| /* Routines to implement minimum-cost maximal flow algorithm used to smooth |
| basic block and edge frequency counts. |
| Copyright (C) 2008-2022 Free Software Foundation, Inc. |
| Contributed by Paul Yuan (yingbo.com@gmail.com) and |
| Vinodha Ramasamy (vinodha@google.com). |
| |
| This file is part of GCC. |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* References: |
| [1] "Feedback-directed Optimizations in GCC with Estimated Edge Profiles |
| from Hardware Event Sampling", Vinodha Ramasamy, Paul Yuan, Dehao Chen, |
| and Robert Hundt; GCC Summit 2008. |
| [2] "Complementing Missing and Inaccurate Profiling Using a Minimum Cost |
| Circulation Algorithm", Roy Levin, Ilan Newman and Gadi Haber; |
| HiPEAC '08. |
| |
| Algorithm to smooth basic block and edge counts: |
| 1. create_fixup_graph: Create fixup graph by translating function CFG into |
| a graph that satisfies MCF algorithm requirements. |
| 2. find_max_flow: Find maximal flow. |
| 3. compute_residual_flow: Form residual network. |
| 4. Repeat: |
| cancel_negative_cycle: While G contains a negative cost cycle C, reverse |
| the flow on the found cycle by the minimum residual capacity in that |
| cycle. |
| 5. Form the minimal cost flow |
| f(u,v) = rf(v, u). |
| 6. adjust_cfg_counts: Update initial edge weights with corrected weights. |
| delta(u.v) = f(u,v) -f(v,u). |
| w*(u,v) = w(u,v) + delta(u,v). */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "profile.h" |
| #include "dumpfile.h" |
| |
| /* CAP_INFINITY: Constant to represent infinite capacity. */ |
| #define CAP_INFINITY INTTYPE_MAXIMUM (int64_t) |
| |
| /* COST FUNCTION. */ |
| #define K_POS(b) ((b)) |
| #define K_NEG(b) (50 * (b)) |
| #define COST(k, w) ((k) / mcf_ln ((w) + 2)) |
| /* Limit the number of iterations for cancel_negative_cycles() to ensure |
| reasonable compile time. */ |
| #define MAX_ITER(n, e) 10 + (1000000 / ((n) * (e))) |
| enum edge_type |
| { |
| INVALID_EDGE, |
| VERTEX_SPLIT_EDGE, /* Edge to represent vertex with w(e) = w(v). */ |
| REDIRECT_EDGE, /* Edge after vertex transformation. */ |
| REVERSE_EDGE, |
| SOURCE_CONNECT_EDGE, /* Single edge connecting to single source. */ |
| SINK_CONNECT_EDGE, /* Single edge connecting to single sink. */ |
| BALANCE_EDGE, /* Edge connecting with source/sink: cp(e) = 0. */ |
| REDIRECT_NORMALIZED_EDGE, /* Normalized edge for a redirect edge. */ |
| REVERSE_NORMALIZED_EDGE /* Normalized edge for a reverse edge. */ |
| }; |
| |
| /* Structure to represent an edge in the fixup graph. */ |
| struct fixup_edge_type |
| { |
| int src; |
| int dest; |
| /* Flag denoting type of edge and attributes for the flow field. */ |
| edge_type type; |
| bool is_rflow_valid; |
| /* Index to the normalization vertex added for this edge. */ |
| int norm_vertex_index; |
| /* Flow for this edge. */ |
| gcov_type flow; |
| /* Residual flow for this edge - used during negative cycle canceling. */ |
| gcov_type rflow; |
| gcov_type weight; |
| gcov_type cost; |
| gcov_type max_capacity; |
| }; |
| |
| typedef fixup_edge_type *fixup_edge_p; |
| |
| |
| /* Structure to represent a vertex in the fixup graph. */ |
| struct fixup_vertex_type |
| { |
| vec<fixup_edge_p> succ_edges; |
| }; |
| |
| typedef fixup_vertex_type *fixup_vertex_p; |
| |
| /* Fixup graph used in the MCF algorithm. */ |
| struct fixup_graph_type |
| { |
| /* Current number of vertices for the graph. */ |
| int num_vertices; |
| /* Current number of edges for the graph. */ |
| int num_edges; |
| /* Index of new entry vertex. */ |
| int new_entry_index; |
| /* Index of new exit vertex. */ |
| int new_exit_index; |
| /* Fixup vertex list. Adjacency list for fixup graph. */ |
| fixup_vertex_p vertex_list; |
| /* Fixup edge list. */ |
| fixup_edge_p edge_list; |
| }; |
| |
| struct queue_type |
| { |
| int *queue; |
| int head; |
| int tail; |
| int size; |
| }; |
| |
| /* Structure used in the maximal flow routines to find augmenting path. */ |
| struct augmenting_path_type |
| { |
| /* Queue used to hold vertex indices. */ |
| queue_type queue_list; |
| /* Vector to hold chain of pred vertex indices in augmenting path. */ |
| int *bb_pred; |
| /* Vector that indicates if basic block i has been visited. */ |
| int *is_visited; |
| }; |
| |
| |
| /* Function definitions. */ |
| |
| /* Dump routines to aid debugging. */ |
| |
| /* Print basic block with index N for FIXUP_GRAPH in n' and n'' format. */ |
| |
| static void |
| print_basic_block (FILE *file, fixup_graph_type *fixup_graph, int n) |
| { |
| if (n == ENTRY_BLOCK) |
| fputs ("ENTRY", file); |
| else if (n == ENTRY_BLOCK + 1) |
| fputs ("ENTRY''", file); |
| else if (n == 2 * EXIT_BLOCK) |
| fputs ("EXIT", file); |
| else if (n == 2 * EXIT_BLOCK + 1) |
| fputs ("EXIT''", file); |
| else if (n == fixup_graph->new_exit_index) |
| fputs ("NEW_EXIT", file); |
| else if (n == fixup_graph->new_entry_index) |
| fputs ("NEW_ENTRY", file); |
| else |
| { |
| fprintf (file, "%d", n / 2); |
| if (n % 2) |
| fputs ("''", file); |
| else |
| fputs ("'", file); |
| } |
| } |
| |
| |
| /* Print edge S->D for given fixup_graph with n' and n'' format. |
| PARAMETERS: |
| S is the index of the source vertex of the edge (input) and |
| D is the index of the destination vertex of the edge (input) for the given |
| fixup_graph (input). */ |
| |
| static void |
| print_edge (FILE *file, fixup_graph_type *fixup_graph, int s, int d) |
| { |
| print_basic_block (file, fixup_graph, s); |
| fputs ("->", file); |
| print_basic_block (file, fixup_graph, d); |
| } |
| |
| |
| /* Dump out the attributes of a given edge FEDGE in the fixup_graph to a |
| file. */ |
| static void |
| dump_fixup_edge (FILE *file, fixup_graph_type *fixup_graph, fixup_edge_p fedge) |
| { |
| if (!fedge) |
| { |
| fputs ("NULL fixup graph edge.\n", file); |
| return; |
| } |
| |
| print_edge (file, fixup_graph, fedge->src, fedge->dest); |
| fputs (": ", file); |
| |
| if (fedge->type) |
| { |
| fprintf (file, "flow/capacity=%" PRId64 "/", |
| fedge->flow); |
| if (fedge->max_capacity == CAP_INFINITY) |
| fputs ("+oo,", file); |
| else |
| fprintf (file, "%" PRId64 ",", fedge->max_capacity); |
| } |
| |
| if (fedge->is_rflow_valid) |
| { |
| if (fedge->rflow == CAP_INFINITY) |
| fputs (" rflow=+oo.", file); |
| else |
| fprintf (file, " rflow=%" PRId64 ",", fedge->rflow); |
| } |
| |
| fprintf (file, " cost=%" PRId64 ".", fedge->cost); |
| |
| fprintf (file, "\t(%d->%d)", fedge->src, fedge->dest); |
| |
| if (fedge->type) |
| { |
| switch (fedge->type) |
| { |
| case VERTEX_SPLIT_EDGE: |
| fputs (" @VERTEX_SPLIT_EDGE", file); |
| break; |
| |
| case REDIRECT_EDGE: |
| fputs (" @REDIRECT_EDGE", file); |
| break; |
| |
| case SOURCE_CONNECT_EDGE: |
| fputs (" @SOURCE_CONNECT_EDGE", file); |
| break; |
| |
| case SINK_CONNECT_EDGE: |
| fputs (" @SINK_CONNECT_EDGE", file); |
| break; |
| |
| case REVERSE_EDGE: |
| fputs (" @REVERSE_EDGE", file); |
| break; |
| |
| case BALANCE_EDGE: |
| fputs (" @BALANCE_EDGE", file); |
| break; |
| |
| case REDIRECT_NORMALIZED_EDGE: |
| case REVERSE_NORMALIZED_EDGE: |
| fputs (" @NORMALIZED_EDGE", file); |
| break; |
| |
| default: |
| fputs (" @INVALID_EDGE", file); |
| break; |
| } |
| } |
| fputs ("\n", file); |
| } |
| |
| |
| /* Print out the edges and vertices of the given FIXUP_GRAPH, into the dump |
| file. The input string MSG is printed out as a heading. */ |
| |
| static void |
| dump_fixup_graph (FILE *file, fixup_graph_type *fixup_graph, const char *msg) |
| { |
| int i, j; |
| int fnum_vertices, fnum_edges; |
| |
| fixup_vertex_p fvertex_list, pfvertex; |
| fixup_edge_p pfedge; |
| |
| gcc_assert (fixup_graph); |
| fvertex_list = fixup_graph->vertex_list; |
| fnum_vertices = fixup_graph->num_vertices; |
| fnum_edges = fixup_graph->num_edges; |
| |
| fprintf (file, "\nDump fixup graph for %s(): %s.\n", |
| current_function_name (), msg); |
| fprintf (file, |
| "There are %d vertices and %d edges. new_exit_index is %d.\n\n", |
| fnum_vertices, fnum_edges, fixup_graph->new_exit_index); |
| |
| for (i = 0; i < fnum_vertices; i++) |
| { |
| pfvertex = fvertex_list + i; |
| fprintf (file, "vertex_list[%d]: %d succ fixup edges.\n", |
| i, pfvertex->succ_edges.length ()); |
| |
| for (j = 0; pfvertex->succ_edges.iterate (j, &pfedge); |
| j++) |
| { |
| /* Distinguish forward edges and backward edges in the residual flow |
| network. */ |
| if (pfedge->type) |
| fputs ("(f) ", file); |
| else if (pfedge->is_rflow_valid) |
| fputs ("(b) ", file); |
| dump_fixup_edge (file, fixup_graph, pfedge); |
| } |
| } |
| |
| fputs ("\n", file); |
| } |
| |
| |
| /* Utility routines. */ |
| /* ln() implementation: approximate calculation. Returns ln of X. */ |
| |
| static double |
| mcf_ln (double x) |
| { |
| #define E 2.71828 |
| int l = 1; |
| double m = E; |
| |
| gcc_assert (x >= 0); |
| |
| while (m < x) |
| { |
| m *= E; |
| l++; |
| } |
| |
| return l; |
| } |
| |
| |
| /* sqrt() implementation: based on open source QUAKE3 code (magic sqrt |
| implementation) by John Carmack. Returns sqrt of X. */ |
| |
| static double |
| mcf_sqrt (double x) |
| { |
| #define MAGIC_CONST1 0x1fbcf800 |
| #define MAGIC_CONST2 0x5f3759df |
| union { |
| int intPart; |
| float floatPart; |
| } convertor, convertor2; |
| |
| gcc_assert (x >= 0); |
| |
| convertor.floatPart = x; |
| convertor2.floatPart = x; |
| convertor.intPart = MAGIC_CONST1 + (convertor.intPart >> 1); |
| convertor2.intPart = MAGIC_CONST2 - (convertor2.intPart >> 1); |
| |
| return 0.5f * (convertor.floatPart + (x * convertor2.floatPart)); |
| } |
| |
| |
| /* Common code shared between add_fixup_edge and add_rfixup_edge. Adds an edge |
| (SRC->DEST) to the edge_list maintained in FIXUP_GRAPH with cost of the edge |
| added set to COST. */ |
| |
| static fixup_edge_p |
| add_edge (fixup_graph_type *fixup_graph, int src, int dest, gcov_type cost) |
| { |
| fixup_vertex_p curr_vertex = fixup_graph->vertex_list + src; |
| fixup_edge_p curr_edge = fixup_graph->edge_list + fixup_graph->num_edges; |
| curr_edge->src = src; |
| curr_edge->dest = dest; |
| curr_edge->cost = cost; |
| fixup_graph->num_edges++; |
| if (dump_file) |
| dump_fixup_edge (dump_file, fixup_graph, curr_edge); |
| curr_vertex->succ_edges.safe_push (curr_edge); |
| return curr_edge; |
| } |
| |
| |
| /* Add a fixup edge (src->dest) with attributes TYPE, WEIGHT, COST and |
| MAX_CAPACITY to the edge_list in the fixup graph. */ |
| |
| static void |
| add_fixup_edge (fixup_graph_type *fixup_graph, int src, int dest, |
| edge_type type, gcov_type weight, gcov_type cost, |
| gcov_type max_capacity) |
| { |
| fixup_edge_p curr_edge = add_edge (fixup_graph, src, dest, cost); |
| curr_edge->type = type; |
| curr_edge->weight = weight; |
| curr_edge->max_capacity = max_capacity; |
| } |
| |
| |
| /* Add a residual edge (SRC->DEST) with attributes RFLOW and COST |
| to the fixup graph. */ |
| |
| static void |
| add_rfixup_edge (fixup_graph_type *fixup_graph, int src, int dest, |
| gcov_type rflow, gcov_type cost) |
| { |
| fixup_edge_p curr_edge = add_edge (fixup_graph, src, dest, cost); |
| curr_edge->rflow = rflow; |
| curr_edge->is_rflow_valid = true; |
| /* This edge is not a valid edge - merely used to hold residual flow. */ |
| curr_edge->type = INVALID_EDGE; |
| } |
| |
| |
| /* Return the pointer to fixup edge SRC->DEST or NULL if edge does not |
| exist in the FIXUP_GRAPH. */ |
| |
| static fixup_edge_p |
| find_fixup_edge (fixup_graph_type *fixup_graph, int src, int dest) |
| { |
| int j; |
| fixup_edge_p pfedge; |
| fixup_vertex_p pfvertex; |
| |
| gcc_assert (src < fixup_graph->num_vertices); |
| |
| pfvertex = fixup_graph->vertex_list + src; |
| |
| for (j = 0; pfvertex->succ_edges.iterate (j, &pfedge); |
| j++) |
| if (pfedge->dest == dest) |
| return pfedge; |
| |
| return NULL; |
| } |
| |
| |
| /* Cleanup routine to free structures in FIXUP_GRAPH. */ |
| |
| static void |
| delete_fixup_graph (fixup_graph_type *fixup_graph) |
| { |
| int i; |
| int fnum_vertices = fixup_graph->num_vertices; |
| fixup_vertex_p pfvertex = fixup_graph->vertex_list; |
| |
| for (i = 0; i < fnum_vertices; i++, pfvertex++) |
| pfvertex->succ_edges.release (); |
| |
| free (fixup_graph->vertex_list); |
| free (fixup_graph->edge_list); |
| } |
| |
| |
| /* Creates a fixup graph FIXUP_GRAPH from the function CFG. */ |
| |
| static void |
| create_fixup_graph (fixup_graph_type *fixup_graph) |
| { |
| double sqrt_avg_vertex_weight = 0; |
| double total_vertex_weight = 0; |
| double k_pos = 0; |
| double k_neg = 0; |
| /* Vector to hold D(v) = sum_out_edges(v) - sum_in_edges(v). */ |
| gcov_type *diff_out_in = NULL; |
| gcov_type supply_value = 1, demand_value = 0; |
| gcov_type fcost = 0; |
| int new_entry_index = 0, new_exit_index = 0; |
| int i = 0, j = 0; |
| int new_index = 0; |
| basic_block bb; |
| edge e; |
| edge_iterator ei; |
| fixup_edge_p pfedge, r_pfedge; |
| fixup_edge_p fedge_list; |
| int fnum_edges; |
| |
| /* Each basic_block will be split into 2 during vertex transformation. */ |
| int fnum_vertices_after_transform = 2 * n_basic_blocks_for_fn (cfun); |
| int fnum_edges_after_transform = |
| n_edges_for_fn (cfun) + n_basic_blocks_for_fn (cfun); |
| |
| /* Count the new SOURCE and EXIT vertices to be added. */ |
| int fmax_num_vertices = |
| (fnum_vertices_after_transform + n_edges_for_fn (cfun) |
| + n_basic_blocks_for_fn (cfun) + 2); |
| |
| /* In create_fixup_graph: Each basic block and edge can be split into 3 |
| edges. Number of balance edges = n_basic_blocks. So after |
| create_fixup_graph: |
| max_edges = 4 * n_basic_blocks + 3 * n_edges |
| Accounting for residual flow edges |
| max_edges = 2 * (4 * n_basic_blocks + 3 * n_edges) |
| = 8 * n_basic_blocks + 6 * n_edges |
| < 8 * n_basic_blocks + 8 * n_edges. */ |
| int fmax_num_edges = 8 * (n_basic_blocks_for_fn (cfun) + |
| n_edges_for_fn (cfun)); |
| |
| /* Initial num of vertices in the fixup graph. */ |
| fixup_graph->num_vertices = n_basic_blocks_for_fn (cfun); |
| |
| /* Fixup graph vertex list. */ |
| fixup_graph->vertex_list = |
| (fixup_vertex_p) xcalloc (fmax_num_vertices, sizeof (fixup_vertex_type)); |
| |
| /* Fixup graph edge list. */ |
| fixup_graph->edge_list = |
| (fixup_edge_p) xcalloc (fmax_num_edges, sizeof (fixup_edge_type)); |
| |
| diff_out_in = |
| (gcov_type *) xcalloc (1 + fnum_vertices_after_transform, |
| sizeof (gcov_type)); |
| |
| /* Compute constants b, k_pos, k_neg used in the cost function calculation. |
| b = sqrt(avg_vertex_weight(cfg)); k_pos = b; k_neg = 50b. */ |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) |
| total_vertex_weight += bb_gcov_count (bb); |
| |
| sqrt_avg_vertex_weight = mcf_sqrt (total_vertex_weight / |
| n_basic_blocks_for_fn (cfun)); |
| |
| k_pos = K_POS (sqrt_avg_vertex_weight); |
| k_neg = K_NEG (sqrt_avg_vertex_weight); |
| |
| /* 1. Vertex Transformation: Split each vertex v into two vertices v' and v'', |
| connected by an edge e from v' to v''. w(e) = w(v). */ |
| |
| if (dump_file) |
| fprintf (dump_file, "\nVertex transformation:\n"); |
| |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb) |
| { |
| /* v'->v'': index1->(index1+1). */ |
| i = 2 * bb->index; |
| fcost = (gcov_type) COST (k_pos, bb_gcov_count (bb)); |
| add_fixup_edge (fixup_graph, i, i + 1, VERTEX_SPLIT_EDGE, bb_gcov_count (bb), |
| fcost, CAP_INFINITY); |
| fixup_graph->num_vertices++; |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| { |
| /* Edges with ignore attribute set should be treated like they don't |
| exist. */ |
| if (EDGE_INFO (e) && EDGE_INFO (e)->ignore) |
| continue; |
| j = 2 * e->dest->index; |
| fcost = (gcov_type) COST (k_pos, edge_gcov_count (e)); |
| add_fixup_edge (fixup_graph, i + 1, j, REDIRECT_EDGE, edge_gcov_count (e), |
| fcost, CAP_INFINITY); |
| } |
| } |
| |
| /* After vertex transformation. */ |
| gcc_assert (fixup_graph->num_vertices == fnum_vertices_after_transform); |
| /* Redirect edges are not added for edges with ignore attribute. */ |
| gcc_assert (fixup_graph->num_edges <= fnum_edges_after_transform); |
| |
| fnum_edges_after_transform = fixup_graph->num_edges; |
| |
| /* 2. Initialize D(v). */ |
| for (i = 0; i < fnum_edges_after_transform; i++) |
| { |
| pfedge = fixup_graph->edge_list + i; |
| diff_out_in[pfedge->src] += pfedge->weight; |
| diff_out_in[pfedge->dest] -= pfedge->weight; |
| } |
| |
| /* Entry block - vertex indices 0, 1; EXIT block - vertex indices 2, 3. */ |
| for (i = 0; i <= 3; i++) |
| diff_out_in[i] = 0; |
| |
| /* 3. Add reverse edges: needed to decrease counts during smoothing. */ |
| if (dump_file) |
| fprintf (dump_file, "\nReverse edges:\n"); |
| for (i = 0; i < fnum_edges_after_transform; i++) |
| { |
| pfedge = fixup_graph->edge_list + i; |
| if ((pfedge->src == 0) || (pfedge->src == 2)) |
| continue; |
| r_pfedge = find_fixup_edge (fixup_graph, pfedge->dest, pfedge->src); |
| if (!r_pfedge && pfedge->weight) |
| { |
| /* Skip adding reverse edges for edges with w(e) = 0, as its maximum |
| capacity is 0. */ |
| fcost = (gcov_type) COST (k_neg, pfedge->weight); |
| add_fixup_edge (fixup_graph, pfedge->dest, pfedge->src, |
| REVERSE_EDGE, 0, fcost, pfedge->weight); |
| } |
| } |
| |
| /* 4. Create single source and sink. Connect new source vertex s' to function |
| entry block. Connect sink vertex t' to function exit. */ |
| if (dump_file) |
| fprintf (dump_file, "\ns'->S, T->t':\n"); |
| |
| new_entry_index = fixup_graph->new_entry_index = fixup_graph->num_vertices; |
| fixup_graph->num_vertices++; |
| /* Set supply_value to 1 to avoid zero count function ENTRY. */ |
| add_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK, SOURCE_CONNECT_EDGE, |
| 1 /* supply_value */, 0, 1 /* supply_value */); |
| |
| /* Create new exit with EXIT_BLOCK as single pred. */ |
| new_exit_index = fixup_graph->new_exit_index = fixup_graph->num_vertices; |
| fixup_graph->num_vertices++; |
| add_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index, |
| SINK_CONNECT_EDGE, |
| 0 /* demand_value */, 0, 0 /* demand_value */); |
| |
| /* Connect vertices with unbalanced D(v) to source/sink. */ |
| if (dump_file) |
| fprintf (dump_file, "\nD(v) balance:\n"); |
| /* Skip vertices for ENTRY (0, 1) and EXIT (2,3) blocks, so start with i = 4. |
| diff_out_in[v''] will be 0, so skip v'' vertices, hence i += 2. */ |
| for (i = 4; i < new_entry_index; i += 2) |
| { |
| if (diff_out_in[i] > 0) |
| { |
| add_fixup_edge (fixup_graph, i, new_exit_index, BALANCE_EDGE, 0, 0, |
| diff_out_in[i]); |
| demand_value += diff_out_in[i]; |
| } |
| else if (diff_out_in[i] < 0) |
| { |
| add_fixup_edge (fixup_graph, new_entry_index, i, BALANCE_EDGE, 0, 0, |
| -diff_out_in[i]); |
| supply_value -= diff_out_in[i]; |
| } |
| } |
| |
| /* Set supply = demand. */ |
| if (dump_file) |
| { |
| fprintf (dump_file, "\nAdjust supply and demand:\n"); |
| fprintf (dump_file, "supply_value=%" PRId64 "\n", |
| supply_value); |
| fprintf (dump_file, "demand_value=%" PRId64 "\n", |
| demand_value); |
| } |
| |
| if (demand_value > supply_value) |
| { |
| pfedge = find_fixup_edge (fixup_graph, new_entry_index, ENTRY_BLOCK); |
| pfedge->max_capacity += (demand_value - supply_value); |
| } |
| else |
| { |
| pfedge = find_fixup_edge (fixup_graph, 2 * EXIT_BLOCK + 1, new_exit_index); |
| pfedge->max_capacity += (supply_value - demand_value); |
| } |
| |
| /* 6. Normalize edges: remove anti-parallel edges. Anti-parallel edges are |
| created by the vertex transformation step from self-edges in the original |
| CFG and by the reverse edges added earlier. */ |
| if (dump_file) |
| fprintf (dump_file, "\nNormalize edges:\n"); |
| |
| fnum_edges = fixup_graph->num_edges; |
| fedge_list = fixup_graph->edge_list; |
| |
| for (i = 0; i < fnum_edges; i++) |
| { |
| pfedge = fedge_list + i; |
| r_pfedge = find_fixup_edge (fixup_graph, pfedge->dest, pfedge->src); |
| if (((pfedge->type == VERTEX_SPLIT_EDGE) |
| || (pfedge->type == REDIRECT_EDGE)) && r_pfedge) |
| { |
| new_index = fixup_graph->num_vertices; |
| fixup_graph->num_vertices++; |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "\nAnti-parallel edge:\n"); |
| dump_fixup_edge (dump_file, fixup_graph, pfedge); |
| dump_fixup_edge (dump_file, fixup_graph, r_pfedge); |
| fprintf (dump_file, "New vertex is %d.\n", new_index); |
| fprintf (dump_file, "------------------\n"); |
| } |
| |
| pfedge->cost /= 2; |
| pfedge->norm_vertex_index = new_index; |
| if (dump_file) |
| { |
| fprintf (dump_file, "After normalization:\n"); |
| dump_fixup_edge (dump_file, fixup_graph, pfedge); |
| } |
| |
| /* Add a new fixup edge: new_index->src. */ |
| add_fixup_edge (fixup_graph, new_index, pfedge->src, |
| REVERSE_NORMALIZED_EDGE, 0, r_pfedge->cost, |
| r_pfedge->max_capacity); |
| gcc_assert (fixup_graph->num_vertices <= fmax_num_vertices); |
| |
| /* Edge: r_pfedge->src -> r_pfedge->dest |
| ==> r_pfedge->src -> new_index. */ |
| r_pfedge->dest = new_index; |
| r_pfedge->type = REVERSE_NORMALIZED_EDGE; |
| r_pfedge->cost = pfedge->cost; |
| r_pfedge->max_capacity = pfedge->max_capacity; |
| if (dump_file) |
| dump_fixup_edge (dump_file, fixup_graph, r_pfedge); |
| } |
| } |
| |
| if (dump_file) |
| dump_fixup_graph (dump_file, fixup_graph, "After create_fixup_graph()"); |
| |
| /* Cleanup. */ |
| free (diff_out_in); |
| } |
| |
| |
| /* Allocates space for the structures in AUGMENTING_PATH. The space needed is |
| proportional to the number of nodes in the graph, which is given by |
| GRAPH_SIZE. */ |
| |
| static void |
| init_augmenting_path (augmenting_path_type *augmenting_path, int graph_size) |
| { |
| augmenting_path->queue_list.queue = (int *) |
| xcalloc (graph_size + 2, sizeof (int)); |
| augmenting_path->queue_list.size = graph_size + 2; |
| augmenting_path->bb_pred = (int *) xcalloc (graph_size, sizeof (int)); |
| augmenting_path->is_visited = (int *) xcalloc (graph_size, sizeof (int)); |
| } |
| |
| /* Free the structures in AUGMENTING_PATH. */ |
| static void |
| free_augmenting_path (augmenting_path_type *augmenting_path) |
| { |
| free (augmenting_path->queue_list.queue); |
| free (augmenting_path->bb_pred); |
| free (augmenting_path->is_visited); |
| } |
| |
| |
| /* Queue routines. Assumes queue will never overflow. */ |
| |
| static void |
| init_queue (queue_type *queue_list) |
| { |
| gcc_assert (queue_list); |
| queue_list->head = 0; |
| queue_list->tail = 0; |
| } |
| |
| /* Return true if QUEUE_LIST is empty. */ |
| static bool |
| is_empty (queue_type *queue_list) |
| { |
| return (queue_list->head == queue_list->tail); |
| } |
| |
| /* Insert element X into QUEUE_LIST. */ |
| static void |
| enqueue (queue_type *queue_list, int x) |
| { |
| gcc_assert (queue_list->tail < queue_list->size); |
| queue_list->queue[queue_list->tail] = x; |
| (queue_list->tail)++; |
| } |
| |
| /* Return the first element in QUEUE_LIST. */ |
| static int |
| dequeue (queue_type *queue_list) |
| { |
| int x; |
| gcc_assert (queue_list->head >= 0); |
| x = queue_list->queue[queue_list->head]; |
| (queue_list->head)++; |
| return x; |
| } |
| |
| |
| /* Finds a negative cycle in the residual network using |
| the Bellman-Ford algorithm. The flow on the found cycle is reversed by the |
| minimum residual capacity of that cycle. ENTRY and EXIT vertices are not |
| considered. |
| |
| Parameters: |
| FIXUP_GRAPH - Residual graph (input/output) |
| The following are allocated/freed by the caller: |
| PI - Vector to hold predecessors in path (pi = pred index) |
| D - D[I] holds minimum cost of path from i to sink |
| CYCLE - Vector to hold the minimum cost cycle |
| |
| Return: |
| true if a negative cycle was found, false otherwise. */ |
| |
| static bool |
| cancel_negative_cycle (fixup_graph_type *fixup_graph, |
| int *pi, gcov_type *d, int *cycle) |
| { |
| int i, j, k; |
| int fnum_vertices, fnum_edges; |
| fixup_edge_p fedge_list, pfedge, r_pfedge; |
| bool found_cycle = false; |
| int cycle_start = 0, cycle_end = 0; |
| gcov_type sum_cost = 0, cycle_flow = 0; |
| int new_entry_index; |
| bool propagated = false; |
| |
| gcc_assert (fixup_graph); |
| fnum_vertices = fixup_graph->num_vertices; |
| fnum_edges = fixup_graph->num_edges; |
| fedge_list = fixup_graph->edge_list; |
| new_entry_index = fixup_graph->new_entry_index; |
| |
| /* Initialize. */ |
| /* Skip ENTRY. */ |
| for (i = 1; i < fnum_vertices; i++) |
| { |
| d[i] = CAP_INFINITY; |
| pi[i] = -1; |
| cycle[i] = -1; |
| } |
| d[ENTRY_BLOCK] = 0; |
| |
| /* Relax. */ |
| for (k = 1; k < fnum_vertices; k++) |
| { |
| propagated = false; |
| for (i = 0; i < fnum_edges; i++) |
| { |
| pfedge = fedge_list + i; |
| if (pfedge->src == new_entry_index) |
| continue; |
| if (pfedge->is_rflow_valid && pfedge->rflow |
| && d[pfedge->src] != CAP_INFINITY |
| && (d[pfedge->dest] > d[pfedge->src] + pfedge->cost)) |
| { |
| d[pfedge->dest] = d[pfedge->src] + pfedge->cost; |
| pi[pfedge->dest] = pfedge->src; |
| propagated = true; |
| } |
| } |
| if (!propagated) |
| break; |
| } |
| |
| if (!propagated) |
| /* No negative cycles exist. */ |
| return 0; |
| |
| /* Detect. */ |
| for (i = 0; i < fnum_edges; i++) |
| { |
| pfedge = fedge_list + i; |
| if (pfedge->src == new_entry_index) |
| continue; |
| if (pfedge->is_rflow_valid && pfedge->rflow |
| && d[pfedge->src] != CAP_INFINITY |
| && (d[pfedge->dest] > d[pfedge->src] + pfedge->cost)) |
| { |
| found_cycle = true; |
| break; |
| } |
| } |
| |
| if (!found_cycle) |
| return 0; |
| |
| /* Augment the cycle with the cycle's minimum residual capacity. */ |
| found_cycle = false; |
| cycle[0] = pfedge->dest; |
| j = pfedge->dest; |
| |
| for (i = 1; i < fnum_vertices; i++) |
| { |
| j = pi[j]; |
| cycle[i] = j; |
| for (k = 0; k < i; k++) |
| { |
| if (cycle[k] == j) |
| { |
| /* cycle[k] -> ... -> cycle[i]. */ |
| cycle_start = k; |
| cycle_end = i; |
| found_cycle = true; |
| break; |
| } |
| } |
| if (found_cycle) |
| break; |
| } |
| |
| gcc_assert (cycle[cycle_start] == cycle[cycle_end]); |
| if (dump_file) |
| fprintf (dump_file, "\nNegative cycle length is %d:\n", |
| cycle_end - cycle_start); |
| |
| sum_cost = 0; |
| cycle_flow = CAP_INFINITY; |
| for (k = cycle_start; k < cycle_end; k++) |
| { |
| pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]); |
| cycle_flow = MIN (cycle_flow, pfedge->rflow); |
| sum_cost += pfedge->cost; |
| if (dump_file) |
| fprintf (dump_file, "%d ", cycle[k]); |
| } |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "%d", cycle[k]); |
| fprintf (dump_file, |
| ": (%" PRId64 ", %" PRId64 |
| ")\n", sum_cost, cycle_flow); |
| fprintf (dump_file, |
| "Augment cycle with %" PRId64 "\n", |
| cycle_flow); |
| } |
| |
| for (k = cycle_start; k < cycle_end; k++) |
| { |
| pfedge = find_fixup_edge (fixup_graph, cycle[k + 1], cycle[k]); |
| r_pfedge = find_fixup_edge (fixup_graph, cycle[k], cycle[k + 1]); |
| pfedge->rflow -= cycle_flow; |
| if (pfedge->type) |
| pfedge->flow += cycle_flow; |
| r_pfedge->rflow += cycle_flow; |
| if (r_pfedge->type) |
| r_pfedge->flow -= cycle_flow; |
| } |
| |
| return true; |
| } |
| |
| |
| /* Computes the residual flow for FIXUP_GRAPH by setting the rflow field of |
| the edges. ENTRY and EXIT vertices should not be considered. */ |
| |
| static void |
| compute_residual_flow (fixup_graph_type *fixup_graph) |
| { |
| int i; |
| int fnum_edges; |
| fixup_edge_p fedge_list, pfedge; |
| |
| gcc_assert (fixup_graph); |
| |
| if (dump_file) |
| fputs ("\ncompute_residual_flow():\n", dump_file); |
| |
| fnum_edges = fixup_graph->num_edges; |
| fedge_list = fixup_graph->edge_list; |
| |
| for (i = 0; i < fnum_edges; i++) |
| { |
| pfedge = fedge_list + i; |
| pfedge->rflow = pfedge->max_capacity - pfedge->flow; |
| pfedge->is_rflow_valid = true; |
| add_rfixup_edge (fixup_graph, pfedge->dest, pfedge->src, pfedge->flow, |
| -pfedge->cost); |
| } |
| } |
| |
| |
| /* Uses Edmonds-Karp algorithm - BFS to find augmenting path from SOURCE to |
| SINK. The fields in the edge vector in the FIXUP_GRAPH are not modified by |
| this routine. The vector bb_pred in the AUGMENTING_PATH structure is updated |
| to reflect the path found. |
| Returns: 0 if no augmenting path is found, 1 otherwise. */ |
| |
| static int |
| find_augmenting_path (fixup_graph_type *fixup_graph, |
| augmenting_path_type *augmenting_path, int source, |
| int sink) |
| { |
| int u = 0; |
| int i; |
| fixup_vertex_p fvertex_list, pfvertex; |
| fixup_edge_p pfedge; |
| int *bb_pred, *is_visited; |
| queue_type *queue_list; |
| |
| gcc_assert (augmenting_path); |
| bb_pred = augmenting_path->bb_pred; |
| gcc_assert (bb_pred); |
| is_visited = augmenting_path->is_visited; |
| gcc_assert (is_visited); |
| queue_list = &(augmenting_path->queue_list); |
| |
| gcc_assert (fixup_graph); |
| |
| fvertex_list = fixup_graph->vertex_list; |
| |
| for (u = 0; u < fixup_graph->num_vertices; u++) |
| is_visited[u] = 0; |
| |
| init_queue (queue_list); |
| enqueue (queue_list, source); |
| bb_pred[source] = -1; |
| |
| while (!is_empty (queue_list)) |
| { |
| u = dequeue (queue_list); |
| is_visited[u] = 1; |
| pfvertex = fvertex_list + u; |
| for (i = 0; pfvertex->succ_edges.iterate (i, &pfedge); |
| i++) |
| { |
| int dest = pfedge->dest; |
| if ((pfedge->rflow > 0) && (is_visited[dest] == 0)) |
| { |
| enqueue (queue_list, dest); |
| bb_pred[dest] = u; |
| is_visited[dest] = 1; |
| if (dest == sink) |
| return 1; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| |
| /* Routine to find the maximal flow: |
| Algorithm: |
| 1. Initialize flow to 0 |
| 2. Find an augmenting path form source to sink. |
| 3. Send flow equal to the path's residual capacity along the edges of this path. |
| 4. Repeat steps 2 and 3 until no new augmenting path is found. |
| |
| Parameters: |
| SOURCE: index of source vertex (input) |
| SINK: index of sink vertex (input) |
| FIXUP_GRAPH: adjacency matrix representing the graph. The flow of the edges will be |
| set to have a valid maximal flow by this routine. (input) |
| Return: Maximum flow possible. */ |
| |
| static gcov_type |
| find_max_flow (fixup_graph_type *fixup_graph, int source, int sink) |
| { |
| int fnum_edges; |
| augmenting_path_type augmenting_path; |
| int *bb_pred; |
| gcov_type max_flow = 0; |
| int i, u; |
| fixup_edge_p fedge_list, pfedge, r_pfedge; |
| |
| gcc_assert (fixup_graph); |
| |
| fnum_edges = fixup_graph->num_edges; |
| fedge_list = fixup_graph->edge_list; |
| |
| /* Initialize flow to 0. */ |
| for (i = 0; i < fnum_edges; i++) |
| { |
| pfedge = fedge_list + i; |
| pfedge->flow = 0; |
| } |
| |
| compute_residual_flow (fixup_graph); |
| |
| init_augmenting_path (&augmenting_path, fixup_graph->num_vertices); |
| |
| bb_pred = augmenting_path.bb_pred; |
| while (find_augmenting_path (fixup_graph, &augmenting_path, source, sink)) |
| { |
| /* Determine the amount by which we can increment the flow. */ |
| gcov_type increment = CAP_INFINITY; |
| for (u = sink; u != source; u = bb_pred[u]) |
| { |
| pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u); |
| increment = MIN (increment, pfedge->rflow); |
| } |
| max_flow += increment; |
| |
| /* Now increment the flow. EXIT vertex index is 1. */ |
| for (u = sink; u != source; u = bb_pred[u]) |
| { |
| pfedge = find_fixup_edge (fixup_graph, bb_pred[u], u); |
| r_pfedge = find_fixup_edge (fixup_graph, u, bb_pred[u]); |
| if (pfedge->type) |
| { |
| /* forward edge. */ |
| pfedge->flow += increment; |
| pfedge->rflow -= increment; |
| r_pfedge->rflow += increment; |
| } |
| else |
| { |
| /* backward edge. */ |
| gcc_assert (r_pfedge->type); |
| r_pfedge->rflow += increment; |
| r_pfedge->flow -= increment; |
| pfedge->rflow -= increment; |
| } |
| } |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "\nDump augmenting path:\n"); |
| for (u = sink; u != source; u = bb_pred[u]) |
| { |
| print_basic_block (dump_file, fixup_graph, u); |
| fprintf (dump_file, "<-"); |
| } |
| fprintf (dump_file, |
| "ENTRY (path_capacity=%" PRId64 ")\n", |
| increment); |
| fprintf (dump_file, |
| "Network flow is %" PRId64 ".\n", |
| max_flow); |
| } |
| } |
| |
| free_augmenting_path (&augmenting_path); |
| if (dump_file) |
| dump_fixup_graph (dump_file, fixup_graph, "After find_max_flow()"); |
| return max_flow; |
| } |
| |
| |
| /* Computes the corrected edge and basic block weights using FIXUP_GRAPH |
| after applying the find_minimum_cost_flow() routine. */ |
| |
| static void |
| adjust_cfg_counts (fixup_graph_type *fixup_graph) |
| { |
| basic_block bb; |
| edge e; |
| edge_iterator ei; |
| int i, j; |
| fixup_edge_p pfedge, pfedge_n; |
| |
| gcc_assert (fixup_graph); |
| |
| if (dump_file) |
| fprintf (dump_file, "\nadjust_cfg_counts():\n"); |
| |
| FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), |
| EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb) |
| { |
| i = 2 * bb->index; |
| |
| /* Fixup BB. */ |
| if (dump_file) |
| fprintf (dump_file, |
| "BB%d: %" PRId64 "", bb->index, bb_gcov_count (bb)); |
| |
| pfedge = find_fixup_edge (fixup_graph, i, i + 1); |
| if (pfedge->flow) |
| { |
| bb_gcov_count (bb) += pfedge->flow; |
| if (dump_file) |
| { |
| fprintf (dump_file, " + %" PRId64 "(", |
| pfedge->flow); |
| print_edge (dump_file, fixup_graph, i, i + 1); |
| fprintf (dump_file, ")"); |
| } |
| } |
| |
| pfedge_n = |
| find_fixup_edge (fixup_graph, i + 1, pfedge->norm_vertex_index); |
| /* Deduct flow from normalized reverse edge. */ |
| if (pfedge->norm_vertex_index && pfedge_n->flow) |
| { |
| bb_gcov_count (bb) -= pfedge_n->flow; |
| if (dump_file) |
| { |
| fprintf (dump_file, " - %" PRId64 "(", |
| pfedge_n->flow); |
| print_edge (dump_file, fixup_graph, i + 1, |
| pfedge->norm_vertex_index); |
| fprintf (dump_file, ")"); |
| } |
| } |
| if (dump_file) |
| fprintf (dump_file, " = %" PRId64 "\n", bb_gcov_count (bb)); |
| |
| /* Fixup edge. */ |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| { |
| /* Treat edges with ignore attribute set as if they don't exist. */ |
| if (EDGE_INFO (e) && EDGE_INFO (e)->ignore) |
| continue; |
| |
| j = 2 * e->dest->index; |
| if (dump_file) |
| fprintf (dump_file, "%d->%d: %" PRId64 "", |
| bb->index, e->dest->index, edge_gcov_count (e)); |
| |
| pfedge = find_fixup_edge (fixup_graph, i + 1, j); |
| |
| if (bb->index != e->dest->index) |
| { |
| /* Non-self edge. */ |
| if (pfedge->flow) |
| { |
| edge_gcov_count (e) += pfedge->flow; |
| if (dump_file) |
| { |
| fprintf (dump_file, " + %" PRId64 "(", |
| pfedge->flow); |
| print_edge (dump_file, fixup_graph, i + 1, j); |
| fprintf (dump_file, ")"); |
| } |
| } |
| |
| pfedge_n = |
| find_fixup_edge (fixup_graph, j, pfedge->norm_vertex_index); |
| /* Deduct flow from normalized reverse edge. */ |
| if (pfedge->norm_vertex_index && pfedge_n->flow) |
| { |
| edge_gcov_count (e) -= pfedge_n->flow; |
| if (dump_file) |
| { |
| fprintf (dump_file, " - %" PRId64 "(", |
| pfedge_n->flow); |
| print_edge (dump_file, fixup_graph, j, |
| pfedge->norm_vertex_index); |
| fprintf (dump_file, ")"); |
| } |
| } |
| } |
| else |
| { |
| /* Handle self edges. Self edge is split with a normalization |
| vertex. Here i=j. */ |
| pfedge = find_fixup_edge (fixup_graph, j, i + 1); |
| pfedge_n = |
| find_fixup_edge (fixup_graph, i + 1, pfedge->norm_vertex_index); |
| edge_gcov_count (e) += pfedge_n->flow; |
| bb_gcov_count (bb) += pfedge_n->flow; |
| if (dump_file) |
| { |
| fprintf (dump_file, "(self edge)"); |
| fprintf (dump_file, " + %" PRId64 "(", |
| pfedge_n->flow); |
| print_edge (dump_file, fixup_graph, i + 1, |
| pfedge->norm_vertex_index); |
| fprintf (dump_file, ")"); |
| } |
| } |
| |
| if (bb_gcov_count (bb)) |
| e->probability = profile_probability::probability_in_gcov_type |
| (edge_gcov_count (e), bb_gcov_count (bb)); |
| if (dump_file) |
| { |
| fprintf (dump_file, " = %" PRId64 "\t", |
| edge_gcov_count (e)); |
| e->probability.dump (dump_file); |
| fprintf (dump_file, "\n"); |
| } |
| } |
| } |
| |
| bb_gcov_count (ENTRY_BLOCK_PTR_FOR_FN (cfun)) = |
| sum_edge_counts (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs); |
| bb_gcov_count (EXIT_BLOCK_PTR_FOR_FN (cfun)) = |
| sum_edge_counts (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); |
| |
| /* Compute edge probabilities. */ |
| FOR_ALL_BB_FN (bb, cfun) |
| { |
| if (bb_gcov_count (bb)) |
| { |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| e->probability = profile_probability::probability_in_gcov_type |
| (edge_gcov_count (e), bb_gcov_count (bb)); |
| } |
| } |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "\nCheck %s() CFG flow conservation:\n", |
| current_function_name ()); |
| FOR_EACH_BB_FN (bb, cfun) |
| { |
| if ((bb_gcov_count (bb) != sum_edge_counts (bb->preds)) |
| || (bb_gcov_count (bb) != sum_edge_counts (bb->succs))) |
| { |
| fprintf (dump_file, |
| "BB%d(%" PRId64 ") **INVALID**: ", |
| bb->index, bb_gcov_count (bb)); |
| fprintf (stderr, |
| "******** BB%d(%" PRId64 |
| ") **INVALID**: \n", bb->index, bb_gcov_count (bb)); |
| fprintf (dump_file, "in_edges=%" PRId64 " ", |
| sum_edge_counts (bb->preds)); |
| fprintf (dump_file, "out_edges=%" PRId64 "\n", |
| sum_edge_counts (bb->succs)); |
| } |
| } |
| } |
| } |
| |
| |
| /* Implements the negative cycle canceling algorithm to compute a minimum cost |
| flow. |
| Algorithm: |
| 1. Find maximal flow. |
| 2. Form residual network |
| 3. Repeat: |
| While G contains a negative cost cycle C, reverse the flow on the found cycle |
| by the minimum residual capacity in that cycle. |
| 4. Form the minimal cost flow |
| f(u,v) = rf(v, u) |
| Input: |
| FIXUP_GRAPH - Initial fixup graph. |
| The flow field is modified to represent the minimum cost flow. */ |
| |
| static void |
| find_minimum_cost_flow (fixup_graph_type *fixup_graph) |
| { |
| /* Holds the index of predecessor in path. */ |
| int *pred; |
| /* Used to hold the minimum cost cycle. */ |
| int *cycle; |
| /* Used to record the number of iterations of cancel_negative_cycle. */ |
| int iteration; |
| /* Vector d[i] holds the minimum cost of path from i to sink. */ |
| gcov_type *d; |
| int fnum_vertices; |
| int new_exit_index; |
| int new_entry_index; |
| |
| gcc_assert (fixup_graph); |
| fnum_vertices = fixup_graph->num_vertices; |
| new_exit_index = fixup_graph->new_exit_index; |
| new_entry_index = fixup_graph->new_entry_index; |
| |
| find_max_flow (fixup_graph, new_entry_index, new_exit_index); |
| |
| /* Initialize the structures for find_negative_cycle(). */ |
| pred = (int *) xcalloc (fnum_vertices, sizeof (int)); |
| d = (gcov_type *) xcalloc (fnum_vertices, sizeof (gcov_type)); |
| cycle = (int *) xcalloc (fnum_vertices, sizeof (int)); |
| |
| /* Repeatedly find and cancel negative cost cycles, until |
| no more negative cycles exist. This also updates the flow field |
| to represent the minimum cost flow so far. */ |
| iteration = 0; |
| while (cancel_negative_cycle (fixup_graph, pred, d, cycle)) |
| { |
| iteration++; |
| if (iteration > MAX_ITER (fixup_graph->num_vertices, |
| fixup_graph->num_edges)) |
| break; |
| } |
| |
| if (dump_file) |
| dump_fixup_graph (dump_file, fixup_graph, |
| "After find_minimum_cost_flow()"); |
| |
| /* Cleanup structures. */ |
| free (pred); |
| free (d); |
| free (cycle); |
| } |
| |
| |
| /* Compute the sum of the edge counts in TO_EDGES. */ |
| |
| gcov_type |
| sum_edge_counts (vec<edge, va_gc> *to_edges) |
| { |
| gcov_type sum = 0; |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, to_edges) |
| { |
| if (EDGE_INFO (e) && EDGE_INFO (e)->ignore) |
| continue; |
| sum += edge_gcov_count (e); |
| } |
| return sum; |
| } |
| |
| |
| /* Main routine. Smoothes the initial assigned basic block and edge counts using |
| a minimum cost flow algorithm, to ensure that the flow consistency rule is |
| obeyed: sum of outgoing edges = sum of incoming edges for each basic |
| block. */ |
| |
| void |
| mcf_smooth_cfg (void) |
| { |
| fixup_graph_type fixup_graph; |
| memset (&fixup_graph, 0, sizeof (fixup_graph)); |
| create_fixup_graph (&fixup_graph); |
| find_minimum_cost_flow (&fixup_graph); |
| adjust_cfg_counts (&fixup_graph); |
| delete_fixup_graph (&fixup_graph); |
| } |