blob: 25f562b0cec0c358f9e04f600db6887a6c122cb9 [file] [log] [blame]
/* Loop header copying on trees.
Copyright (C) 2004-2019 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "gimple-ssa.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "tree-into-ssa.h"
#include "cfgloop.h"
#include "tree-inline.h"
#include "tree-ssa-scopedtables.h"
#include "tree-ssa-threadedge.h"
#include "tree-ssa-sccvn.h"
#include "tree-phinodes.h"
#include "ssa-iterators.h"
#include "params.h"
/* Duplicates headers of loops if they are small enough, so that the statements
in the loop body are always executed when the loop is entered. This
increases effectiveness of code motion optimizations, and reduces the need
for loop preconditioning. */
/* Check whether we should duplicate HEADER of LOOP. At most *LIMIT
instructions should be duplicated, limit is decreased by the actual
amount. */
static bool
should_duplicate_loop_header_p (basic_block header, struct loop *loop,
int *limit)
{
gimple_stmt_iterator bsi;
gcc_assert (!header->aux);
/* Loop header copying usually increases size of the code. This used not to
be true, since quite often it is possible to verify that the condition is
satisfied in the first iteration and therefore to eliminate it. Jump
threading handles these cases now. */
if (optimize_loop_for_size_p (loop)
&& !loop->force_vectorize)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Not duplicating bb %i: optimizing for size.\n",
header->index);
return false;
}
gcc_assert (EDGE_COUNT (header->succs) > 0);
if (single_succ_p (header))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Not duplicating bb %i: it is single succ.\n",
header->index);
return false;
}
if (flow_bb_inside_loop_p (loop, EDGE_SUCC (header, 0)->dest)
&& flow_bb_inside_loop_p (loop, EDGE_SUCC (header, 1)->dest))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Not duplicating bb %i: both sucessors are in loop.\n",
loop->num);
return false;
}
/* If this is not the original loop header, we want it to have just
one predecessor in order to match the && pattern. */
if (header != loop->header && !single_pred_p (header))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Not duplicating bb %i: it has mutiple predecestors.\n",
header->index);
return false;
}
gcond *last = safe_dyn_cast <gcond *> (last_stmt (header));
if (!last)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Not duplicating bb %i: it does not end by conditional.\n",
header->index);
return false;
}
for (gphi_iterator psi = gsi_start_phis (header); !gsi_end_p (psi);
gsi_next (&psi))
{
gphi *phi = psi.phi ();
tree res = gimple_phi_result (phi);
if (INTEGRAL_TYPE_P (TREE_TYPE (res))
|| POINTER_TYPE_P (TREE_TYPE (res)))
gimple_set_uid (phi, 1 /* IV */);
else
gimple_set_uid (phi, 0);
}
/* Count number of instructions and punt on calls.
Populate stmts INV/IV flag to later apply heuristics to the
kind of conditions we want to copy. */
for (bsi = gsi_start_bb (header); !gsi_end_p (bsi); gsi_next (&bsi))
{
gimple *last = gsi_stmt (bsi);
if (gimple_code (last) == GIMPLE_LABEL)
continue;
if (is_gimple_debug (last))
continue;
if (gimple_code (last) == GIMPLE_CALL
&& (!gimple_inexpensive_call_p (as_a <gcall *> (last))
/* IFN_LOOP_DIST_ALIAS means that inner loop is distributed
at current loop's header. Don't copy in this case. */
|| gimple_call_internal_p (last, IFN_LOOP_DIST_ALIAS)))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Not duplicating bb %i: it contains call.\n",
header->index);
return false;
}
*limit -= estimate_num_insns (last, &eni_size_weights);
if (*limit < 0)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Not duplicating bb %i contains too many insns.\n",
header->index);
return false;
}
/* Classify the stmt based on whether its computation is based
on a IV or whether it is invariant in the loop. */
gimple_set_uid (last, 0);
if (!gimple_vuse (last))
{
bool inv = true;
bool iv = false;
ssa_op_iter i;
tree op;
FOR_EACH_SSA_TREE_OPERAND (op, last, i, SSA_OP_USE)
if (!SSA_NAME_IS_DEFAULT_DEF (op)
&& flow_bb_inside_loop_p (loop,
gimple_bb (SSA_NAME_DEF_STMT (op))))
{
if (!(gimple_uid (SSA_NAME_DEF_STMT (op)) & 2 /* INV */))
inv = false;
if (gimple_uid (SSA_NAME_DEF_STMT (op)) & 1 /* IV */)
iv = true;
}
gimple_set_uid (last, (iv ? 1 : 0) | (inv ? 2 : 0));
}
}
/* If the condition tests a non-IV loop variant we do not want to rotate
the loop further. Unless this is the original loop header. */
tree lhs = gimple_cond_lhs (last);
tree rhs = gimple_cond_rhs (last);
if (header != loop->header
&& ((TREE_CODE (lhs) == SSA_NAME
&& !SSA_NAME_IS_DEFAULT_DEF (lhs)
&& flow_bb_inside_loop_p (loop, gimple_bb (SSA_NAME_DEF_STMT (lhs)))
&& gimple_uid (SSA_NAME_DEF_STMT (lhs)) == 0)
|| (TREE_CODE (rhs) == SSA_NAME
&& !SSA_NAME_IS_DEFAULT_DEF (rhs)
&& flow_bb_inside_loop_p (loop,
gimple_bb (SSA_NAME_DEF_STMT (rhs)))
&& gimple_uid (SSA_NAME_DEF_STMT (rhs)) == 0)))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Not duplicating bb %i: condition based on non-IV loop"
"variant.\n", header->index);
return false;
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " Will duplicate bb %i\n", header->index);
return true;
}
/* Checks whether LOOP is a do-while style loop. */
static bool
do_while_loop_p (struct loop *loop)
{
gimple *stmt = last_stmt (loop->latch);
/* If the latch of the loop is not empty, it is not a do-while loop. */
if (stmt
&& gimple_code (stmt) != GIMPLE_LABEL)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Loop %i is not do-while loop: latch is not empty.\n",
loop->num);
return false;
}
/* If the latch does not have a single predecessor, it is not a
do-while loop. */
if (!single_pred_p (loop->latch))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Loop %i is not do-while loop: latch has multiple "
"predecessors.\n", loop->num);
return false;
}
/* If the latch predecessor doesn't exit the loop, it is not a
do-while loop. */
if (!loop_exits_from_bb_p (loop, single_pred (loop->latch)))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Loop %i is not do-while loop: latch predecessor "
"does not exit loop.\n", loop->num);
return false;
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Loop %i is do-while loop\n", loop->num);
return true;
}
namespace {
/* Common superclass for both header-copying phases. */
class ch_base : public gimple_opt_pass
{
protected:
ch_base (pass_data data, gcc::context *ctxt)
: gimple_opt_pass (data, ctxt)
{}
/* Copies headers of all loops in FUN for which process_loop_p is true. */
unsigned int copy_headers (function *fun);
/* Return true to copy headers of LOOP or false to skip. */
virtual bool process_loop_p (struct loop *loop) = 0;
};
const pass_data pass_data_ch =
{
GIMPLE_PASS, /* type */
"ch", /* name */
OPTGROUP_LOOP, /* optinfo_flags */
TV_TREE_CH, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
class pass_ch : public ch_base
{
public:
pass_ch (gcc::context *ctxt)
: ch_base (pass_data_ch, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *) { return flag_tree_ch != 0; }
/* Initialize and finalize loop structures, copying headers inbetween. */
virtual unsigned int execute (function *);
opt_pass * clone () { return new pass_ch (m_ctxt); }
protected:
/* ch_base method: */
virtual bool process_loop_p (struct loop *loop);
}; // class pass_ch
const pass_data pass_data_ch_vect =
{
GIMPLE_PASS, /* type */
"ch_vect", /* name */
OPTGROUP_LOOP, /* optinfo_flags */
TV_TREE_CH, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
0, /* todo_flags_finish */
};
/* This is a more aggressive version of the same pass, designed to run just
before if-conversion and vectorization, to put more loops into the form
required for those phases. */
class pass_ch_vect : public ch_base
{
public:
pass_ch_vect (gcc::context *ctxt)
: ch_base (pass_data_ch_vect, ctxt)
{}
/* opt_pass methods: */
virtual bool gate (function *fun)
{
return flag_tree_ch != 0
&& (flag_tree_loop_vectorize != 0 || fun->has_force_vectorize_loops);
}
/* Just copy headers, no initialization/finalization of loop structures. */
virtual unsigned int execute (function *);
protected:
/* ch_base method: */
virtual bool process_loop_p (struct loop *loop);
}; // class pass_ch_vect
/* For all loops, copy the condition at the end of the loop body in front
of the loop. This is beneficial since it increases efficiency of
code motion optimizations. It also saves one jump on entry to the loop. */
unsigned int
ch_base::copy_headers (function *fun)
{
struct loop *loop;
basic_block header;
edge exit, entry;
basic_block *bbs, *copied_bbs;
unsigned n_bbs;
unsigned bbs_size;
bool changed = false;
if (number_of_loops (fun) <= 1)
return 0;
bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (fun));
copied_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (fun));
bbs_size = n_basic_blocks_for_fn (fun);
auto_vec<std::pair<edge, loop_p> > copied;
FOR_EACH_LOOP (loop, 0)
{
int initial_limit = PARAM_VALUE (PARAM_MAX_LOOP_HEADER_INSNS);
int remaining_limit = initial_limit;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Analyzing loop %i\n", loop->num);
header = loop->header;
/* If the loop is already a do-while style one (either because it was
written as such, or because jump threading transformed it into one),
we might be in fact peeling the first iteration of the loop. This
in general is not a good idea. Also avoid touching infinite loops. */
if (!loop_has_exit_edges (loop)
|| !process_loop_p (loop))
continue;
/* Iterate the header copying up to limit; this takes care of the cases
like while (a && b) {...}, where we want to have both of the conditions
copied. TODO -- handle while (a || b) - like cases, by not requiring
the header to have just a single successor and copying up to
postdominator. */
exit = NULL;
n_bbs = 0;
while (should_duplicate_loop_header_p (header, loop, &remaining_limit))
{
/* Find a successor of header that is inside a loop; i.e. the new
header after the condition is copied. */
if (flow_bb_inside_loop_p (loop, EDGE_SUCC (header, 0)->dest))
exit = EDGE_SUCC (header, 0);
else
exit = EDGE_SUCC (header, 1);
bbs[n_bbs++] = header;
gcc_assert (bbs_size > n_bbs);
header = exit->dest;
}
if (!exit)
continue;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Duplicating header of the loop %d up to edge %d->%d,"
" %i insns.\n",
loop->num, exit->src->index, exit->dest->index,
initial_limit - remaining_limit);
/* Ensure that the header will have just the latch as a predecessor
inside the loop. */
if (!single_pred_p (exit->dest))
exit = single_pred_edge (split_edge (exit));
entry = loop_preheader_edge (loop);
propagate_threaded_block_debug_into (exit->dest, entry->dest);
if (!gimple_duplicate_sese_region (entry, exit, bbs, n_bbs, copied_bbs,
true))
{
fprintf (dump_file, "Duplication failed.\n");
continue;
}
copied.safe_push (std::make_pair (entry, loop));
/* If the loop has the form "for (i = j; i < j + 10; i++)" then
this copying can introduce a case where we rely on undefined
signed overflow to eliminate the preheader condition, because
we assume that "j < j + 10" is true. We don't want to warn
about that case for -Wstrict-overflow, because in general we
don't warn about overflow involving loops. Prevent the
warning by setting the no_warning flag in the condition. */
if (warn_strict_overflow > 0)
{
unsigned int i;
for (i = 0; i < n_bbs; ++i)
{
gimple_stmt_iterator bsi;
for (bsi = gsi_start_bb (copied_bbs[i]);
!gsi_end_p (bsi);
gsi_next (&bsi))
{
gimple *stmt = gsi_stmt (bsi);
if (gimple_code (stmt) == GIMPLE_COND)
{
tree lhs = gimple_cond_lhs (stmt);
if (gimple_cond_code (stmt) != EQ_EXPR
&& gimple_cond_code (stmt) != NE_EXPR
&& INTEGRAL_TYPE_P (TREE_TYPE (lhs))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (lhs)))
gimple_set_no_warning (stmt, true);
}
else if (is_gimple_assign (stmt))
{
enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
tree rhs1 = gimple_assign_rhs1 (stmt);
if (TREE_CODE_CLASS (rhs_code) == tcc_comparison
&& rhs_code != EQ_EXPR
&& rhs_code != NE_EXPR
&& INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (rhs1)))
gimple_set_no_warning (stmt, true);
}
}
}
}
/* Ensure that the latch and the preheader is simple (we know that they
are not now, since there was the loop exit condition. */
split_edge (loop_preheader_edge (loop));
split_edge (loop_latch_edge (loop));
if (dump_file && (dump_flags & TDF_DETAILS))
{
if (do_while_loop_p (loop))
fprintf (dump_file, "Loop %d is now do-while loop.\n", loop->num);
else
fprintf (dump_file, "Loop %d is still not do-while loop.\n",
loop->num);
}
changed = true;
}
if (changed)
{
update_ssa (TODO_update_ssa);
/* After updating SSA form perform CSE on the loop header
copies. This is esp. required for the pass before
vectorization since nothing cleans up copied exit tests
that can now be simplified. CSE from the entry of the
region we copied till all loop exit blocks but not
entering the loop itself. */
for (unsigned i = 0; i < copied.length (); ++i)
{
edge entry = copied[i].first;
loop_p loop = copied[i].second;
vec<edge> exit_edges = get_loop_exit_edges (loop);
bitmap exit_bbs = BITMAP_ALLOC (NULL);
for (unsigned j = 0; j < exit_edges.length (); ++j)
bitmap_set_bit (exit_bbs, exit_edges[j]->dest->index);
bitmap_set_bit (exit_bbs, loop->header->index);
do_rpo_vn (cfun, entry, exit_bbs);
BITMAP_FREE (exit_bbs);
exit_edges.release ();
}
}
free (bbs);
free (copied_bbs);
return changed ? TODO_cleanup_cfg : 0;
}
/* Initialize the loop structures we need, and finalize after. */
unsigned int
pass_ch::execute (function *fun)
{
loop_optimizer_init (LOOPS_HAVE_PREHEADERS
| LOOPS_HAVE_SIMPLE_LATCHES
| LOOPS_HAVE_RECORDED_EXITS);
unsigned int res = copy_headers (fun);
loop_optimizer_finalize ();
return res;
}
/* Assume an earlier phase has already initialized all the loop structures that
we need here (and perhaps others too), and that these will be finalized by
a later phase. */
unsigned int
pass_ch_vect::execute (function *fun)
{
return copy_headers (fun);
}
/* Apply header copying according to a very simple test of do-while shape. */
bool
pass_ch::process_loop_p (struct loop *loop)
{
return !do_while_loop_p (loop);
}
/* Apply header-copying to loops where we might enable vectorization. */
bool
pass_ch_vect::process_loop_p (struct loop *loop)
{
if (!flag_tree_loop_vectorize && !loop->force_vectorize)
return false;
if (loop->dont_vectorize)
return false;
/* The vectorizer won't handle anything with multiple exits, so skip. */
edge exit = single_exit (loop);
if (!exit)
return false;
if (!do_while_loop_p (loop))
return true;
return false;
}
} // anon namespace
gimple_opt_pass *
make_pass_ch_vect (gcc::context *ctxt)
{
return new pass_ch_vect (ctxt);
}
gimple_opt_pass *
make_pass_ch (gcc::context *ctxt)
{
return new pass_ch (ctxt);
}