blob: ca8bb943056a4b958c51eff970c329bc0a8ada16 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . I M G _ U T I L --
-- --
-- B o d y --
-- --
-- Copyright (C) 2020-2022, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with System.Img_Uns; use System.Img_Uns;
package body System.Img_Util is
------------------------
-- Set_Decimal_Digits --
------------------------
procedure Set_Decimal_Digits
(Digs : in out String;
NDigs : Natural;
S : out String;
P : in out Natural;
Scale : Integer;
Fore : Natural;
Aft : Natural;
Exp : Natural)
is
pragma Assert (NDigs >= 1);
pragma Assert (Digs'First = 1);
pragma Assert (Digs'First < Digs'Last);
Minus : constant Boolean := (Digs (Digs'First) = '-');
-- Set True if input is negative
Zero : Boolean := (Digs (Digs'First + 1) = '0');
-- Set True if input is exactly zero (only case when a leading zero
-- is permitted in the input string given to this procedure). This
-- flag can get set later if rounding causes the value to become zero.
FD : Natural := 2;
-- First digit position of digits remaining to be processed
LD : Natural := NDigs;
-- Last digit position of digits remaining to be processed
ND : Natural := NDigs - 1;
-- Number of digits remaining to be processed (LD - FD + 1)
Digits_Before_Point : Integer := ND - Scale;
-- Number of digits before decimal point in the input value. This
-- value can be negative if the input value is less than 0.1, so
-- it is an indication of the current exponent. Digits_Before_Point
-- is adjusted if the rounding step generates an extra digit.
Digits_After_Point : constant Natural := Integer'Max (1, Aft);
-- Digit positions after decimal point in result string
Expon : Integer;
-- Integer value of exponent
procedure Round (N : Integer);
-- Round the number in Digs. N is the position of the last digit to be
-- retained in the rounded position (rounding is based on Digs (N + 1)
-- FD, LD, ND are reset as necessary if required. Note that if the
-- result value rounds up (e.g. 9.99 => 10.0), an extra digit can be
-- placed in the sign position as a result of the rounding, this is
-- the case in which FD is adjusted. The call to Round has no effect
-- if N is outside the range FD .. LD.
procedure Set (C : Character);
pragma Inline (Set);
-- Sets character C in output buffer
procedure Set_Blanks_And_Sign (N : Integer);
-- Sets leading blanks and minus sign if needed. N is the number of
-- positions to be filled (a minus sign is output even if N is zero
-- or negative, but for a positive value, if N is non-positive, then
-- the call has no effect).
procedure Set_Digits (S, E : Natural);
pragma Inline (Set_Digits);
-- Set digits S through E from Digs, no effect if S > E
procedure Set_Zeroes (N : Integer);
pragma Inline (Set_Zeroes);
-- Set N zeroes, no effect if N is negative
-----------
-- Round --
-----------
procedure Round (N : Integer) is
D : Character;
pragma Assert (NDigs >= 1);
pragma Assert (Digs'First = 1);
pragma Assert (Digs'First < Digs'Last);
begin
-- Nothing to do if rounding past the last digit we have
if N >= LD then
return;
-- Cases of rounding before the initial digit
elsif N < FD then
-- The result is zero, unless we are rounding just before
-- the first digit, and the first digit is five or more.
if N = 1 and then Digs (Digs'First + 1) >= '5' then
Digs (Digs'First) := '1';
else
Digs (Digs'First) := '0';
Zero := True;
end if;
Digits_Before_Point := Digits_Before_Point + 1;
FD := 1;
LD := 1;
ND := 1;
-- Normal case of rounding an existing digit
else
LD := N;
pragma Assert (LD >= 1);
-- In this case, we have N < LD and N >= FD. FD is a Natural,
-- So we can conclude, LD >= 1
ND := LD - 1;
pragma Assert (N + 1 <= Digs'Last);
if Digs (N + 1) >= '5' then
for J in reverse Digs'First + 1 .. Digs'First + N - 1 loop
pragma Assert (Digs (J) in '0' .. '9' | ' ' | '-');
-- Because it is a decimal image, we can assume that
-- it can only contain these characters.
D := Character'Succ (Digs (J));
if D <= '9' then
Digs (J) := D;
return;
else
Digs (J) := '0';
end if;
end loop;
-- Here the rounding overflows into the sign position. That's
-- OK, because we already captured the value of the sign and
-- we are in any case destroying the value in the Digs buffer
Digs (Digs'First) := '1';
FD := 1;
ND := ND + 1;
Digits_Before_Point := Digits_Before_Point + 1;
end if;
end if;
end Round;
---------
-- Set --
---------
procedure Set (C : Character) is
begin
pragma Assert (P >= (S'First - 1) and P < S'Last and
P < Natural'Last);
-- No check is done as documented in the header : updating P to
-- point to the last character stored, the caller promises that the
-- buffer is large enough and no check is made for this.
-- Constraint_Error will not necessarily be raised if this
-- requirement is violated, since it is perfectly valid to compile
-- this unit with checks off.
P := P + 1;
S (P) := C;
end Set;
-------------------------
-- Set_Blanks_And_Sign --
-------------------------
procedure Set_Blanks_And_Sign (N : Integer) is
begin
if Minus then
for J in 1 .. N - 1 loop
Set (' ');
end loop;
Set ('-');
else
for J in 1 .. N loop
Set (' ');
end loop;
end if;
end Set_Blanks_And_Sign;
----------------
-- Set_Digits --
----------------
procedure Set_Digits (S, E : Natural) is
begin
pragma Assert (S >= Digs'First and E <= Digs'Last);
-- S and E should be in the Digs array range
-- TBC: Analysis should be completed
for J in S .. E loop
Set (Digs (J));
end loop;
end Set_Digits;
----------------
-- Set_Zeroes --
----------------
procedure Set_Zeroes (N : Integer) is
begin
for J in 1 .. N loop
Set ('0');
end loop;
end Set_Zeroes;
-- Start of processing for Set_Decimal_Digits
begin
-- Case of exponent given
if Exp > 0 then
Set_Blanks_And_Sign (Fore - 1);
Round (Digits_After_Point + 2);
Set (Digs (FD));
FD := FD + 1;
pragma Assert (ND >= 1);
ND := ND - 1;
Set ('.');
if ND >= Digits_After_Point then
Set_Digits (FD, FD + Digits_After_Point - 1);
else
Set_Digits (FD, LD);
Set_Zeroes (Digits_After_Point - ND);
end if;
-- Calculate exponent. The number of digits before the decimal point
-- in the input is Digits_Before_Point, and the number of digits
-- before the decimal point in the output is 1, so we can get the
-- exponent as the difference between these two values. The one
-- exception is for the value zero, which by convention has an
-- exponent of +0.
Expon := (if Zero then 0 else Digits_Before_Point - 1);
Set ('E');
ND := 0;
if Expon >= 0 then
Set ('+');
Set_Image_Unsigned (Unsigned (Expon), Digs, ND);
else
Set ('-');
Set_Image_Unsigned (Unsigned (-Expon), Digs, ND);
end if;
Set_Zeroes (Exp - ND - 1);
Set_Digits (1, ND);
return;
-- Case of no exponent given. To make these cases clear, we use
-- examples. For all the examples, we assume Fore = 2, Aft = 3.
-- A P in the example input string is an implied zero position,
-- not included in the input string.
else
-- Round at correct position
-- Input: 4PP => unchanged
-- Input: 400.03 => unchanged
-- Input 3.4567 => 3.457
-- Input: 9.9999 => 10.000
-- Input: 0.PPP5 => 0.001
-- Input: 0.PPP4 => 0
-- Input: 0.00003 => 0
Round (LD - (Scale - Digits_After_Point));
-- No digits before point in input
-- Input: .123 Output: 0.123
-- Input: .PP3 Output: 0.003
if Digits_Before_Point <= 0 then
Set_Blanks_And_Sign (Fore - 1);
Set ('0');
Set ('.');
declare
DA : Natural := Digits_After_Point;
-- Digits remaining to output after point
LZ : constant Integer := Integer'Min (DA, -Digits_Before_Point);
-- Number of leading zeroes after point. Note: there used to be
-- a Max of this result with zero, but that's redundant, since
-- we know DA is positive, and because of the test above, we
-- know that -Digits_Before_Point >= 0.
begin
Set_Zeroes (LZ);
DA := DA - LZ;
if DA < ND then
-- Note: it is definitely possible for the above condition
-- to be True, for example:
-- V => 1234, Scale => 5, Fore => 0, After => 1, Exp => 0
-- but in this case DA = 0, ND = 1, FD = 1, FD + DA-1 = 0
-- so the arguments in the call are (1, 0) meaning that no
-- digits are output.
-- No obvious example exists where the following call to
-- Set_Digits actually outputs some digits, but we lack a
-- proof that no such example exists.
-- So it is safer to retain this call, even though as a
-- result it is hard (or perhaps impossible) to create a
-- coverage test for the inlined code of the call.
Set_Digits (FD, FD + DA - 1);
else
Set_Digits (FD, LD);
Set_Zeroes (DA - ND);
end if;
end;
-- At least one digit before point in input
else
-- Less digits in input than are needed before point
-- Input: 1PP Output: 100.000
if ND < Digits_Before_Point then
-- Special case, if the input is the single digit 0, then we
-- do not want 000.000, but instead 0.000.
if ND = 1 and then Digs (FD) = '0' then
Set_Blanks_And_Sign (Fore - 1);
Set ('0');
-- Normal case where we need to output scaling zeroes
else
Set_Blanks_And_Sign (Fore - Digits_Before_Point);
Set_Digits (FD, LD);
Set_Zeroes (Digits_Before_Point - ND);
end if;
-- Set period and zeroes after the period
Set ('.');
Set_Zeroes (Digits_After_Point);
-- Input has full amount of digits before decimal point
else
Set_Blanks_And_Sign (Fore - Digits_Before_Point);
pragma Assert (FD + Digits_Before_Point - 1 >= 0);
-- In this branch, we have Digits_Before_Point > 0. It is the
-- else of test (Digits_Before_Point <= 0)
Set_Digits (FD, FD + Digits_Before_Point - 1);
Set ('.');
Set_Digits (FD + Digits_Before_Point, LD);
Set_Zeroes (Digits_After_Point - (ND - Digits_Before_Point));
end if;
end if;
end if;
end Set_Decimal_Digits;
--------------------------------
-- Set_Floating_Invalid_Value --
--------------------------------
procedure Set_Floating_Invalid_Value
(V : Floating_Invalid_Value;
S : out String;
P : in out Natural;
Fore : Natural;
Aft : Natural;
Exp : Natural)
is
procedure Set (C : Character);
-- Sets character C in output buffer
procedure Set_Special_Fill (N : Natural);
-- After outputting +Inf, -Inf or NaN, this routine fills out the
-- rest of the field with * characters. The argument is the number
-- of characters output so far (either 3 or 4)
---------
-- Set --
---------
procedure Set (C : Character) is
begin
pragma Assert (P in S'First - 1 .. S'Last - 1);
-- No check is done as documented in the header: updating P to point
-- to the last character stored, the caller promises that the buffer
-- is large enough and no check is made for this. Constraint_Error
-- will not necessarily be raised if this requirement is violated,
-- since it is perfectly valid to compile this unit with checks off.
P := P + 1;
S (P) := C;
end Set;
----------------------
-- Set_Special_Fill --
----------------------
procedure Set_Special_Fill (N : Natural) is
begin
if Exp /= 0 then
for J in N + 1 .. Fore + 1 + Aft + 1 + Exp loop
Set ('*');
end loop;
else
for J in N + 1 .. Fore + 1 + Aft loop
Set ('*');
end loop;
end if;
end Set_Special_Fill;
-- Start of processing for Set_Floating_Invalid_Value
begin
case V is
when Minus_Infinity =>
Set ('-');
Set ('I');
Set ('n');
Set ('f');
Set_Special_Fill (4);
when Infinity =>
Set ('+');
Set ('I');
Set ('n');
Set ('f');
Set_Special_Fill (4);
when Not_A_Number =>
Set ('N');
Set ('a');
Set ('N');
Set_Special_Fill (3);
end case;
end Set_Floating_Invalid_Value;
end System.Img_Util;