (tree type, tree expr, bool dofold) |
| { |
| tree result |
| = convert_to_real_1 (type, expr, |
| dofold || CONSTANT_CLASS_OR_WRAPPER_P (expr)); |
| return preserve_any_location_wrapper (result, expr); |
| } |
| |
| /* Try to narrow EX_FORM ARG0 ARG1 in narrowed arg types producing a |
| result in TYPE. */ |
| |
| static tree |
| do_narrow (location_t loc, |
| enum tree_code ex_form, tree type, tree arg0, tree arg1, |
| tree expr, unsigned inprec, unsigned outprec, bool dofold) |
| { |
| /* Do the arithmetic in type TYPEX, |
| then convert result to TYPE. */ |
| tree typex = type; |
| |
| /* Can't do arithmetic in enumeral types |
| so use an integer type that will hold the values. */ |
| if (TREE_CODE (typex) == ENUMERAL_TYPE) |
| typex = lang_hooks.types.type_for_size (TYPE_PRECISION (typex), |
| TYPE_UNSIGNED (typex)); |
| |
| /* The type demotion below might cause doing unsigned arithmetic |
| instead of signed, and thus hide overflow bugs. */ |
| if ((ex_form == PLUS_EXPR || ex_form == MINUS_EXPR) |
| && !TYPE_UNSIGNED (typex) |
| && sanitize_flags_p (SANITIZE_SI_OVERFLOW)) |
| return NULL_TREE; |
| |
| /* But now perhaps TYPEX is as wide as INPREC. |
| In that case, do nothing special here. |
| (Otherwise would recurse infinitely in convert. */ |
| if (TYPE_PRECISION (typex) != inprec) |
| { |
| /* Don't do unsigned arithmetic where signed was wanted, |
| or vice versa. |
| Exception: if both of the original operands were |
| unsigned then we can safely do the work as unsigned. |
| Exception: shift operations take their type solely |
| from the first argument. |
| Exception: the LSHIFT_EXPR case above requires that |
| we perform this operation unsigned lest we produce |
| signed-overflow undefinedness. |
| And we may need to do it as unsigned |
| if we truncate to the original size. */ |
| if (TYPE_UNSIGNED (TREE_TYPE (expr)) |
| || (TYPE_UNSIGNED (TREE_TYPE (arg0)) |
| && (TYPE_UNSIGNED (TREE_TYPE (arg1)) |
| || ex_form == LSHIFT_EXPR |
| || ex_form == RSHIFT_EXPR |
| || ex_form == LROTATE_EXPR |
| || ex_form == RROTATE_EXPR)) |
| || ex_form == LSHIFT_EXPR |
| /* If we have !flag_wrapv, and either ARG0 or |
| ARG1 is of a signed type, we have to do |
| PLUS_EXPR, MINUS_EXPR or MULT_EXPR in an unsigned |
| type in case the operation in outprec precision |
| could overflow. Otherwise, we would introduce |
| signed-overflow undefinedness. */ |
| || ((!(INTEGRAL_TYPE_P (TREE_TYPE (arg0)) |
| && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))) |
| || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1)) |
| && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))) |
| && ((TYPE_PRECISION (TREE_TYPE (arg0)) * 2u |
| > outprec) |
| || (TYPE_PRECISION (TREE_TYPE (arg1)) * 2u |
| > outprec)) |
| && (ex_form == PLUS_EXPR |
| || ex_form == MINUS_EXPR |
| || ex_form == MULT_EXPR))) |
| { |
| if (!TYPE_UNSIGNED (typex)) |
| typex = unsigned_type_for (typex); |
| } |
| else |
| { |
| if (TYPE_UNSIGNED (typex)) |
| typex = signed_type_for (typex); |
| } |
| /* We should do away with all this once we have a proper |
| type promotion/demotion pass, see PR45397. */ |
| expr = maybe_fold_build2_loc (dofold, loc, ex_form, typex, |
| convert (typex, arg0), |
| convert (typex, arg1)); |
| return convert (type, expr); |
| } |
| |
| return NULL_TREE; |
| } |
| |
| /* Convert EXPR to some integer (or enum) type TYPE. |
| |
| EXPR must be pointer, integer, discrete (enum, char, or bool), float, |
| fixed-point or vector; in other cases error is called. |
| |
| If DOFOLD is TRUE, we try to simplify newly-created patterns by folding. |
| |
| The result of this is always supposed to be a newly created tree node |
| not in use in any existing structure. */ |
| |
| static tree |
| convert_to_integer_1 (tree type, tree expr, bool dofold) |
| { |
| enum tree_code ex_form = TREE_CODE (expr); |
| tree intype = TREE_TYPE (expr); |
| unsigned int inprec = element_precision (intype); |
| unsigned int outprec = element_precision (type); |
| location_t loc = EXPR_LOCATION (expr); |
| |
| /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can |
| be. Consider `enum E = { a, b = (enum E) 3 };'. */ |
| if (!COMPLETE_TYPE_P (type)) |
| { |
| error ("conversion to incomplete type"); |
| return error_mark_node; |
| } |
| |
| if (ex_form == COMPOUND_EXPR) |
| { |
| tree t = convert_to_integer_1 (type, TREE_OPERAND (expr, 1), dofold); |
| if (t == TREE_OPERAND (expr, 1)) |
| return expr; |
| return build2_loc (EXPR_LOCATION (expr), COMPOUND_EXPR, TREE_TYPE (t), |
| TREE_OPERAND (expr, 0), t); |
| } |
| |
| /* Convert e.g. (long)round(d) -> lround(d). */ |
| /* If we're converting to char, we may encounter differing behavior |
| between converting from double->char vs double->long->char. |
| We're in "undefined" territory but we prefer to be conservative, |
| so only proceed in "unsafe" math mode. */ |
| if (optimize |
| && (flag_unsafe_math_optimizations |
| || (long_integer_type_node |
| && outprec >= TYPE_PRECISION (long_integer_type_node)))) |
| { |
| tree s_expr = strip_float_extensions (expr); |
| tree s_intype = TREE_TYPE (s_expr); |
| const enum built_in_function fcode = builtin_mathfn_code (s_expr); |
| tree fn = 0; |
| |
| switch (fcode) |
| { |
| CASE_FLT_FN (BUILT_IN_CEIL): |
| CASE_FLT_FN_FLOATN_NX (BUILT_IN_CEIL): |
| /* Only convert in ISO C99 mode. */ |
| if (!targetm.libc_has_function (function_c99_misc)) |
| break; |
| if (outprec < TYPE_PRECISION (integer_type_node) |
| || (outprec == TYPE_PRECISION (integer_type_node) |
| && !TYPE_UNSIGNED (type))) |
| fn = mathfn_built_in (s_intype, BUILT_IN_ICEIL); |
| else if (outprec == TYPE_PRECISION (long_integer_type_node) |
| && !TYPE_UNSIGNED (type)) |
| fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL); |
| else if (outprec == TYPE_PRECISION (long_long_integer_type_node) |
| && !TYPE_UNSIGNED (type)) |
| fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL); |
| break; |
| |
| CASE_FLT_FN (BUILT_IN_FLOOR): |
| CASE_FLT_FN_FLOATN_NX (BUILT_IN_FLOOR): |
| /* Only convert in ISO C99 mode. */ |
| if (!targetm.libc_has_function (function_c99_misc)) |
| break; |
| if (outprec < TYPE_PRECISION (integer_type_node) |
| || (outprec == TYPE_PRECISION (integer_type_node) |
| && !TYPE_UNSIGNED (type))) |
| fn = mathfn_built_in (s_intype, BUILT_IN_IFLOOR); |
| else if (outprec == TYPE_PRECISION (long_integer_type_node) |
| && !TYPE_UNSIGNED (type)) |
| fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR); |
| else if (outprec == TYPE_PRECISION (long_long_integer_type_node) |
| && !TYPE_UNSIGNED (type)) |
| fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR); |
| break; |
| |
| CASE_FLT_FN (BUILT_IN_ROUND): |
| CASE_FLT_FN_FLOATN_NX (BUILT_IN_ROUND): |
| /* Only convert in ISO C99 mode and with -fno-math-errno. */ |
| if (!targetm.libc_has_function (function_c99_misc) |
| || flag_errno_math) |
| break; |
| if (outprec < TYPE_PRECISION (integer_type_node) |
| || (outprec == TYPE_PRECISION (integer_type_node) |
| && !TYPE_UNSIGNED (type))) |
| fn = mathfn_built_in (s_intype, BUILT_IN_IROUND); |
| else if (outprec == TYPE_PRECISION (long_integer_type_node) |
| && !TYPE_UNSIGNED (type)) |
| fn = mathfn_built_in (s_intype, BUILT_IN_LROUND); |
| else if (outprec == TYPE_PRECISION (long_long_integer_type_node) |
| && !TYPE_UNSIGNED (type)) |
| fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND); |
| break; |
| |
| CASE_FLT_FN (BUILT_IN_NEARBYINT): |
| CASE_FLT_FN_FLOATN_NX (BUILT_IN_NEARBYINT): |
| /* Only convert nearbyint* if we can ignore math exceptions. */ |
| if (flag_trapping_math) |
| break; |
| gcc_fallthrough (); |
| CASE_FLT_FN (BUILT_IN_RINT): |
| CASE_FLT_FN_FLOATN_NX (BUILT_IN_RINT): |
| /* Only convert in ISO C99 mode and with -fno-math-errno. */ |
| if (!targetm.libc_has_function (function_c99_misc) |
| || flag_errno_math) |
| break; |
| if (outprec < TYPE_PRECISION (integer_type_node) |
| || (outprec == TYPE_PRECISION (integer_type_node) |
| && !TYPE_UNSIGNED (type))) |
| fn = mathfn_built_in (s_intype, BUILT_IN_IRINT); |
| else if (outprec == TYPE_PRECISION (long_integer_type_node) |
| && !TYPE_UNSIGNED (type)) |
| fn = mathfn_built_in (s_intype, BUILT_IN_LRINT); |
| else if (outprec == TYPE_PRECISION (long_long_integer_type_node) |
| && !TYPE_UNSIGNED (type)) |
| fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT); |
| break; |
| |
| CASE_FLT_FN (BUILT_IN_TRUNC): |
| CASE_FLT_FN_FLOATN_NX (BUILT_IN_TRUNC): |
| if (call_expr_nargs (s_expr) != 1 |
| || !SCALAR_FLOAT_TYPE_P (TREE_TYPE (CALL_EXPR_ARG (s_expr, 0)))) |
| break; |
| return convert_to_integer_1 (type, CALL_EXPR_ARG (s_expr, 0), |
| dofold); |
| |
| default: |
| break; |
| } |
| |
| if (fn |
| && call_expr_nargs (s_expr) == 1 |
| && SCALAR_FLOAT_TYPE_P (TREE_TYPE (CALL_EXPR_ARG (s_expr, 0)))) |
| { |
| tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0)); |
| return convert_to_integer_1 (type, newexpr, dofold); |
| } |
| } |
| |
| /* Convert (int)logb(d) -> ilogb(d). */ |
| if (optimize |
| && flag_unsafe_math_optimizations |
| && !flag_trapping_math && !flag_errno_math && flag_finite_math_only |
| && integer_type_node |
| && (outprec > TYPE_PRECISION (integer_type_node) |
| || (outprec == TYPE_PRECISION (integer_type_node) |
| && !TYPE_UNSIGNED (type)))) |
| { |
| tree s_expr = strip_float_extensions (expr); |
| tree s_intype = TREE_TYPE (s_expr); |
| const enum built_in_function fcode = builtin_mathfn_code (s_expr); |
| tree fn = 0; |
| |
| switch (fcode) |
| { |
| CASE_FLT_FN (BUILT_IN_LOGB): |
| fn = mathfn_built_in (s_intype, BUILT_IN_ILOGB); |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (fn |
| && call_expr_nargs (s_expr) == 1 |
| && SCALAR_FLOAT_TYPE_P (TREE_TYPE (CALL_EXPR_ARG (s_expr, 0)))) |
| { |
| tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0)); |
| return convert_to_integer_1 (type, newexpr, dofold); |
| } |
| } |
| |
| switch (TREE_CODE (intype)) |
| { |
| case POINTER_TYPE: |
| case REFERENCE_TYPE: |
| if (integer_zerop (expr) |
| && !TREE_OVERFLOW (tree_strip_any_location_wrapper (expr))) |
| return build_int_cst (type, 0); |
| |
| /* Convert to an unsigned integer of the correct width first, and from |
| there widen/truncate to the required type. Some targets support the |
| coexistence of multiple valid pointer sizes, so fetch the one we need |
| from the type. */ |
| if (!dofold) |
| return build1 (CONVERT_EXPR, type, expr); |
| expr = fold_build1 (CONVERT_EXPR, |
| lang_hooks.types.type_for_size |
| (TYPE_PRECISION (intype), 0), |
| expr); |
| return fold_convert (type, expr); |
| |
| case INTEGER_TYPE: |
| case ENUMERAL_TYPE: |
| case BOOLEAN_TYPE: |
| case OFFSET_TYPE: |
| /* If this is a logical operation, which just returns 0 or 1, we can |
| change the type of the expression. */ |
| |
| if (TREE_CODE_CLASS (ex_form) == tcc_comparison) |
| { |
| expr = copy_node (expr); |
| TREE_TYPE (expr) = type; |
| return expr; |
| } |
| |
| /* If we are widening the type, put in an explicit conversion. |
| Similarly if we are not changing the width. After this, we know |
| we are truncating EXPR. */ |
| |
| else if (outprec >= inprec) |
| { |
| enum tree_code code; |
| |
| /* If the precision of the EXPR's type is K bits and the |
| destination mode has more bits, and the sign is changing, |
| it is not safe to use a NOP_EXPR. For example, suppose |
| that EXPR's type is a 3-bit unsigned integer type, the |
| TYPE is a 3-bit signed integer type, and the machine mode |
| for the types is 8-bit QImode. In that case, the |
| conversion necessitates an explicit sign-extension. In |
| the signed-to-unsigned case the high-order bits have to |
| be cleared. */ |
| if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr)) |
| && !type_has_mode_precision_p (TREE_TYPE (expr))) |
| code = CONVERT_EXPR; |
| else |
| code = NOP_EXPR; |
| |
| return maybe_fold_build1_loc (dofold, loc, code, type, expr); |
| } |
| |
| /* If TYPE is an enumeral type or a type with a precision less |
| than the number of bits in its mode, do the conversion to the |
| type corresponding to its mode, then do a nop conversion |
| to TYPE. */ |
| else if (TREE_CODE (type) == ENUMERAL_TYPE |
| || maybe_ne (outprec, GET_MODE_PRECISION (TYPE_MODE (type)))) |
| { |
| expr |
| = convert_to_integer_1 (lang_hooks.types.type_for_mode |
| (TYPE_MODE (type), TYPE_UNSIGNED (type)), |
| expr, dofold); |
| return maybe_fold_build1_loc (dofold, loc, NOP_EXPR, type, expr); |
| } |
| |
| /* Here detect when we can distribute the truncation down past some |
| arithmetic. For example, if adding two longs and converting to an |
| int, we can equally well convert both to ints and then add. |
| For the operations handled here, such truncation distribution |
| is always safe. |
| It is desirable in these cases: |
| 1) when truncating down to full-word from a larger size |
| 2) when truncating takes no work. |
| 3) when at least one operand of the arithmetic has been extended |
| (as by C's default conversions). In this case we need two conversions |
| if we do the arithmetic as already requested, so we might as well |
| truncate both and then combine. Perhaps that way we need only one. |
| |
| Note that in general we cannot do the arithmetic in a type |
| shorter than the desired result of conversion, even if the operands |
| are both extended from a shorter type, because they might overflow |
| if combined in that type. The exceptions to this--the times when |
| two narrow values can be combined in their narrow type even to |
| make a wider result--are handled by "shorten" in build_binary_op. */ |
| |
| if (dofold) |
| switch (ex_form) |
| { |
| case RSHIFT_EXPR: |
| /* We can pass truncation down through right shifting |
| when the shift count is a nonpositive constant. */ |
| if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST |
| && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0) |
| goto trunc1; |
| break; |
| |
| case LSHIFT_EXPR: |
| /* We can pass truncation down through left shifting |
| when the shift count is a nonnegative constant and |
| the target type is unsigned. */ |
| if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST |
| && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0 |
| && TYPE_UNSIGNED (type) |
| && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST) |
| { |
| /* If shift count is less than the width of the truncated type, |
| really shift. */ |
| if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type))) |
| /* In this case, shifting is like multiplication. */ |
| goto trunc1; |
| else |
| { |
| /* If it is >= that width, result is zero. |
| Handling this with trunc1 would give the wrong result: |
| (int) ((long long) a << 32) is well defined (as 0) |
| but (int) a << 32 is undefined and would get a |
| warning. */ |
| |
| tree t = build_int_cst (type, 0); |
| |
| /* If the original expression had side-effects, we must |
| preserve it. */ |
| if (TREE_SIDE_EFFECTS (expr)) |
| return build2 (COMPOUND_EXPR, type, expr, t); |
| else |
| return t; |
| } |
| } |
| break; |
| |
| case TRUNC_DIV_EXPR: |
| { |
| tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), NULL_TREE); |
| tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), NULL_TREE); |
| |
| /* Don't distribute unless the output precision is at least as |
| big as the actual inputs and it has the same signedness. */ |
| if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0)) |
| && outprec >= TYPE_PRECISION (TREE_TYPE (arg1)) |
| /* If signedness of arg0 and arg1 don't match, |
| we can't necessarily find a type to compare them in. */ |
| && (TYPE_UNSIGNED (TREE_TYPE (arg0)) |
| == TYPE_UNSIGNED (TREE_TYPE (arg1))) |
| /* Do not change the sign of the division. */ |
| && (TYPE_UNSIGNED (TREE_TYPE (expr)) |
| == TYPE_UNSIGNED (TREE_TYPE (arg0))) |
| /* Either require unsigned division or a division by |
| a constant that is not -1. */ |
| && (TYPE_UNSIGNED (TREE_TYPE (arg0)) |
| || (TREE_CODE (arg1) == INTEGER_CST |
| && !integer_all_onesp (arg1)))) |
| { |
| tree tem = do_narrow (loc, ex_form, type, arg0, arg1, |
| expr, inprec, outprec, dofold); |
| if (tem) |
| return tem; |
| } |
| break; |
| } |
| |
| case MAX_EXPR: |
| case MIN_EXPR: |
| case MULT_EXPR: |
| { |
| tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type); |
| tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type); |
| |
| /* Don't distribute unless the output precision is at least as |
| big as the actual inputs. Otherwise, the comparison of the |
| truncated values will be wrong. */ |
| if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0)) |
| && outprec >= TYPE_PRECISION (TREE_TYPE (arg1)) |
| /* If signedness of arg0 and arg1 don't match, |
| we can't necessarily find a type to compare them in. */ |
| && (TYPE_UNSIGNED (TREE_TYPE (arg0)) |
| == TYPE_UNSIGNED (TREE_TYPE (arg1)))) |
| goto trunc1; |
| break; |
| } |
| |
| case PLUS_EXPR: |
| case MINUS_EXPR: |
| case BIT_AND_EXPR: |
| case BIT_IOR_EXPR: |
| case BIT_XOR_EXPR: |
| trunc1: |
| { |
| tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type); |
| tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type); |
| |
| /* Do not try to narrow operands of pointer subtraction; |
| that will interfere with other folding. */ |
| if (ex_form == MINUS_EXPR |
| && CONVERT_EXPR_P (arg0) |
| && CONVERT_EXPR_P (arg1) |
| && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0))) |
| && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0)))) |
| break; |
| |
| if (outprec >= BITS_PER_WORD |
| || targetm.truly_noop_truncation (outprec, inprec) |
| || inprec > TYPE_PRECISION (TREE_TYPE (arg0)) |
| || inprec > TYPE_PRECISION (TREE_TYPE (arg1))) |
| { |
| tree tem = do_narrow (loc, ex_form, type, arg0, arg1, |
| expr, inprec, outprec, dofold); |
| if (tem) |
| return tem; |
| } |
| } |
| break; |
| |
| case NEGATE_EXPR: |
| /* Using unsigned arithmetic for signed types may hide overflow |
| bugs. */ |
| if (!TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (expr, 0))) |
| && sanitize_flags_p (SANITIZE_SI_OVERFLOW)) |
| break; |
| /* Fall through. */ |
| case BIT_NOT_EXPR: |
| /* This is not correct for ABS_EXPR, |
| since we must test the sign before truncation. */ |
| { |
| /* Do the arithmetic in type TYPEX, |
| then convert result to TYPE. */ |
| tree typex = type; |
| |
| /* Can't do arithmetic in enumeral types |
| so use an integer type that will hold the values. */ |
| if (TREE_CODE (typex) == ENUMERAL_TYPE) |
| typex |
| = lang_hooks.types.type_for_size (TYPE_PRECISION (typex), |
| TYPE_UNSIGNED (typex)); |
| |
| if (!TYPE_UNSIGNED (typex)) |
| typex = unsigned_type_for (typex); |
| return convert (type, |
| fold_build1 (ex_form, typex, |
| convert (typex, |
| TREE_OPERAND (expr, 0)))); |
| } |
| |
| CASE_CONVERT: |
| { |
| tree argtype = TREE_TYPE (TREE_OPERAND (expr, 0)); |
| /* Don't introduce a "can't convert between vector values |
| of different size" error. */ |
| if (TREE_CODE (argtype) == VECTOR_TYPE |
| && maybe_ne (GET_MODE_SIZE (TYPE_MODE (argtype)), |
| GET_MODE_SIZE (TYPE_MODE (type)))) |
| break; |
| } |
| /* If truncating after truncating, might as well do all at once. |
| If truncating after extending, we may get rid of wasted work. */ |
| return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type)); |
| |
| case COND_EXPR: |
| /* It is sometimes worthwhile to push the narrowing down through |
| the conditional and never loses. A COND_EXPR may have a throw |
| as one operand, which then has void type. Just leave void |
| operands as they are. */ |
| return |
| fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0), |
| VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))) |
| ? TREE_OPERAND (expr, 1) |
| : convert (type, TREE_OPERAND (expr, 1)), |
| VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 2))) |
| ? TREE_OPERAND (expr, 2) |
| : convert (type, TREE_OPERAND (expr, 2))); |
| |
| default: |
| break; |
| } |
| |
| /* When parsing long initializers, we might end up with a lot of casts. |
| Shortcut this. */ |
| if (TREE_CODE (tree_strip_any_location_wrapper (expr)) == INTEGER_CST) |
| return fold_convert (type, expr); |
| return build1 (CONVERT_EXPR, type, expr); |
| |
| case REAL_TYPE: |
| if (sanitize_flags_p (SANITIZE_FLOAT_CAST) |
| && current_function_decl != NULL_TREE) |
| { |
| expr = save_expr (expr); |
| tree check = ubsan_instrument_float_cast (loc, type, expr); |
| expr = build1 (FIX_TRUNC_EXPR, type, expr); |
| if (check == NULL_TREE) |
| return expr; |
| return maybe_fold_build2_loc (dofold, loc, COMPOUND_EXPR, |
| TREE_TYPE (expr), check, expr); |
| } |
| else |
| return build1 (FIX_TRUNC_EXPR, type, expr); |
| |
| case FIXED_POINT_TYPE: |
| return build1 (FIXED_CONVERT_EXPR, type, expr); |
| |
| case COMPLEX_TYPE: |
| expr = maybe_fold_build1_loc (dofold, loc, REALPART_EXPR, |
| TREE_TYPE (TREE_TYPE (expr)), expr); |
| return convert (type, expr); |
| |
| case VECTOR_TYPE: |
| if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr)))) |
| { |
| error ("can%'t convert a vector of type %qT" |
| " to type %qT which has different size", |
| TREE_TYPE (expr), type); |
| return error_mark_node; |
| } |
| return build1 (VIEW_CONVERT_EXPR, type, expr); |
| |
| default: |
| error ("aggregate value used where an integer was expected"); |
| return convert (type, integer_zero_node); |
| } |
| } |
| |
| /* Convert EXPR to some integer (or enum) type TYPE. |
| |
| EXPR must be pointer, integer, discrete (enum, char, or bool), float, |
| fixed-point or vector; in other cases error is called. |
| |
| The result of this is always supposed to be a newly created tree node |
| not in use in any existing structure. */ |
| |
| tree |
| convert_to_integer (tree type, tree expr) |
| { |
| return convert_to_integer_1 (type, expr, true); |
| } |
| |
| /* A wrapper around convert_to_complex_1 that only folds the |
| expression if DOFOLD, or if it is CONSTANT_CLASS_OR_WRAPPER_P. */ |
| |
| tree |
| convert_to_integer_maybe_fold (tree type, tree expr, bool dofold) |
| { |
| tree result |
| = convert_to_integer_1 (type, expr, |
| dofold || CONSTANT_CLASS_OR_WRAPPER_P (expr)); |
| return preserve_any_location_wrapper (result, expr); |
| } |
| |
| /* Convert EXPR to the complex type TYPE in the usual ways. If FOLD_P is |
| true, try to fold the expression. */ |
| |
| static tree |
| convert_to_complex_1 (tree type, tree expr, bool fold_p) |
| { |
| location_t loc = EXPR_LOCATION (expr); |
| tree subtype = TREE_TYPE (type); |
| |
| switch (TREE_CODE (TREE_TYPE (expr))) |
| { |
| case REAL_TYPE: |
| case FIXED_POINT_TYPE: |
| case INTEGER_TYPE: |
| case ENUMERAL_TYPE: |
| case BOOLEAN_TYPE: |
| return build2 (COMPLEX_EXPR, type, convert (subtype, expr), |
| convert (subtype, integer_zero_node)); |
| |
| case COMPLEX_TYPE: |
| { |
| tree elt_type = TREE_TYPE (TREE_TYPE (expr)); |
| |
| if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype)) |
| return expr; |
| else if (TREE_CODE (expr) == COMPOUND_EXPR) |
| { |
| tree t = convert_to_complex_1 (type, TREE_OPERAND (expr, 1), |
| fold_p); |
| if (t == TREE_OPERAND (expr, 1)) |
| return expr; |
| return build2_loc (EXPR_LOCATION (expr), COMPOUND_EXPR, |
| TREE_TYPE (t), TREE_OPERAND (expr, 0), t); |
| } |
| else if (TREE_CODE (expr) == COMPLEX_EXPR) |
| return maybe_fold_build2_loc (fold_p, loc, COMPLEX_EXPR, type, |
| convert (subtype, |
| TREE_OPERAND (expr, 0)), |
| convert (subtype, |
| TREE_OPERAND (expr, 1))); |
| else |
| { |
| expr = save_expr (expr); |
| tree realp = maybe_fold_build1_loc (fold_p, loc, REALPART_EXPR, |
| TREE_TYPE (TREE_TYPE (expr)), |
| expr); |
| tree imagp = maybe_fold_build1_loc (fold_p, loc, IMAGPART_EXPR, |
| TREE_TYPE (TREE_TYPE (expr)), |
| expr); |
| return maybe_fold_build2_loc (fold_p, loc, COMPLEX_EXPR, type, |
| convert (subtype, realp), |
| convert (subtype, imagp)); |
| } |
| } |
| |
| case POINTER_TYPE: |
| case REFERENCE_TYPE: |
| error ("pointer value used where a complex was expected"); |
| return convert_to_complex_1 (type, integer_zero_node, fold_p); |
| |
| default: |
| error ("aggregate value used where a complex was expected"); |
| return convert_to_complex_1 (type, integer_zero_node, fold_p); |
| } |
| } |
| |
| /* A wrapper around convert_to_complex_1 that always folds the |
| expression. */ |
| |
| tree |
| convert_to_complex (tree type, tree expr) |
| { |
| return convert_to_complex_1 (type, expr, true); |
| } |
| |
| /* A wrapper around convert_to_complex_1 that only folds the |
| expression if DOFOLD, or if it is CONSTANT_CLASS_OR_WRAPPER_P. */ |
| |
| tree |
| convert_to_complex_maybe_fold (tree type, tree expr, bool dofold) |
| { |
| tree result |
| = convert_to_complex_1 (type, expr, |
| dofold || CONSTANT_CLASS_OR_WRAPPER_P (expr)); |
| return preserve_any_location_wrapper (result, expr); |
| } |
| |
| /* Convert EXPR to the vector type TYPE in the usual ways. */ |
| |
| tree |
| convert_to_vector (tree type, tree expr) |
| { |
| switch (TREE_CODE (TREE_TYPE (expr))) |
| { |
| case INTEGER_TYPE: |
| case VECTOR_TYPE: |
| if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr)))) |
| { |
| error ("can%'t convert a value of type %qT" |
| " to vector type %qT which has different size", |
| TREE_TYPE (expr), type); |
| return error_mark_node; |
| } |
| return build1 (VIEW_CONVERT_EXPR, type, expr); |
| |
| default: |
| error ("can%'t convert value to a vector"); |
| return error_mark_node; |
| } |
| } |
| |
| /* Convert EXPR to some fixed-point type TYPE. |
| |
| EXPR must be fixed-point, float, integer, or enumeral; |
| in other cases error is called. */ |
| |
| tree |
| convert_to_fixed (tree type, tree expr) |
| { |
| if (integer_zerop (expr)) |
| { |
| tree fixed_zero_node = build_fixed (type, FCONST0 (TYPE_MODE (type))); |
| return fixed_zero_node; |
| } |
| else if (integer_onep (expr) && ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type))) |
| { |
| tree fixed_one_node = build_fixed (type, FCONST1 (TYPE_MODE (type))); |
| return fixed_one_node; |
| } |
| |
| switch (TREE_CODE (TREE_TYPE (expr))) |
| { |
| case FIXED_POINT_TYPE: |
| case INTEGER_TYPE: |
| case ENUMERAL_TYPE: |
| case BOOLEAN_TYPE: |
| case REAL_TYPE: |
| return build1 (FIXED_CONVERT_EXPR, type, expr); |
| |
| case COMPLEX_TYPE: |
| return convert (type, |
| fold_build1 (REALPART_EXPR, |
| TREE_TYPE (TREE_TYPE (expr)), expr)); |
| |
| default: |
| error ("aggregate value used where a fixed-point was expected"); |
| return error_mark_node; |
| } |
| } |
| |
| #if CHECKING_P |
| |
| namespace selftest { |
| |
| /* Selftests for conversions. */ |
| |
| static void |
| test_convert_to_integer_maybe_fold (tree orig_type, tree new_type) |
| { |
| /* Calling convert_to_integer_maybe_fold on an INTEGER_CST. */ |
| |
| tree orig_cst = build_int_cst (orig_type, 42); |
| |
| /* Verify that convert_to_integer_maybe_fold on a constant returns a new |
| constant of the new type, unless the types are the same, in which |
| case verify it's a no-op. */ |
| { |
| tree result = convert_to_integer_maybe_fold (new_type, |
| orig_cst, false); |
| if (orig_type != new_type) |
| { |
| ASSERT_EQ (TREE_TYPE (result), new_type); |
| ASSERT_EQ (TREE_CODE (result), INTEGER_CST); |
| } |
| else |
| ASSERT_EQ (result, orig_cst); |
| } |
| |
| /* Calling convert_to_integer_maybe_fold on a location wrapper around |
| an INTEGER_CST. |
| |
| Verify that convert_to_integer_maybe_fold on a location wrapper |
| around a constant returns a new location wrapper around an equivalent |
| constant, both of the new type, unless the types are the same, |
| in which case the original wrapper should be returned. */ |
| { |
| const location_t loc = BUILTINS_LOCATION; |
| tree wrapped_orig_cst = maybe_wrap_with_location (orig_cst, loc); |
| tree result |
| = convert_to_integer_maybe_fold (new_type, wrapped_orig_cst, false); |
| ASSERT_EQ (TREE_TYPE (result), new_type); |
| ASSERT_EQ (EXPR_LOCATION (result), loc); |
| ASSERT_TRUE (location_wrapper_p (result)); |
| ASSERT_EQ (TREE_TYPE (TREE_OPERAND (result, 0)), new_type); |
| ASSERT_EQ (TREE_CODE (TREE_OPERAND (result, 0)), INTEGER_CST); |
| |
| if (orig_type == new_type) |
| ASSERT_EQ (result, wrapped_orig_cst); |
| } |
| } |
| |
| /* Verify that convert_to_integer_maybe_fold preserves locations. */ |
| |
| static void |
| test_convert_to_integer_maybe_fold () |
| { |
| /* char -> long. */ |
| test_convert_to_integer_maybe_fold (char_type_node, long_integer_type_node); |
| |
| /* char -> char. */ |
| test_convert_to_integer_maybe_fold (char_type_node, char_type_node); |
| |
| /* long -> char. */ |
| test_convert_to_integer_maybe_fold (char_type_node, long_integer_type_node); |
| |
| /* long -> long. */ |
| test_convert_to_integer_maybe_fold (long_integer_type_node, |
| long_integer_type_node); |
| } |
| |
| /* Run all of the selftests within this file. */ |
| |
| void |
| convert_c_tests () |
| { |
| test_convert_to_integer_maybe_fold (); |
| } |
| |
| } // namespace selftest |
| |
| #endif /* CHECKING_P */ |