| /* Basic block path solver. |
| Copyright (C) 2021-2022 Free Software Foundation, Inc. |
| Contributed by Aldy Hernandez <aldyh@redhat.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "tree.h" |
| #include "gimple.h" |
| #include "cfganal.h" |
| #include "value-range.h" |
| #include "gimple-range.h" |
| #include "tree-pretty-print.h" |
| #include "gimple-range-path.h" |
| #include "ssa.h" |
| #include "tree-cfg.h" |
| #include "gimple-iterator.h" |
| |
| // Internal construct to help facilitate debugging of solver. |
| #define DEBUG_SOLVER (dump_file && (param_threader_debug == THREADER_DEBUG_ALL)) |
| |
| path_range_query::path_range_query (bool resolve, gimple_ranger *ranger) |
| : m_cache (new ssa_global_cache), |
| m_has_cache_entry (BITMAP_ALLOC (NULL)), |
| m_resolve (resolve), |
| m_alloced_ranger (!ranger) |
| { |
| if (m_alloced_ranger) |
| m_ranger = new gimple_ranger; |
| else |
| m_ranger = ranger; |
| |
| m_oracle = new path_oracle (m_ranger->oracle ()); |
| |
| if (m_resolve && flag_checking) |
| verify_marked_backedges (cfun); |
| } |
| |
| path_range_query::~path_range_query () |
| { |
| delete m_oracle; |
| if (m_alloced_ranger) |
| delete m_ranger; |
| BITMAP_FREE (m_has_cache_entry); |
| delete m_cache; |
| } |
| |
| // Return TRUE if NAME is in the import bitmap. |
| |
| bool |
| path_range_query::import_p (tree name) |
| { |
| return (TREE_CODE (name) == SSA_NAME |
| && bitmap_bit_p (m_imports, SSA_NAME_VERSION (name))); |
| } |
| |
| // Mark cache entry for NAME as unused. |
| |
| void |
| path_range_query::clear_cache (tree name) |
| { |
| unsigned v = SSA_NAME_VERSION (name); |
| bitmap_clear_bit (m_has_cache_entry, v); |
| } |
| |
| // If NAME has a cache entry, return it in R, and return TRUE. |
| |
| inline bool |
| path_range_query::get_cache (irange &r, tree name) |
| { |
| if (!gimple_range_ssa_p (name)) |
| return get_global_range_query ()->range_of_expr (r, name); |
| |
| unsigned v = SSA_NAME_VERSION (name); |
| if (bitmap_bit_p (m_has_cache_entry, v)) |
| return m_cache->get_global_range (r, name); |
| |
| return false; |
| } |
| |
| // Set the cache entry for NAME to R. |
| |
| void |
| path_range_query::set_cache (const irange &r, tree name) |
| { |
| unsigned v = SSA_NAME_VERSION (name); |
| bitmap_set_bit (m_has_cache_entry, v); |
| m_cache->set_global_range (name, r); |
| } |
| |
| void |
| path_range_query::dump (FILE *dump_file) |
| { |
| push_dump_file save (dump_file, dump_flags & ~TDF_DETAILS); |
| |
| if (m_path.is_empty ()) |
| return; |
| |
| unsigned i; |
| bitmap_iterator bi; |
| |
| dump_ranger (dump_file, m_path); |
| |
| fprintf (dump_file, "Imports:\n"); |
| EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi) |
| { |
| tree name = ssa_name (i); |
| print_generic_expr (dump_file, name, TDF_SLIM); |
| fprintf (dump_file, "\n"); |
| } |
| |
| m_cache->dump (dump_file); |
| } |
| |
| void |
| path_range_query::debug () |
| { |
| dump (stderr); |
| } |
| |
| // Return TRUE if NAME is defined outside the current path. |
| |
| bool |
| path_range_query::defined_outside_path (tree name) |
| { |
| gimple *def = SSA_NAME_DEF_STMT (name); |
| basic_block bb = gimple_bb (def); |
| |
| return !bb || !m_path.contains (bb); |
| } |
| |
| // Return the range of NAME on entry to the path. |
| |
| void |
| path_range_query::range_on_path_entry (irange &r, tree name) |
| { |
| gcc_checking_assert (defined_outside_path (name)); |
| basic_block entry = entry_bb (); |
| |
| // Prefer to use range_of_expr if we have a statement to look at, |
| // since it has better caching than range_on_edge. |
| gimple *last = last_stmt (entry); |
| if (last) |
| { |
| if (m_ranger->range_of_expr (r, name, last)) |
| return; |
| gcc_unreachable (); |
| } |
| |
| // If we have no statement, look at all the incoming ranges to the |
| // block. This can happen when we're querying a block with only an |
| // outgoing edge (no statement but the fall through edge), but for |
| // which we can determine a range on entry to the block. |
| int_range_max tmp; |
| bool changed = false; |
| r.set_undefined (); |
| for (unsigned i = 0; i < EDGE_COUNT (entry->preds); ++i) |
| { |
| edge e = EDGE_PRED (entry, i); |
| if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun) |
| && m_ranger->range_on_edge (tmp, e, name)) |
| { |
| r.union_ (tmp); |
| changed = true; |
| } |
| } |
| |
| // Make sure we don't return UNDEFINED by mistake. |
| if (!changed) |
| r.set_varying (TREE_TYPE (name)); |
| } |
| |
| // Return the range of NAME at the end of the path being analyzed. |
| |
| bool |
| path_range_query::internal_range_of_expr (irange &r, tree name, gimple *stmt) |
| { |
| if (!irange::supports_type_p (TREE_TYPE (name))) |
| return false; |
| |
| if (get_cache (r, name)) |
| return true; |
| |
| if (m_resolve && defined_outside_path (name)) |
| { |
| range_on_path_entry (r, name); |
| set_cache (r, name); |
| return true; |
| } |
| |
| if (stmt |
| && range_defined_in_block (r, name, gimple_bb (stmt))) |
| { |
| if (TREE_CODE (name) == SSA_NAME) |
| r.intersect (gimple_range_global (name)); |
| |
| set_cache (r, name); |
| return true; |
| } |
| |
| r = gimple_range_global (name); |
| return true; |
| } |
| |
| bool |
| path_range_query::range_of_expr (irange &r, tree name, gimple *stmt) |
| { |
| if (internal_range_of_expr (r, name, stmt)) |
| { |
| if (r.undefined_p ()) |
| m_undefined_path = true; |
| |
| return true; |
| } |
| return false; |
| } |
| |
| bool |
| path_range_query::unreachable_path_p () |
| { |
| return m_undefined_path; |
| } |
| |
| // Initialize the current path to PATH. The current block is set to |
| // the entry block to the path. |
| // |
| // Note that the blocks are in reverse order, so the exit block is |
| // path[0]. |
| |
| void |
| path_range_query::set_path (const vec<basic_block> &path) |
| { |
| gcc_checking_assert (path.length () > 1); |
| m_path = path.copy (); |
| m_pos = m_path.length () - 1; |
| bitmap_clear (m_has_cache_entry); |
| } |
| |
| bool |
| path_range_query::ssa_defined_in_bb (tree name, basic_block bb) |
| { |
| return (TREE_CODE (name) == SSA_NAME |
| && SSA_NAME_DEF_STMT (name) |
| && gimple_bb (SSA_NAME_DEF_STMT (name)) == bb); |
| } |
| |
| // Return the range of the result of PHI in R. |
| // |
| // Since PHIs are calculated in parallel at the beginning of the |
| // block, we must be careful to never save anything to the cache here. |
| // It is the caller's responsibility to adjust the cache. Also, |
| // calculating the PHI's range must not trigger additional lookups. |
| |
| void |
| path_range_query::ssa_range_in_phi (irange &r, gphi *phi) |
| { |
| tree name = gimple_phi_result (phi); |
| basic_block bb = gimple_bb (phi); |
| unsigned nargs = gimple_phi_num_args (phi); |
| |
| if (at_entry ()) |
| { |
| if (m_resolve && m_ranger->range_of_expr (r, name, phi)) |
| return; |
| |
| // Try to fold the phi exclusively with global or cached values. |
| // This will get things like PHI <5(99), 6(88)>. We do this by |
| // calling range_of_expr with no context. |
| int_range_max arg_range; |
| r.set_undefined (); |
| for (size_t i = 0; i < nargs; ++i) |
| { |
| tree arg = gimple_phi_arg_def (phi, i); |
| if (range_of_expr (arg_range, arg, /*stmt=*/NULL)) |
| r.union_ (arg_range); |
| else |
| { |
| r.set_varying (TREE_TYPE (name)); |
| return; |
| } |
| } |
| return; |
| } |
| |
| basic_block prev = prev_bb (); |
| edge e_in = find_edge (prev, bb); |
| |
| for (size_t i = 0; i < nargs; ++i) |
| if (e_in == gimple_phi_arg_edge (phi, i)) |
| { |
| tree arg = gimple_phi_arg_def (phi, i); |
| // Avoid using the cache for ARGs defined in this block, as |
| // that could create an ordering problem. |
| if (ssa_defined_in_bb (arg, bb) || !get_cache (r, arg)) |
| { |
| if (m_resolve) |
| { |
| int_range_max tmp; |
| // Using both the range on entry to the path, and the |
| // range on this edge yields significantly better |
| // results. |
| if (defined_outside_path (arg)) |
| range_on_path_entry (r, arg); |
| else |
| r.set_varying (TREE_TYPE (name)); |
| m_ranger->range_on_edge (tmp, e_in, arg); |
| r.intersect (tmp); |
| return; |
| } |
| r.set_varying (TREE_TYPE (name)); |
| } |
| return; |
| } |
| gcc_unreachable (); |
| } |
| |
| // If NAME is defined in BB, set R to the range of NAME, and return |
| // TRUE. Otherwise, return FALSE. |
| |
| bool |
| path_range_query::range_defined_in_block (irange &r, tree name, basic_block bb) |
| { |
| gimple *def_stmt = SSA_NAME_DEF_STMT (name); |
| basic_block def_bb = gimple_bb (def_stmt); |
| |
| if (def_bb != bb) |
| return false; |
| |
| if (get_cache (r, name)) |
| return true; |
| |
| if (gimple_code (def_stmt) == GIMPLE_PHI) |
| ssa_range_in_phi (r, as_a<gphi *> (def_stmt)); |
| else |
| { |
| if (name) |
| get_path_oracle ()->killing_def (name); |
| |
| if (!range_of_stmt (r, def_stmt, name)) |
| r.set_varying (TREE_TYPE (name)); |
| } |
| |
| if (bb) |
| m_non_null.adjust_range (r, name, bb, false); |
| |
| if (DEBUG_SOLVER && (bb || !r.varying_p ())) |
| { |
| fprintf (dump_file, "range_defined_in_block (BB%d) for ", bb ? bb->index : -1); |
| print_generic_expr (dump_file, name, TDF_SLIM); |
| fprintf (dump_file, " is "); |
| r.dump (dump_file); |
| fprintf (dump_file, "\n"); |
| } |
| |
| return true; |
| } |
| |
| // Compute ranges defined in the PHIs in this block. |
| |
| void |
| path_range_query::compute_ranges_in_phis (basic_block bb) |
| { |
| int_range_max r; |
| auto_bitmap phi_set; |
| |
| // PHIs must be resolved simultaneously on entry to the block |
| // because any dependencies must be satistifed with values on entry. |
| // Thus, we calculate all PHIs first, and then update the cache at |
| // the end. |
| |
| for (auto iter = gsi_start_phis (bb); !gsi_end_p (iter); gsi_next (&iter)) |
| { |
| gphi *phi = iter.phi (); |
| tree name = gimple_phi_result (phi); |
| |
| if (import_p (name) && range_defined_in_block (r, name, bb)) |
| { |
| unsigned v = SSA_NAME_VERSION (name); |
| set_cache (r, name); |
| bitmap_set_bit (phi_set, v); |
| // Pretend we don't have a cache entry for this name until |
| // we're done with all PHIs. |
| bitmap_clear_bit (m_has_cache_entry, v); |
| } |
| } |
| bitmap_ior_into (m_has_cache_entry, phi_set); |
| } |
| |
| // Return TRUE if relations may be invalidated after crossing edge E. |
| |
| bool |
| path_range_query::relations_may_be_invalidated (edge e) |
| { |
| // As soon as the path crosses a back edge, we can encounter |
| // definitions of SSA_NAMEs that may have had a use in the path |
| // already, so this will then be a new definition. The relation |
| // code is all designed around seeing things in dominator order, and |
| // crossing a back edge in the path violates this assumption. |
| return (e->flags & EDGE_DFS_BACK); |
| } |
| |
| // Compute ranges defined in the current block, or exported to the |
| // next block. |
| |
| void |
| path_range_query::compute_ranges_in_block (basic_block bb) |
| { |
| bitmap_iterator bi; |
| int_range_max r, cached_range; |
| unsigned i; |
| |
| if (m_resolve && !at_entry ()) |
| compute_phi_relations (bb, prev_bb ()); |
| |
| // Force recalculation of any names in the cache that are defined in |
| // this block. This can happen on interdependent SSA/phis in loops. |
| EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi) |
| { |
| tree name = ssa_name (i); |
| if (ssa_defined_in_bb (name, bb)) |
| clear_cache (name); |
| } |
| |
| // Solve imports defined in this block, starting with the PHIs... |
| compute_ranges_in_phis (bb); |
| // ...and then the rest of the imports. |
| EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi) |
| { |
| tree name = ssa_name (i); |
| |
| if (gimple_code (SSA_NAME_DEF_STMT (name)) != GIMPLE_PHI |
| && range_defined_in_block (r, name, bb)) |
| set_cache (r, name); |
| } |
| |
| if (at_exit ()) |
| return; |
| |
| // Solve imports that are exported to the next block. |
| basic_block next = next_bb (); |
| edge e = find_edge (bb, next); |
| |
| if (m_resolve && relations_may_be_invalidated (e)) |
| { |
| if (DEBUG_SOLVER) |
| fprintf (dump_file, |
| "Resetting relations as they may be invalidated in %d->%d.\n", |
| e->src->index, e->dest->index); |
| |
| path_oracle *p = get_path_oracle (); |
| p->reset_path (); |
| // ?? Instead of nuking the root oracle altogether, we could |
| // reset the path oracle to search for relations from the top of |
| // the loop with the root oracle. Something for future development. |
| p->set_root_oracle (nullptr); |
| } |
| |
| EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi) |
| { |
| tree name = ssa_name (i); |
| gori_compute &g = m_ranger->gori (); |
| bitmap exports = g.exports (bb); |
| |
| if (bitmap_bit_p (exports, i)) |
| { |
| if (g.outgoing_edge_range_p (r, e, name, *this)) |
| { |
| if (get_cache (cached_range, name)) |
| r.intersect (cached_range); |
| |
| set_cache (r, name); |
| if (DEBUG_SOLVER) |
| { |
| fprintf (dump_file, "outgoing_edge_range_p for "); |
| print_generic_expr (dump_file, name, TDF_SLIM); |
| fprintf (dump_file, " on edge %d->%d ", |
| e->src->index, e->dest->index); |
| fprintf (dump_file, "is "); |
| r.dump (dump_file); |
| fprintf (dump_file, "\n"); |
| } |
| } |
| } |
| } |
| |
| if (m_resolve) |
| compute_outgoing_relations (bb, next); |
| } |
| |
| // Adjust all pointer imports in BB with non-null information. |
| |
| void |
| path_range_query::adjust_for_non_null_uses (basic_block bb) |
| { |
| int_range_max r; |
| bitmap_iterator bi; |
| unsigned i; |
| |
| EXECUTE_IF_SET_IN_BITMAP (m_imports, 0, i, bi) |
| { |
| tree name = ssa_name (i); |
| |
| if (!POINTER_TYPE_P (TREE_TYPE (name))) |
| continue; |
| |
| if (get_cache (r, name)) |
| { |
| if (r.nonzero_p ()) |
| continue; |
| } |
| else |
| r.set_varying (TREE_TYPE (name)); |
| |
| if (m_non_null.adjust_range (r, name, bb, false)) |
| set_cache (r, name); |
| } |
| } |
| |
| // If NAME is a supported SSA_NAME, add it the bitmap in IMPORTS. |
| |
| bool |
| path_range_query::add_to_imports (tree name, bitmap imports) |
| { |
| if (TREE_CODE (name) == SSA_NAME |
| && irange::supports_type_p (TREE_TYPE (name))) |
| return bitmap_set_bit (imports, SSA_NAME_VERSION (name)); |
| return false; |
| } |
| |
| // Compute the imports to the path ending in EXIT. These are |
| // essentially the SSA names used to calculate the final conditional |
| // along the path. |
| // |
| // They are hints for the solver. Adding more elements doesn't slow |
| // us down, because we don't solve anything that doesn't appear in the |
| // path. On the other hand, not having enough imports will limit what |
| // we can solve. |
| |
| void |
| path_range_query::compute_imports (bitmap imports, basic_block exit) |
| { |
| // Start with the imports from the exit block... |
| gori_compute &gori = m_ranger->gori (); |
| bitmap r_imports = gori.imports (exit); |
| bitmap_copy (imports, r_imports); |
| |
| auto_vec<tree> worklist (bitmap_count_bits (imports)); |
| bitmap_iterator bi; |
| unsigned i; |
| EXECUTE_IF_SET_IN_BITMAP (imports, 0, i, bi) |
| { |
| tree name = ssa_name (i); |
| worklist.quick_push (name); |
| } |
| |
| // ...and add any operands used to define these imports. |
| while (!worklist.is_empty ()) |
| { |
| tree name = worklist.pop (); |
| gimple *def_stmt = SSA_NAME_DEF_STMT (name); |
| |
| if (is_gimple_assign (def_stmt)) |
| { |
| add_to_imports (gimple_assign_rhs1 (def_stmt), imports); |
| tree rhs = gimple_assign_rhs2 (def_stmt); |
| if (rhs && add_to_imports (rhs, imports)) |
| worklist.safe_push (rhs); |
| rhs = gimple_assign_rhs3 (def_stmt); |
| if (rhs && add_to_imports (rhs, imports)) |
| worklist.safe_push (rhs); |
| } |
| else if (gphi *phi = dyn_cast <gphi *> (def_stmt)) |
| { |
| for (size_t i = 0; i < gimple_phi_num_args (phi); ++i) |
| { |
| edge e = gimple_phi_arg_edge (phi, i); |
| tree arg = gimple_phi_arg (phi, i)->def; |
| |
| if (TREE_CODE (arg) == SSA_NAME |
| && m_path.contains (e->src) |
| && bitmap_set_bit (imports, SSA_NAME_VERSION (arg))) |
| worklist.safe_push (arg); |
| } |
| } |
| } |
| // Exported booleans along the path, may help conditionals. |
| if (m_resolve) |
| for (i = 0; i < m_path.length (); ++i) |
| { |
| basic_block bb = m_path[i]; |
| tree name; |
| FOR_EACH_GORI_EXPORT_NAME (gori, bb, name) |
| if (TREE_CODE (TREE_TYPE (name)) == BOOLEAN_TYPE) |
| bitmap_set_bit (imports, SSA_NAME_VERSION (name)); |
| } |
| } |
| |
| // Compute the ranges for IMPORTS along PATH. |
| // |
| // IMPORTS are the set of SSA names, any of which could potentially |
| // change the value of the final conditional in PATH. Default to the |
| // imports of the last block in the path if none is given. |
| |
| void |
| path_range_query::compute_ranges (const vec<basic_block> &path, |
| const bitmap_head *imports) |
| { |
| if (DEBUG_SOLVER) |
| fprintf (dump_file, "\n==============================================\n"); |
| |
| set_path (path); |
| m_undefined_path = false; |
| |
| if (imports) |
| bitmap_copy (m_imports, imports); |
| else |
| compute_imports (m_imports, exit_bb ()); |
| |
| if (m_resolve) |
| get_path_oracle ()->reset_path (); |
| |
| if (DEBUG_SOLVER) |
| { |
| fprintf (dump_file, "path_range_query: compute_ranges for path: "); |
| for (unsigned i = path.length (); i > 0; --i) |
| { |
| basic_block bb = path[i - 1]; |
| fprintf (dump_file, "%d", bb->index); |
| if (i > 1) |
| fprintf (dump_file, "->"); |
| } |
| fprintf (dump_file, "\n"); |
| } |
| |
| while (1) |
| { |
| basic_block bb = curr_bb (); |
| |
| compute_ranges_in_block (bb); |
| adjust_for_non_null_uses (bb); |
| |
| if (at_exit ()) |
| break; |
| |
| move_next (); |
| } |
| |
| if (DEBUG_SOLVER) |
| { |
| get_path_oracle ()->dump (dump_file); |
| dump (dump_file); |
| } |
| } |
| |
| // Convenience function to compute ranges along a path consisting of |
| // E->SRC and E->DEST. |
| |
| void |
| path_range_query::compute_ranges (edge e) |
| { |
| auto_vec<basic_block> bbs (2); |
| bbs.quick_push (e->dest); |
| bbs.quick_push (e->src); |
| compute_ranges (bbs); |
| } |
| |
| // A folding aid used to register and query relations along a path. |
| // When queried, it returns relations as they would appear on exit to |
| // the path. |
| // |
| // Relations are registered on entry so the path_oracle knows which |
| // block to query the root oracle at when a relation lies outside the |
| // path. However, when queried we return the relation on exit to the |
| // path, since the root_oracle ignores the registered. |
| |
| class jt_fur_source : public fur_depend |
| { |
| public: |
| jt_fur_source (gimple *s, path_range_query *, gori_compute *, |
| const vec<basic_block> &); |
| relation_kind query_relation (tree op1, tree op2) override; |
| void register_relation (gimple *, relation_kind, tree op1, tree op2) override; |
| void register_relation (edge, relation_kind, tree op1, tree op2) override; |
| private: |
| basic_block m_entry; |
| }; |
| |
| jt_fur_source::jt_fur_source (gimple *s, |
| path_range_query *query, |
| gori_compute *gori, |
| const vec<basic_block> &path) |
| : fur_depend (s, gori, query) |
| { |
| gcc_checking_assert (!path.is_empty ()); |
| |
| m_entry = path[path.length () - 1]; |
| |
| if (dom_info_available_p (CDI_DOMINATORS)) |
| m_oracle = query->oracle (); |
| else |
| m_oracle = NULL; |
| } |
| |
| // Ignore statement and register relation on entry to path. |
| |
| void |
| jt_fur_source::register_relation (gimple *, relation_kind k, tree op1, tree op2) |
| { |
| if (m_oracle) |
| m_oracle->register_relation (m_entry, k, op1, op2); |
| } |
| |
| // Ignore edge and register relation on entry to path. |
| |
| void |
| jt_fur_source::register_relation (edge, relation_kind k, tree op1, tree op2) |
| { |
| if (m_oracle) |
| m_oracle->register_relation (m_entry, k, op1, op2); |
| } |
| |
| relation_kind |
| jt_fur_source::query_relation (tree op1, tree op2) |
| { |
| if (!m_oracle) |
| return VREL_NONE; |
| |
| if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME) |
| return VREL_NONE; |
| |
| return m_oracle->query_relation (m_entry, op1, op2); |
| } |
| |
| // Return the range of STMT at the end of the path being analyzed. |
| |
| bool |
| path_range_query::range_of_stmt (irange &r, gimple *stmt, tree) |
| { |
| tree type = gimple_range_type (stmt); |
| |
| if (!irange::supports_type_p (type)) |
| return false; |
| |
| // If resolving unknowns, fold the statement making use of any |
| // relations along the path. |
| if (m_resolve) |
| { |
| fold_using_range f; |
| jt_fur_source src (stmt, this, &m_ranger->gori (), m_path); |
| if (!f.fold_stmt (r, stmt, src)) |
| r.set_varying (type); |
| } |
| // Otherwise, fold without relations. |
| else if (!fold_range (r, stmt, this)) |
| r.set_varying (type); |
| |
| return true; |
| } |
| |
| // If possible, register the relation on the incoming edge E into PHI. |
| |
| void |
| path_range_query::maybe_register_phi_relation (gphi *phi, edge e) |
| { |
| tree arg = gimple_phi_arg_def (phi, e->dest_idx); |
| |
| if (!gimple_range_ssa_p (arg)) |
| return; |
| |
| if (relations_may_be_invalidated (e)) |
| return; |
| |
| basic_block bb = gimple_bb (phi); |
| tree result = gimple_phi_result (phi); |
| |
| // Avoid recording the equivalence if the arg is defined in this |
| // block, as that could create an ordering problem. |
| if (ssa_defined_in_bb (arg, bb)) |
| return; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "maybe_register_phi_relation in bb%d:", bb->index); |
| |
| get_path_oracle ()->killing_def (result); |
| m_oracle->register_relation (entry_bb (), EQ_EXPR, arg, result); |
| } |
| |
| // Compute relations for each PHI in BB. For example: |
| // |
| // x_5 = PHI<y_9(5),...> |
| // |
| // If the path flows through BB5, we can register that x_5 == y_9. |
| |
| void |
| path_range_query::compute_phi_relations (basic_block bb, basic_block prev) |
| { |
| if (prev == NULL) |
| return; |
| |
| edge e_in = find_edge (prev, bb); |
| |
| for (gphi_iterator iter = gsi_start_phis (bb); !gsi_end_p (iter); |
| gsi_next (&iter)) |
| { |
| gphi *phi = iter.phi (); |
| tree result = gimple_phi_result (phi); |
| unsigned nargs = gimple_phi_num_args (phi); |
| |
| if (!import_p (result)) |
| continue; |
| |
| for (size_t i = 0; i < nargs; ++i) |
| if (e_in == gimple_phi_arg_edge (phi, i)) |
| { |
| maybe_register_phi_relation (phi, e_in); |
| break; |
| } |
| } |
| } |
| |
| // Compute outgoing relations from BB to NEXT. |
| |
| void |
| path_range_query::compute_outgoing_relations (basic_block bb, basic_block next) |
| { |
| gimple *stmt = last_stmt (bb); |
| |
| if (stmt |
| && gimple_code (stmt) == GIMPLE_COND |
| && (import_p (gimple_cond_lhs (stmt)) |
| || import_p (gimple_cond_rhs (stmt)))) |
| { |
| int_range<2> r; |
| gcond *cond = as_a<gcond *> (stmt); |
| edge e0 = EDGE_SUCC (bb, 0); |
| edge e1 = EDGE_SUCC (bb, 1); |
| |
| if (e0->dest == next) |
| gcond_edge_range (r, e0); |
| else if (e1->dest == next) |
| gcond_edge_range (r, e1); |
| else |
| gcc_unreachable (); |
| |
| jt_fur_source src (NULL, this, &m_ranger->gori (), m_path); |
| src.register_outgoing_edges (cond, r, e0, e1); |
| } |
| } |