blob: c436c640c376ab6f1b4515305c91528a6dbf9d43 [file] [log] [blame]
/* Analyze RTL for GNU compiler.
Copyright (C) 1987-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "rtlanal.h"
#include "tree.h"
#include "predict.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "insn-config.h"
#include "regs.h"
#include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
#include "recog.h"
#include "addresses.h"
#include "rtl-iter.h"
#include "hard-reg-set.h"
#include "function-abi.h"
/* Forward declarations */
static void set_of_1 (rtx, const_rtx, void *);
static bool covers_regno_p (const_rtx, unsigned int);
static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
static int computed_jump_p_1 (const_rtx);
static void parms_set (rtx, const_rtx, void *);
static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode,
const_rtx, machine_mode,
unsigned HOST_WIDE_INT);
static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode,
const_rtx, machine_mode,
unsigned HOST_WIDE_INT);
static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode,
const_rtx, machine_mode,
unsigned int);
static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode,
const_rtx, machine_mode,
unsigned int);
rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
/* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
SIGN_EXTEND then while narrowing we also have to enforce the
representation and sign-extend the value to mode DESTINATION_REP.
If the value is already sign-extended to DESTINATION_REP mode we
can just switch to DESTINATION mode on it. For each pair of
integral modes SOURCE and DESTINATION, when truncating from SOURCE
to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
contains the number of high-order bits in SOURCE that have to be
copies of the sign-bit so that we can do this mode-switch to
DESTINATION. */
static unsigned int
num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
/* Store X into index I of ARRAY. ARRAY is known to have at least I
elements. Return the new base of ARRAY. */
template <typename T>
typename T::value_type *
generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
value_type *base,
size_t i, value_type x)
{
if (base == array.stack)
{
if (i < LOCAL_ELEMS)
{
base[i] = x;
return base;
}
gcc_checking_assert (i == LOCAL_ELEMS);
/* A previous iteration might also have moved from the stack to the
heap, in which case the heap array will already be big enough. */
if (vec_safe_length (array.heap) <= i)
vec_safe_grow (array.heap, i + 1, true);
base = array.heap->address ();
memcpy (base, array.stack, sizeof (array.stack));
base[LOCAL_ELEMS] = x;
return base;
}
unsigned int length = array.heap->length ();
if (length > i)
{
gcc_checking_assert (base == array.heap->address ());
base[i] = x;
return base;
}
else
{
gcc_checking_assert (i == length);
vec_safe_push (array.heap, x);
return array.heap->address ();
}
}
/* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
number of elements added to the worklist. */
template <typename T>
size_t
generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
value_type *base,
size_t end, rtx_type x)
{
enum rtx_code code = GET_CODE (x);
const char *format = GET_RTX_FORMAT (code);
size_t orig_end = end;
if (__builtin_expect (INSN_P (x), false))
{
/* Put the pattern at the top of the queue, since that's what
we're likely to want most. It also allows for the SEQUENCE
code below. */
for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
if (format[i] == 'e')
{
value_type subx = T::get_value (x->u.fld[i].rt_rtx);
if (__builtin_expect (end < LOCAL_ELEMS, true))
base[end++] = subx;
else
base = add_single_to_queue (array, base, end++, subx);
}
}
else
for (int i = 0; format[i]; ++i)
if (format[i] == 'e')
{
value_type subx = T::get_value (x->u.fld[i].rt_rtx);
if (__builtin_expect (end < LOCAL_ELEMS, true))
base[end++] = subx;
else
base = add_single_to_queue (array, base, end++, subx);
}
else if (format[i] == 'E')
{
unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
rtx *vec = x->u.fld[i].rt_rtvec->elem;
if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
for (unsigned int j = 0; j < length; j++)
base[end++] = T::get_value (vec[j]);
else
for (unsigned int j = 0; j < length; j++)
base = add_single_to_queue (array, base, end++,
T::get_value (vec[j]));
if (code == SEQUENCE && end == length)
/* If the subrtxes of the sequence fill the entire array then
we know that no other parts of a containing insn are queued.
The caller is therefore iterating over the sequence as a
PATTERN (...), so we also want the patterns of the
subinstructions. */
for (unsigned int j = 0; j < length; j++)
{
typename T::rtx_type x = T::get_rtx (base[j]);
if (INSN_P (x))
base[j] = T::get_value (PATTERN (x));
}
}
return end - orig_end;
}
template <typename T>
void
generic_subrtx_iterator <T>::free_array (array_type &array)
{
vec_free (array.heap);
}
template <typename T>
const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
template class generic_subrtx_iterator <const_rtx_accessor>;
template class generic_subrtx_iterator <rtx_var_accessor>;
template class generic_subrtx_iterator <rtx_ptr_accessor>;
/* Return 1 if the value of X is unstable
(would be different at a different point in the program).
The frame pointer, arg pointer, etc. are considered stable
(within one function) and so is anything marked `unchanging'. */
int
rtx_unstable_p (const_rtx x)
{
const RTX_CODE code = GET_CODE (x);
int i;
const char *fmt;
switch (code)
{
case MEM:
return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
case CONST:
CASE_CONST_ANY:
case SYMBOL_REF:
case LABEL_REF:
return 0;
case REG:
/* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
/* The arg pointer varies if it is not a fixed register. */
|| (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
return 0;
/* ??? When call-clobbered, the value is stable modulo the restore
that must happen after a call. This currently screws up local-alloc
into believing that the restore is not needed. */
if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
return 0;
return 1;
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return 1;
/* Fall through. */
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
if (fmt[i] == 'e')
{
if (rtx_unstable_p (XEXP (x, i)))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (rtx_unstable_p (XVECEXP (x, i, j)))
return 1;
}
return 0;
}
/* Return 1 if X has a value that can vary even between two
executions of the program. 0 means X can be compared reliably
against certain constants or near-constants.
FOR_ALIAS is nonzero if we are called from alias analysis; if it is
zero, we are slightly more conservative.
The frame pointer and the arg pointer are considered constant. */
bool
rtx_varies_p (const_rtx x, bool for_alias)
{
RTX_CODE code;
int i;
const char *fmt;
if (!x)
return 0;
code = GET_CODE (x);
switch (code)
{
case MEM:
return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
case CONST:
CASE_CONST_ANY:
case SYMBOL_REF:
case LABEL_REF:
return 0;
case REG:
/* Note that we have to test for the actual rtx used for the frame
and arg pointers and not just the register number in case we have
eliminated the frame and/or arg pointer and are using it
for pseudos. */
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
/* The arg pointer varies if it is not a fixed register. */
|| (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
return 0;
if (x == pic_offset_table_rtx
/* ??? When call-clobbered, the value is stable modulo the restore
that must happen after a call. This currently screws up
local-alloc into believing that the restore is not needed, so we
must return 0 only if we are called from alias analysis. */
&& (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
return 0;
return 1;
case LO_SUM:
/* The operand 0 of a LO_SUM is considered constant
(in fact it is related specifically to operand 1)
during alias analysis. */
return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
|| rtx_varies_p (XEXP (x, 1), for_alias);
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return 1;
/* Fall through. */
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
if (fmt[i] == 'e')
{
if (rtx_varies_p (XEXP (x, i), for_alias))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
return 1;
}
return 0;
}
/* Compute an approximation for the offset between the register
FROM and TO for the current function, as it was at the start
of the routine. */
static poly_int64
get_initial_register_offset (int from, int to)
{
static const struct elim_table_t
{
const int from;
const int to;
} table[] = ELIMINABLE_REGS;
poly_int64 offset1, offset2;
unsigned int i, j;
if (to == from)
return 0;
/* It is not safe to call INITIAL_ELIMINATION_OFFSET before the epilogue
is completed, but we need to give at least an estimate for the stack
pointer based on the frame size. */
if (!epilogue_completed)
{
offset1 = crtl->outgoing_args_size + get_frame_size ();
#if !STACK_GROWS_DOWNWARD
offset1 = - offset1;
#endif
if (to == STACK_POINTER_REGNUM)
return offset1;
else if (from == STACK_POINTER_REGNUM)
return - offset1;
else
return 0;
}
for (i = 0; i < ARRAY_SIZE (table); i++)
if (table[i].from == from)
{
if (table[i].to == to)
{
INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
offset1);
return offset1;
}
for (j = 0; j < ARRAY_SIZE (table); j++)
{
if (table[j].to == to
&& table[j].from == table[i].to)
{
INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
offset1);
INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
offset2);
return offset1 + offset2;
}
if (table[j].from == to
&& table[j].to == table[i].to)
{
INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
offset1);
INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
offset2);
return offset1 - offset2;
}
}
}
else if (table[i].to == from)
{
if (table[i].from == to)
{
INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
offset1);
return - offset1;
}
for (j = 0; j < ARRAY_SIZE (table); j++)
{
if (table[j].to == to
&& table[j].from == table[i].from)
{
INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
offset1);
INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
offset2);
return - offset1 + offset2;
}
if (table[j].from == to
&& table[j].to == table[i].from)
{
INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
offset1);
INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
offset2);
return - offset1 - offset2;
}
}
}
/* If the requested register combination was not found,
try a different more simple combination. */
if (from == ARG_POINTER_REGNUM)
return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
else if (to == ARG_POINTER_REGNUM)
return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
else if (from == HARD_FRAME_POINTER_REGNUM)
return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
else if (to == HARD_FRAME_POINTER_REGNUM)
return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
else
return 0;
}
/* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
references on strict alignment machines. */
static int
rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size,
machine_mode mode, bool unaligned_mems)
{
enum rtx_code code = GET_CODE (x);
gcc_checking_assert (mode == BLKmode
|| mode == VOIDmode
|| known_size_p (size));
poly_int64 const_x1;
/* The offset must be a multiple of the mode size if we are considering
unaligned memory references on strict alignment machines. */
if (STRICT_ALIGNMENT
&& unaligned_mems
&& mode != BLKmode
&& mode != VOIDmode)
{
poly_int64 actual_offset = offset;
#ifdef SPARC_STACK_BOUNDARY_HACK
/* ??? The SPARC port may claim a STACK_BOUNDARY higher than
the real alignment of %sp. However, when it does this, the
alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
if (SPARC_STACK_BOUNDARY_HACK
&& (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
actual_offset -= STACK_POINTER_OFFSET;
#endif
if (!multiple_p (actual_offset, GET_MODE_SIZE (mode)))
return 1;
}
switch (code)
{
case SYMBOL_REF:
if (SYMBOL_REF_WEAK (x))
return 1;
if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
{
tree decl;
poly_int64 decl_size;
if (maybe_lt (offset, 0))
return 1;
if (!known_size_p (size))
return maybe_ne (offset, 0);
/* If the size of the access or of the symbol is unknown,
assume the worst. */
decl = SYMBOL_REF_DECL (x);
/* Else check that the access is in bounds. TODO: restructure
expr_size/tree_expr_size/int_expr_size and just use the latter. */
if (!decl)
decl_size = -1;
else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
{
if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &decl_size))
decl_size = -1;
}
else if (TREE_CODE (decl) == STRING_CST)
decl_size = TREE_STRING_LENGTH (decl);
else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
decl_size = int_size_in_bytes (TREE_TYPE (decl));
else
decl_size = -1;
return (!known_size_p (decl_size) || known_eq (decl_size, 0)
? maybe_ne (offset, 0)
: !known_subrange_p (offset, size, 0, decl_size));
}
return 0;
case LABEL_REF:
return 0;
case REG:
/* Stack references are assumed not to trap, but we need to deal with
nonsensical offsets. */
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
|| x == stack_pointer_rtx
/* The arg pointer varies if it is not a fixed register. */
|| (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
{
#ifdef RED_ZONE_SIZE
poly_int64 red_zone_size = RED_ZONE_SIZE;
#else
poly_int64 red_zone_size = 0;
#endif
poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
poly_int64 low_bound, high_bound;
if (!known_size_p (size))
return 1;
if (x == frame_pointer_rtx)
{
if (FRAME_GROWS_DOWNWARD)
{
high_bound = targetm.starting_frame_offset ();
low_bound = high_bound - get_frame_size ();
}
else
{
low_bound = targetm.starting_frame_offset ();
high_bound = low_bound + get_frame_size ();
}
}
else if (x == hard_frame_pointer_rtx)
{
poly_int64 sp_offset
= get_initial_register_offset (STACK_POINTER_REGNUM,
HARD_FRAME_POINTER_REGNUM);
poly_int64 ap_offset
= get_initial_register_offset (ARG_POINTER_REGNUM,
HARD_FRAME_POINTER_REGNUM);
#if STACK_GROWS_DOWNWARD
low_bound = sp_offset - red_zone_size - stack_boundary;
high_bound = ap_offset
+ FIRST_PARM_OFFSET (current_function_decl)
#if !ARGS_GROW_DOWNWARD
+ crtl->args.size
#endif
+ stack_boundary;
#else
high_bound = sp_offset + red_zone_size + stack_boundary;
low_bound = ap_offset
+ FIRST_PARM_OFFSET (current_function_decl)
#if ARGS_GROW_DOWNWARD
- crtl->args.size
#endif
- stack_boundary;
#endif
}
else if (x == stack_pointer_rtx)
{
poly_int64 ap_offset
= get_initial_register_offset (ARG_POINTER_REGNUM,
STACK_POINTER_REGNUM);
#if STACK_GROWS_DOWNWARD
low_bound = - red_zone_size - stack_boundary;
high_bound = ap_offset
+ FIRST_PARM_OFFSET (current_function_decl)
#if !ARGS_GROW_DOWNWARD
+ crtl->args.size
#endif
+ stack_boundary;
#else
high_bound = red_zone_size + stack_boundary;
low_bound = ap_offset
+ FIRST_PARM_OFFSET (current_function_decl)
#if ARGS_GROW_DOWNWARD
- crtl->args.size
#endif
- stack_boundary;
#endif
}
else
{
/* We assume that accesses are safe to at least the
next stack boundary.
Examples are varargs and __builtin_return_address. */
#if ARGS_GROW_DOWNWARD
high_bound = FIRST_PARM_OFFSET (current_function_decl)
+ stack_boundary;
low_bound = FIRST_PARM_OFFSET (current_function_decl)
- crtl->args.size - stack_boundary;
#else
low_bound = FIRST_PARM_OFFSET (current_function_decl)
- stack_boundary;
high_bound = FIRST_PARM_OFFSET (current_function_decl)
+ crtl->args.size + stack_boundary;
#endif
}
if (known_ge (offset, low_bound)
&& known_le (offset, high_bound - size))
return 0;
return 1;
}
/* All of the virtual frame registers are stack references. */
if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
&& REGNO (x) <= LAST_VIRTUAL_REGISTER)
return 0;
return 1;
case CONST:
return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
mode, unaligned_mems);
case PLUS:
/* An address is assumed not to trap if:
- it is the pic register plus a const unspec without offset. */
if (XEXP (x, 0) == pic_offset_table_rtx
&& GET_CODE (XEXP (x, 1)) == CONST
&& GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
&& known_eq (offset, 0))
return 0;
/* - or it is an address that can't trap plus a constant integer. */
if (poly_int_rtx_p (XEXP (x, 1), &const_x1)
&& !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + const_x1,
size, mode, unaligned_mems))
return 0;
return 1;
case LO_SUM:
case PRE_MODIFY:
return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
mode, unaligned_mems);
case PRE_DEC:
case PRE_INC:
case POST_DEC:
case POST_INC:
case POST_MODIFY:
return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
mode, unaligned_mems);
default:
break;
}
/* If it isn't one of the case above, it can cause a trap. */
return 1;
}
/* Return nonzero if the use of X as an address in a MEM can cause a trap. */
int
rtx_addr_can_trap_p (const_rtx x)
{
return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode, false);
}
/* Return true if X contains a MEM subrtx. */
bool
contains_mem_rtx_p (rtx x)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, ALL)
if (MEM_P (*iter))
return true;
return false;
}
/* Return true if X is an address that is known to not be zero. */
bool
nonzero_address_p (const_rtx x)
{
const enum rtx_code code = GET_CODE (x);
switch (code)
{
case SYMBOL_REF:
return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
case LABEL_REF:
return true;
case REG:
/* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
|| x == stack_pointer_rtx
|| (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
return true;
/* All of the virtual frame registers are stack references. */
if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
&& REGNO (x) <= LAST_VIRTUAL_REGISTER)
return true;
return false;
case CONST:
return nonzero_address_p (XEXP (x, 0));
case PLUS:
/* Handle PIC references. */
if (XEXP (x, 0) == pic_offset_table_rtx
&& CONSTANT_P (XEXP (x, 1)))
return true;
return false;
case PRE_MODIFY:
/* Similar to the above; allow positive offsets. Further, since
auto-inc is only allowed in memories, the register must be a
pointer. */
if (CONST_INT_P (XEXP (x, 1))
&& INTVAL (XEXP (x, 1)) > 0)
return true;
return nonzero_address_p (XEXP (x, 0));
case PRE_INC:
/* Similarly. Further, the offset is always positive. */
return true;
case PRE_DEC:
case POST_DEC:
case POST_INC:
case POST_MODIFY:
return nonzero_address_p (XEXP (x, 0));
case LO_SUM:
return nonzero_address_p (XEXP (x, 1));
default:
break;
}
/* If it isn't one of the case above, might be zero. */
return false;
}
/* Return 1 if X refers to a memory location whose address
cannot be compared reliably with constant addresses,
or if X refers to a BLKmode memory object.
FOR_ALIAS is nonzero if we are called from alias analysis; if it is
zero, we are slightly more conservative. */
bool
rtx_addr_varies_p (const_rtx x, bool for_alias)
{
enum rtx_code code;
int i;
const char *fmt;
if (x == 0)
return 0;
code = GET_CODE (x);
if (code == MEM)
return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
if (fmt[i] == 'e')
{
if (rtx_addr_varies_p (XEXP (x, i), for_alias))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
return 1;
}
return 0;
}
/* Return the CALL in X if there is one. */
rtx
get_call_rtx_from (const rtx_insn *insn)
{
rtx x = PATTERN (insn);
if (GET_CODE (x) == PARALLEL)
x = XVECEXP (x, 0, 0);
if (GET_CODE (x) == SET)
x = SET_SRC (x);
if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
return x;
return NULL_RTX;
}
/* Get the declaration of the function called by INSN. */
tree
get_call_fndecl (const rtx_insn *insn)
{
rtx note, datum;
note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
if (note == NULL_RTX)
return NULL_TREE;
datum = XEXP (note, 0);
if (datum != NULL_RTX)
return SYMBOL_REF_DECL (datum);
return NULL_TREE;
}
/* Return the value of the integer term in X, if one is apparent;
otherwise return 0.
Only obvious integer terms are detected.
This is used in cse.cc with the `related_value' field. */
HOST_WIDE_INT
get_integer_term (const_rtx x)
{
if (GET_CODE (x) == CONST)
x = XEXP (x, 0);
if (GET_CODE (x) == MINUS
&& CONST_INT_P (XEXP (x, 1)))
return - INTVAL (XEXP (x, 1));
if (GET_CODE (x) == PLUS
&& CONST_INT_P (XEXP (x, 1)))
return INTVAL (XEXP (x, 1));
return 0;
}
/* If X is a constant, return the value sans apparent integer term;
otherwise return 0.
Only obvious integer terms are detected. */
rtx
get_related_value (const_rtx x)
{
if (GET_CODE (x) != CONST)
return 0;
x = XEXP (x, 0);
if (GET_CODE (x) == PLUS
&& CONST_INT_P (XEXP (x, 1)))
return XEXP (x, 0);
else if (GET_CODE (x) == MINUS
&& CONST_INT_P (XEXP (x, 1)))
return XEXP (x, 0);
return 0;
}
/* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
to somewhere in the same object or object_block as SYMBOL. */
bool
offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
{
tree decl;
if (GET_CODE (symbol) != SYMBOL_REF)
return false;
if (offset == 0)
return true;
if (offset > 0)
{
if (CONSTANT_POOL_ADDRESS_P (symbol)
&& offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
return true;
decl = SYMBOL_REF_DECL (symbol);
if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
return true;
}
if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
&& SYMBOL_REF_BLOCK (symbol)
&& SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
&& ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
< (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
return true;
return false;
}
/* Split X into a base and a constant offset, storing them in *BASE_OUT
and *OFFSET_OUT respectively. */
void
split_const (rtx x, rtx *base_out, rtx *offset_out)
{
if (GET_CODE (x) == CONST)
{
x = XEXP (x, 0);
if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
{
*base_out = XEXP (x, 0);
*offset_out = XEXP (x, 1);
return;
}
}
*base_out = x;
*offset_out = const0_rtx;
}
/* Express integer value X as some value Y plus a polynomial offset,
where Y is either const0_rtx, X or something within X (as opposed
to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */
rtx
strip_offset (rtx x, poly_int64_pod *offset_out)
{
rtx base = const0_rtx;
rtx test = x;
if (GET_CODE (test) == CONST)
test = XEXP (test, 0);
if (GET_CODE (test) == PLUS)
{
base = XEXP (test, 0);
test = XEXP (test, 1);
}
if (poly_int_rtx_p (test, offset_out))
return base;
*offset_out = 0;
return x;
}
/* Return the argument size in REG_ARGS_SIZE note X. */
poly_int64
get_args_size (const_rtx x)
{
gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE);
return rtx_to_poly_int64 (XEXP (x, 0));
}
/* Return the number of places FIND appears within X. If COUNT_DEST is
zero, we do not count occurrences inside the destination of a SET. */
int
count_occurrences (const_rtx x, const_rtx find, int count_dest)
{
int i, j;
enum rtx_code code;
const char *format_ptr;
int count;
if (x == find)
return 1;
code = GET_CODE (x);
switch (code)
{
case REG:
CASE_CONST_ANY:
case SYMBOL_REF:
case CODE_LABEL:
case PC:
return 0;
case EXPR_LIST:
count = count_occurrences (XEXP (x, 0), find, count_dest);
if (XEXP (x, 1))
count += count_occurrences (XEXP (x, 1), find, count_dest);
return count;
case MEM:
if (MEM_P (find) && rtx_equal_p (x, find))
return 1;
break;
case SET:
if (SET_DEST (x) == find && ! count_dest)
return count_occurrences (SET_SRC (x), find, count_dest);
break;
default:
break;
}
format_ptr = GET_RTX_FORMAT (code);
count = 0;
for (i = 0; i < GET_RTX_LENGTH (code); i++)
{
switch (*format_ptr++)
{
case 'e':
count += count_occurrences (XEXP (x, i), find, count_dest);
break;
case 'E':
for (j = 0; j < XVECLEN (x, i); j++)
count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
break;
}
}
return count;
}
/* Return TRUE if OP is a register or subreg of a register that
holds an unsigned quantity. Otherwise, return FALSE. */
bool
unsigned_reg_p (rtx op)
{
if (REG_P (op)
&& REG_EXPR (op)
&& TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
return true;
if (GET_CODE (op) == SUBREG
&& SUBREG_PROMOTED_SIGN (op))
return true;
return false;
}
/* Nonzero if register REG appears somewhere within IN.
Also works if REG is not a register; in this case it checks
for a subexpression of IN that is Lisp "equal" to REG. */
int
reg_mentioned_p (const_rtx reg, const_rtx in)
{
const char *fmt;
int i;
enum rtx_code code;
if (in == 0)
return 0;
if (reg == in)
return 1;
if (GET_CODE (in) == LABEL_REF)
return reg == label_ref_label (in);
code = GET_CODE (in);
switch (code)
{
/* Compare registers by number. */
case REG:
return REG_P (reg) && REGNO (in) == REGNO (reg);
/* These codes have no constituent expressions
and are unique. */
case SCRATCH:
case PC:
return 0;
CASE_CONST_ANY:
/* These are kept unique for a given value. */
return 0;
default:
break;
}
if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
return 1;
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (in, i) - 1; j >= 0; j--)
if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
return 1;
}
else if (fmt[i] == 'e'
&& reg_mentioned_p (reg, XEXP (in, i)))
return 1;
}
return 0;
}
/* Return 1 if in between BEG and END, exclusive of BEG and END, there is
no CODE_LABEL insn. */
int
no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
{
rtx_insn *p;
if (beg == end)
return 0;
for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
if (LABEL_P (p))
return 0;
return 1;
}
/* Nonzero if register REG is used in an insn between
FROM_INSN and TO_INSN (exclusive of those two). */
int
reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
const rtx_insn *to_insn)
{
rtx_insn *insn;
if (from_insn == to_insn)
return 0;
for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
if (NONDEBUG_INSN_P (insn)
&& (reg_overlap_mentioned_p (reg, PATTERN (insn))
|| (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
return 1;
return 0;
}
/* Nonzero if the old value of X, a register, is referenced in BODY. If X
is entirely replaced by a new value and the only use is as a SET_DEST,
we do not consider it a reference. */
int
reg_referenced_p (const_rtx x, const_rtx body)
{
int i;
switch (GET_CODE (body))
{
case SET:
if (reg_overlap_mentioned_p (x, SET_SRC (body)))
return 1;
/* If the destination is anything other than PC, a REG or a SUBREG
of a REG that occupies all of the REG, the insn references X if
it is mentioned in the destination. */
if (GET_CODE (SET_DEST (body)) != PC
&& !REG_P (SET_DEST (body))
&& ! (GET_CODE (SET_DEST (body)) == SUBREG
&& REG_P (SUBREG_REG (SET_DEST (body)))
&& !read_modify_subreg_p (SET_DEST (body)))
&& reg_overlap_mentioned_p (x, SET_DEST (body)))
return 1;
return 0;
case ASM_OPERANDS:
for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
return 1;
return 0;
case CALL:
case USE:
case IF_THEN_ELSE:
return reg_overlap_mentioned_p (x, body);
case TRAP_IF:
return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
case PREFETCH:
return reg_overlap_mentioned_p (x, XEXP (body, 0));
case UNSPEC:
case UNSPEC_VOLATILE:
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
return 1;
return 0;
case PARALLEL:
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
if (reg_referenced_p (x, XVECEXP (body, 0, i)))
return 1;
return 0;
case CLOBBER:
if (MEM_P (XEXP (body, 0)))
if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
return 1;
return 0;
case COND_EXEC:
if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
return 1;
return reg_referenced_p (x, COND_EXEC_CODE (body));
default:
return 0;
}
}
/* Nonzero if register REG is set or clobbered in an insn between
FROM_INSN and TO_INSN (exclusive of those two). */
int
reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
const rtx_insn *to_insn)
{
const rtx_insn *insn;
if (from_insn == to_insn)
return 0;
for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
if (INSN_P (insn) && reg_set_p (reg, insn))
return 1;
return 0;
}
/* Return true if REG is set or clobbered inside INSN. */
int
reg_set_p (const_rtx reg, const_rtx insn)
{
/* After delay slot handling, call and branch insns might be in a
sequence. Check all the elements there. */
if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
{
for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
return true;
return false;
}
/* We can be passed an insn or part of one. If we are passed an insn,
check if a side-effect of the insn clobbers REG. */
if (INSN_P (insn)
&& (FIND_REG_INC_NOTE (insn, reg)
|| (CALL_P (insn)
&& ((REG_P (reg)
&& REGNO (reg) < FIRST_PSEUDO_REGISTER
&& (insn_callee_abi (as_a<const rtx_insn *> (insn))
.clobbers_reg_p (GET_MODE (reg), REGNO (reg))))
|| MEM_P (reg)
|| find_reg_fusage (insn, CLOBBER, reg)))))
return true;
/* There are no REG_INC notes for SP autoinc. */
if (reg == stack_pointer_rtx && INSN_P (insn))
{
subrtx_var_iterator::array_type array;
FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
{
rtx mem = *iter;
if (mem
&& MEM_P (mem)
&& GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
{
if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
return true;
iter.skip_subrtxes ();
}
}
}
return set_of (reg, insn) != NULL_RTX;
}
/* Similar to reg_set_between_p, but check all registers in X. Return 0
only if none of them are modified between START and END. Return 1 if
X contains a MEM; this routine does use memory aliasing. */
int
modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
{
const enum rtx_code code = GET_CODE (x);
const char *fmt;
int i, j;
rtx_insn *insn;
if (start == end)
return 0;
switch (code)
{
CASE_CONST_ANY:
case CONST:
case SYMBOL_REF:
case LABEL_REF:
return 0;
case PC:
return 1;
case MEM:
if (modified_between_p (XEXP (x, 0), start, end))
return 1;
if (MEM_READONLY_P (x))
return 0;
for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
if (memory_modified_in_insn_p (x, insn))
return 1;
return 0;
case REG:
return reg_set_between_p (x, start, end);
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
return 1;
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (modified_between_p (XVECEXP (x, i, j), start, end))
return 1;
}
return 0;
}
/* Similar to reg_set_p, but check all registers in X. Return 0 only if none
of them are modified in INSN. Return 1 if X contains a MEM; this routine
does use memory aliasing. */
int
modified_in_p (const_rtx x, const_rtx insn)
{
const enum rtx_code code = GET_CODE (x);
const char *fmt;
int i, j;
switch (code)
{
CASE_CONST_ANY:
case CONST:
case SYMBOL_REF:
case LABEL_REF:
return 0;
case PC:
return 1;
case MEM:
if (modified_in_p (XEXP (x, 0), insn))
return 1;
if (MEM_READONLY_P (x))
return 0;
if (memory_modified_in_insn_p (x, insn))
return 1;
return 0;
case REG:
return reg_set_p (x, insn);
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
return 1;
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (modified_in_p (XVECEXP (x, i, j), insn))
return 1;
}
return 0;
}
/* Return true if X is a SUBREG and if storing a value to X would
preserve some of its SUBREG_REG. For example, on a normal 32-bit
target, using a SUBREG to store to one half of a DImode REG would
preserve the other half. */
bool
read_modify_subreg_p (const_rtx x)
{
if (GET_CODE (x) != SUBREG)
return false;
poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x));
poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
/* The inner and outer modes of a subreg must be ordered, so that we
can tell whether they're paradoxical or partial. */
gcc_checking_assert (ordered_p (isize, osize));
return (maybe_gt (isize, osize) && maybe_gt (isize, regsize));
}
/* Helper function for set_of. */
struct set_of_data
{
const_rtx found;
const_rtx pat;
};
static void
set_of_1 (rtx x, const_rtx pat, void *data1)
{
struct set_of_data *const data = (struct set_of_data *) (data1);
if (rtx_equal_p (x, data->pat)
|| (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
data->found = pat;
}
/* Give an INSN, return a SET or CLOBBER expression that does modify PAT
(either directly or via STRICT_LOW_PART and similar modifiers). */
const_rtx
set_of (const_rtx pat, const_rtx insn)
{
struct set_of_data data;
data.found = NULL_RTX;
data.pat = pat;
note_pattern_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
return data.found;
}
/* Check whether instruction pattern PAT contains a SET with the following
properties:
- the SET is executed unconditionally; and
- either:
- the destination of the SET is a REG that contains REGNO; or
- both:
- the destination of the SET is a SUBREG of such a REG; and
- writing to the subreg clobbers all of the SUBREG_REG
(in other words, read_modify_subreg_p is false).
If PAT does have a SET like that, return the set, otherwise return null.
This is intended to be an alternative to single_set for passes that
can handle patterns with multiple_sets. */
rtx
simple_regno_set (rtx pat, unsigned int regno)
{
if (GET_CODE (pat) == PARALLEL)
{
int last = XVECLEN (pat, 0) - 1;
for (int i = 0; i < last; ++i)
if (rtx set = simple_regno_set (XVECEXP (pat, 0, i), regno))
return set;
pat = XVECEXP (pat, 0, last);
}
if (GET_CODE (pat) == SET
&& covers_regno_no_parallel_p (SET_DEST (pat), regno))
return pat;
return nullptr;
}
/* Add all hard register in X to *PSET. */
void
find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
{
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, NONCONST)
{
const_rtx x = *iter;
if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
}
}
/* This function, called through note_stores, collects sets and
clobbers of hard registers in a HARD_REG_SET, which is pointed to
by DATA. */
void
record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
{
HARD_REG_SET *pset = (HARD_REG_SET *)data;
if (REG_P (x) && HARD_REGISTER_P (x))
add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
}
/* Examine INSN, and compute the set of hard registers written by it.
Store it in *PSET. Should only be called after reload.
IMPLICIT is true if we should include registers that are fully-clobbered
by calls. This should be used with caution, since it doesn't include
partially-clobbered registers. */
void
find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
{
rtx link;
CLEAR_HARD_REG_SET (*pset);
note_stores (insn, record_hard_reg_sets, pset);
if (CALL_P (insn) && implicit)
*pset |= insn_callee_abi (insn).full_reg_clobbers ();
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_INC)
record_hard_reg_sets (XEXP (link, 0), NULL, pset);
}
/* Like record_hard_reg_sets, but called through note_uses. */
void
record_hard_reg_uses (rtx *px, void *data)
{
find_all_hard_regs (*px, (HARD_REG_SET *) data);
}
/* Given an INSN, return a SET expression if this insn has only a single SET.
It may also have CLOBBERs, USEs, or SET whose output
will not be used, which we ignore. */
rtx
single_set_2 (const rtx_insn *insn, const_rtx pat)
{
rtx set = NULL;
int set_verified = 1;
int i;
if (GET_CODE (pat) == PARALLEL)
{
for (i = 0; i < XVECLEN (pat, 0); i++)
{
rtx sub = XVECEXP (pat, 0, i);
switch (GET_CODE (sub))
{
case USE:
case CLOBBER:
break;
case SET:
/* We can consider insns having multiple sets, where all
but one are dead as single set insns. In common case
only single set is present in the pattern so we want
to avoid checking for REG_UNUSED notes unless necessary.
When we reach set first time, we just expect this is
the single set we are looking for and only when more
sets are found in the insn, we check them. */
if (!set_verified)
{
if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
&& !side_effects_p (set))
set = NULL;
else
set_verified = 1;
}
if (!set)
set = sub, set_verified = 0;
else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
|| side_effects_p (sub))
return NULL_RTX;
break;
default:
return NULL_RTX;
}
}
}
return set;
}
/* Given an INSN, return nonzero if it has more than one SET, else return
zero. */
int
multiple_sets (const_rtx insn)
{
int found;
int i;
/* INSN must be an insn. */
if (! INSN_P (insn))
return 0;
/* Only a PARALLEL can have multiple SETs. */
if (GET_CODE (PATTERN (insn)) == PARALLEL)
{
for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
{
/* If we have already found a SET, then return now. */
if (found)
return 1;
else
found = 1;
}
}
/* Either zero or one SET. */
return 0;
}
/* Return nonzero if the destination of SET equals the source
and there are no side effects. */
int
set_noop_p (const_rtx set)
{
rtx src = SET_SRC (set);
rtx dst = SET_DEST (set);
if (dst == pc_rtx && src == pc_rtx)
return 1;
if (MEM_P (dst) && MEM_P (src))
return rtx_equal_p (dst, src) && !side_effects_p (dst);
if (GET_CODE (dst) == ZERO_EXTRACT)
return rtx_equal_p (XEXP (dst, 0), src)
&& !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
&& !side_effects_p (src);
if (GET_CODE (dst) == STRICT_LOW_PART)
dst = XEXP (dst, 0);
if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
{
if (maybe_ne (SUBREG_BYTE (src), SUBREG_BYTE (dst)))
return 0;
src = SUBREG_REG (src);
dst = SUBREG_REG (dst);
if (GET_MODE (src) != GET_MODE (dst))
/* It is hard to tell whether subregs refer to the same bits, so act
conservatively and return 0. */
return 0;
}
/* It is a NOOP if destination overlaps with selected src vector
elements. */
if (GET_CODE (src) == VEC_SELECT
&& REG_P (XEXP (src, 0)) && REG_P (dst)
&& HARD_REGISTER_P (XEXP (src, 0))
&& HARD_REGISTER_P (dst))
{
int i;
rtx par = XEXP (src, 1);
rtx src0 = XEXP (src, 0);
poly_int64 c0;
if (!poly_int_rtx_p (XVECEXP (par, 0, 0), &c0))
return 0;
poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
for (i = 1; i < XVECLEN (par, 0); i++)
{
poly_int64 c0i;
if (!poly_int_rtx_p (XVECEXP (par, 0, i), &c0i)
|| maybe_ne (c0i, c0 + i))
return 0;
}
return
REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst))
&& simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
offset, GET_MODE (dst)) == (int) REGNO (dst);
}
return (REG_P (src) && REG_P (dst)
&& REGNO (src) == REGNO (dst));
}
/* Return nonzero if an insn consists only of SETs, each of which only sets a
value to itself. */
int
noop_move_p (const rtx_insn *insn)
{
rtx pat = PATTERN (insn);
if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
return 1;
/* Check the code to be executed for COND_EXEC. */
if (GET_CODE (pat) == COND_EXEC)
pat = COND_EXEC_CODE (pat);
if (GET_CODE (pat) == SET && set_noop_p (pat))
return 1;
if (GET_CODE (pat) == PARALLEL)
{
int i;
/* If nothing but SETs of registers to themselves,
this insn can also be deleted. */
for (i = 0; i < XVECLEN (pat, 0); i++)
{
rtx tem = XVECEXP (pat, 0, i);
if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
continue;
if (GET_CODE (tem) != SET || ! set_noop_p (tem))
return 0;
}
return 1;
}
return 0;
}
/* Return nonzero if register in range [REGNO, ENDREGNO)
appears either explicitly or implicitly in X
other than being stored into.
References contained within the substructure at LOC do not count.
LOC may be zero, meaning don't ignore anything. */
bool
refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
rtx *loc)
{
int i;
unsigned int x_regno;
RTX_CODE code;
const char *fmt;
repeat:
/* The contents of a REG_NONNEG note is always zero, so we must come here
upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
if (x == 0)
return false;
code = GET_CODE (x);
switch (code)
{
case REG:
x_regno = REGNO (x);
/* If we modifying the stack, frame, or argument pointer, it will
clobber a virtual register. In fact, we could be more precise,
but it isn't worth it. */
if ((x_regno == STACK_POINTER_REGNUM
|| (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
&& x_regno == ARG_POINTER_REGNUM)
|| x_regno == FRAME_POINTER_REGNUM)
&& regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
return true;
return endregno > x_regno && regno < END_REGNO (x);
case SUBREG:
/* If this is a SUBREG of a hard reg, we can see exactly which
registers are being modified. Otherwise, handle normally. */
if (REG_P (SUBREG_REG (x))
&& REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
{
unsigned int inner_regno = subreg_regno (x);
unsigned int inner_endregno
= inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
? subreg_nregs (x) : 1);
return endregno > inner_regno && regno < inner_endregno;
}
break;
case CLOBBER:
case SET:
if (&SET_DEST (x) != loc
/* Note setting a SUBREG counts as referring to the REG it is in for
a pseudo but not for hard registers since we can
treat each word individually. */
&& ((GET_CODE (SET_DEST (x)) == SUBREG
&& loc != &SUBREG_REG (SET_DEST (x))
&& REG_P (SUBREG_REG (SET_DEST (x)))
&& REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
&& refers_to_regno_p (regno, endregno,
SUBREG_REG (SET_DEST (x)), loc))
|| (!REG_P (SET_DEST (x))
&& refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
return true;
if (code == CLOBBER || loc == &SET_SRC (x))
return false;
x = SET_SRC (x);
goto repeat;
default:
break;
}
/* X does not match, so try its subexpressions. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e' && loc != &XEXP (x, i))
{
if (i == 0)
{
x = XEXP (x, 0);
goto repeat;
}
else
if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
return true;
}
else if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (loc != &XVECEXP (x, i, j)
&& refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
return true;
}
}
return false;
}
/* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
we check if any register number in X conflicts with the relevant register
numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
contains a MEM (we don't bother checking for memory addresses that can't
conflict because we expect this to be a rare case. */
int
reg_overlap_mentioned_p (const_rtx x, const_rtx in)
{
unsigned int regno, endregno;
/* If either argument is a constant, then modifying X cannot
affect IN. Here we look at IN, we can profitably combine
CONSTANT_P (x) with the switch statement below. */
if (CONSTANT_P (in))
return 0;
recurse:
switch (GET_CODE (x))
{
case CLOBBER:
case STRICT_LOW_PART:
case ZERO_EXTRACT:
case SIGN_EXTRACT:
/* Overly conservative. */
x = XEXP (x, 0);
goto recurse;
case SUBREG:
regno = REGNO (SUBREG_REG (x));
if (regno < FIRST_PSEUDO_REGISTER)
regno = subreg_regno (x);
endregno = regno + (regno < FIRST_PSEUDO_REGISTER
? subreg_nregs (x) : 1);
goto do_reg;
case REG:
regno = REGNO (x);
endregno = END_REGNO (x);
do_reg:
return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
case MEM:
{
const char *fmt;
int i;
if (MEM_P (in))
return 1;
fmt = GET_RTX_FORMAT (GET_CODE (in));
for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
if (fmt[i] == 'e')
{
if (reg_overlap_mentioned_p (x, XEXP (in, i)))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = XVECLEN (in, i) - 1; j >= 0; --j)
if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
return 1;
}
return 0;
}
case SCRATCH:
case PC:
return reg_mentioned_p (x, in);
case PARALLEL:
{
int i;
/* If any register in here refers to it we return true. */
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
if (XEXP (XVECEXP (x, 0, i), 0) != 0
&& reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
return 1;
return 0;
}
default:
gcc_assert (CONSTANT_P (x));
return 0;
}
}
/* Call FUN on each register or MEM that is stored into or clobbered by X.
(X would be the pattern of an insn). DATA is an arbitrary pointer,
ignored by note_stores, but passed to FUN.
FUN receives three arguments:
1. the REG, MEM or PC being stored in or clobbered,
2. the SET or CLOBBER rtx that does the store,
3. the pointer DATA provided to note_stores.
If the item being stored in or clobbered is a SUBREG of a hard register,
the SUBREG will be passed. */
void
note_pattern_stores (const_rtx x,
void (*fun) (rtx, const_rtx, void *), void *data)
{
int i;
if (GET_CODE (x) == COND_EXEC)
x = COND_EXEC_CODE (x);
if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
{
rtx dest = SET_DEST (x);
while ((GET_CODE (dest) == SUBREG
&& (!REG_P (SUBREG_REG (dest))
|| REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
|| GET_CODE (dest) == ZERO_EXTRACT
|| GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
/* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
each of whose first operand is a register. */
if (GET_CODE (dest) == PARALLEL)
{
for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
(*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
}
else
(*fun) (dest, x, data);
}
else if (GET_CODE (x) == PARALLEL)
for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
note_pattern_stores (XVECEXP (x, 0, i), fun, data);
}
/* Same, but for an instruction. If the instruction is a call, include
any CLOBBERs in its CALL_INSN_FUNCTION_USAGE. */
void
note_stores (const rtx_insn *insn,
void (*fun) (rtx, const_rtx, void *), void *data)
{
if (CALL_P (insn))
for (rtx link = CALL_INSN_FUNCTION_USAGE (insn);
link; link = XEXP (link, 1))
if (GET_CODE (XEXP (link, 0)) == CLOBBER)
note_pattern_stores (XEXP (link, 0), fun, data);
note_pattern_stores (PATTERN (insn), fun, data);
}
/* Like notes_stores, but call FUN for each expression that is being
referenced in PBODY, a pointer to the PATTERN of an insn. We only call
FUN for each expression, not any interior subexpressions. FUN receives a
pointer to the expression and the DATA passed to this function.
Note that this is not quite the same test as that done in reg_referenced_p
since that considers something as being referenced if it is being
partially set, while we do not. */
void
note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
{
rtx body = *pbody;
int i;
switch (GET_CODE (body))
{
case COND_EXEC:
(*fun) (&COND_EXEC_TEST (body), data);
note_uses (&COND_EXEC_CODE (body), fun, data);
return;
case PARALLEL:
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
note_uses (&XVECEXP (body, 0, i), fun, data);
return;
case SEQUENCE:
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
return;
case USE:
(*fun) (&XEXP (body, 0), data);
return;
case ASM_OPERANDS:
for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
(*fun) (&ASM_OPERANDS_INPUT (body, i), data);
return;
case TRAP_IF:
(*fun) (&TRAP_CONDITION (body), data);
return;
case PREFETCH:
(*fun) (&XEXP (body, 0), data);
return;
case UNSPEC:
case UNSPEC_VOLATILE:
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
(*fun) (&XVECEXP (body, 0, i), data);
return;
case CLOBBER:
if (MEM_P (XEXP (body, 0)))
(*fun) (&XEXP (XEXP (body, 0), 0), data);
return;
case SET:
{
rtx dest = SET_DEST (body);
/* For sets we replace everything in source plus registers in memory
expression in store and operands of a ZERO_EXTRACT. */
(*fun) (&SET_SRC (body), data);
if (GET_CODE (dest) == ZERO_EXTRACT)
{
(*fun) (&XEXP (dest, 1), data);
(*fun) (&XEXP (dest, 2), data);
}
while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
dest = XEXP (dest, 0);
if (MEM_P (dest))
(*fun) (&XEXP (dest, 0), data);
}
return;
default:
/* All the other possibilities never store. */
(*fun) (pbody, data);
return;
}
}
/* Try to add a description of REG X to this object, stopping once
the REF_END limit has been reached. FLAGS is a bitmask of
rtx_obj_reference flags that describe the context. */
void
rtx_properties::try_to_add_reg (const_rtx x, unsigned int flags)
{
if (REG_NREGS (x) != 1)
flags |= rtx_obj_flags::IS_MULTIREG;
machine_mode mode = GET_MODE (x);
unsigned int start_regno = REGNO (x);
unsigned int end_regno = END_REGNO (x);
for (unsigned int regno = start_regno; regno < end_regno; ++regno)
if (ref_iter != ref_end)
*ref_iter++ = rtx_obj_reference (regno, flags, mode,
regno - start_regno);
}
/* Add a description of destination X to this object. FLAGS is a bitmask
of rtx_obj_reference flags that describe the context.
This routine accepts all rtxes that can legitimately appear in a
SET_DEST. */
void
rtx_properties::try_to_add_dest (const_rtx x, unsigned int flags)
{
/* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
each of whose first operand is a register. */
if (__builtin_expect (GET_CODE (x) == PARALLEL, 0))
{
for (int i = XVECLEN (x, 0) - 1; i >= 0; --i)
if (rtx dest = XEXP (XVECEXP (x, 0, i), 0))
try_to_add_dest (dest, flags);
return;
}
unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS;
flags |= rtx_obj_flags::IS_WRITE;
for (;;)
if (GET_CODE (x) == ZERO_EXTRACT)
{
try_to_add_src (XEXP (x, 1), base_flags);
try_to_add_src (XEXP (x, 2), base_flags);
flags |= rtx_obj_flags::IS_READ;
x = XEXP (x, 0);
}
else if (GET_CODE (x) == STRICT_LOW_PART)
{
flags |= rtx_obj_flags::IS_READ;
x = XEXP (x, 0);
}
else if (GET_CODE (x) == SUBREG)
{
flags |= rtx_obj_flags::IN_SUBREG;
if (read_modify_subreg_p (x))
flags |= rtx_obj_flags::IS_READ;
x = SUBREG_REG (x);
}
else
break;
if (MEM_P (x))
{
if (ref_iter != ref_end)
*ref_iter++ = rtx_obj_reference (MEM_REGNO, flags, GET_MODE (x));
unsigned int addr_flags = base_flags | rtx_obj_flags::IN_MEM_STORE;
if (flags & rtx_obj_flags::IS_READ)
addr_flags |= rtx_obj_flags::IN_MEM_LOAD;
try_to_add_src (XEXP (x, 0), addr_flags);
return;
}
if (__builtin_expect (REG_P (x), 1))
{
/* We want to keep sp alive everywhere - by making all
writes to sp also use sp. */
if (REGNO (x) == STACK_POINTER_REGNUM)
flags |= rtx_obj_flags::IS_READ;
try_to_add_reg (x, flags);
return;
}
}
/* Try to add a description of source X to this object, stopping once
the REF_END limit has been reached. FLAGS is a bitmask of
rtx_obj_reference flags that describe the context.
This routine accepts all rtxes that can legitimately appear in a SET_SRC. */
void
rtx_properties::try_to_add_src (const_rtx x, unsigned int flags)
{
unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS;
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, x, NONCONST)
{
const_rtx x = *iter;
rtx_code code = GET_CODE (x);
if (code == REG)
try_to_add_reg (x, flags | rtx_obj_flags::IS_READ);
else if (code == MEM)
{
if (MEM_VOLATILE_P (x))
has_volatile_refs = true;
if (!MEM_READONLY_P (x) && ref_iter != ref_end)
{
auto mem_flags = flags | rtx_obj_flags::IS_READ;
*ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags,
GET_MODE (x));
}
try_to_add_src (XEXP (x, 0),
base_flags | rtx_obj_flags::IN_MEM_LOAD);
iter.skip_subrtxes ();
}
else if (code == SUBREG)
{
try_to_add_src (SUBREG_REG (x), flags | rtx_obj_flags::IN_SUBREG);
iter.skip_subrtxes ();
}
else if (code == UNSPEC_VOLATILE)
has_volatile_refs = true;
else if (code == ASM_INPUT || code == ASM_OPERANDS)
{
has_asm = true;
if (MEM_VOLATILE_P (x))
has_volatile_refs = true;
}
else if (code == PRE_INC
|| code == PRE_DEC
|| code == POST_INC
|| code == POST_DEC
|| code == PRE_MODIFY
|| code == POST_MODIFY)
{
has_pre_post_modify = true;
unsigned int addr_flags = (base_flags
| rtx_obj_flags::IS_PRE_POST_MODIFY
| rtx_obj_flags::IS_READ);
try_to_add_dest (XEXP (x, 0), addr_flags);
if (code == PRE_MODIFY || code == POST_MODIFY)
iter.substitute (XEXP (XEXP (x, 1), 1));
else
iter.skip_subrtxes ();
}
else if (code == CALL)
has_call = true;
}
}
/* Try to add a description of instruction pattern PAT to this object,
stopping once the REF_END limit has been reached. */
void
rtx_properties::try_to_add_pattern (const_rtx pat)
{
switch (GET_CODE (pat))
{
case COND_EXEC:
try_to_add_src (COND_EXEC_TEST (pat));
try_to_add_pattern (COND_EXEC_CODE (pat));
break;
case PARALLEL:
{
int last = XVECLEN (pat, 0) - 1;
for (int i = 0; i < last; ++i)
try_to_add_pattern (XVECEXP (pat, 0, i));
try_to_add_pattern (XVECEXP (pat, 0, last));
break;
}
case ASM_OPERANDS:
for (int i = 0, len = ASM_OPERANDS_INPUT_LENGTH (pat); i < len; ++i)
try_to_add_src (ASM_OPERANDS_INPUT (pat, i));
break;
case CLOBBER:
try_to_add_dest (XEXP (pat, 0), rtx_obj_flags::IS_CLOBBER);
break;
case SET:
try_to_add_dest (SET_DEST (pat));
try_to_add_src (SET_SRC (pat));
break;
default:
/* All the other possibilities never store and can use a normal
rtx walk. This includes:
- USE
- TRAP_IF
- PREFETCH
- UNSPEC
- UNSPEC_VOLATILE. */
try_to_add_src (pat);
break;
}
}
/* Try to add a description of INSN to this object, stopping once
the REF_END limit has been reached. INCLUDE_NOTES is true if the
description should include REG_EQUAL and REG_EQUIV notes; all such
references will then be marked with rtx_obj_flags::IN_NOTE.
For calls, this description includes all accesses in
CALL_INSN_FUNCTION_USAGE. It also include all implicit accesses
to global registers by the target function. However, it does not
include clobbers performed by the target function; callers that want
this information should instead use the function_abi interface. */
void
rtx_properties::try_to_add_insn (const rtx_insn *insn, bool include_notes)
{
if (CALL_P (insn))
{
/* Non-const functions can read from global registers. Impure
functions can also set them.
Adding the global registers first removes a situation in which
a fixed-form clobber of register R could come before a real set
of register R. */
if (!hard_reg_set_empty_p (global_reg_set)
&& !RTL_CONST_CALL_P (insn))
{
unsigned int flags = rtx_obj_flags::IS_READ;
if (!RTL_PURE_CALL_P (insn))
flags |= rtx_obj_flags::IS_WRITE;
for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
/* As a special case, the stack pointer is invariant across calls
even if it has been marked global; see the corresponding
handling in df_get_call_refs. */
if (regno != STACK_POINTER_REGNUM
&& global_regs[regno]
&& ref_iter != ref_end)
*ref_iter++ = rtx_obj_reference (regno, flags,
reg_raw_mode[regno], 0);
}
/* Untyped calls implicitly set all function value registers.
Again, we add them first in case the main pattern contains
a fixed-form clobber. */
if (find_reg_note (insn, REG_UNTYPED_CALL, NULL_RTX))
for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
if (targetm.calls.function_value_regno_p (regno)
&& ref_iter != ref_end)
*ref_iter++ = rtx_obj_reference (regno, rtx_obj_flags::IS_WRITE,
reg_raw_mode[regno], 0);
if (ref_iter != ref_end && !RTL_CONST_CALL_P (insn))
{
auto mem_flags = rtx_obj_flags::IS_READ;
if (!RTL_PURE_CALL_P (insn))
mem_flags |= rtx_obj_flags::IS_WRITE;
*ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags, BLKmode);
}
try_to_add_pattern (PATTERN (insn));
for (rtx link = CALL_INSN_FUNCTION_USAGE (insn); link;
link = XEXP (link, 1))
{
rtx x = XEXP (link, 0);
if (GET_CODE (x) == CLOBBER)
try_to_add_dest (XEXP (x, 0), rtx_obj_flags::IS_CLOBBER);
else if (GET_CODE (x) == USE)
try_to_add_src (XEXP (x, 0));
}
}
else
try_to_add_pattern (PATTERN (insn));
if (include_notes)
for (rtx note = REG_NOTES (insn); note; note = XEXP (note, 1))
if (REG_NOTE_KIND (note) == REG_EQUAL
|| REG_NOTE_KIND (note) == REG_EQUIV)
try_to_add_note (XEXP (note, 0));
}
/* Grow the storage by a bit while keeping the contents of the first
START elements. */
void
vec_rtx_properties_base::grow (ptrdiff_t start)
{
/* The same heuristic that vec uses. */
ptrdiff_t new_elems = (ref_end - ref_begin) * 3 / 2;
if (ref_begin == m_storage)
{
ref_begin = XNEWVEC (rtx_obj_reference, new_elems);
if (start)
memcpy (ref_begin, m_storage, start * sizeof (rtx_obj_reference));
}
else
ref_begin = reinterpret_cast<rtx_obj_reference *>
(xrealloc (ref_begin, new_elems * sizeof (rtx_obj_reference)));
ref_iter = ref_begin + start;
ref_end = ref_begin + new_elems;
}
/* Return nonzero if X's old contents don't survive after INSN.
This will be true if X is a register and X dies in INSN or because
INSN entirely sets X.
"Entirely set" means set directly and not through a SUBREG, or
ZERO_EXTRACT, so no trace of the old contents remains.
Likewise, REG_INC does not count.
REG may be a hard or pseudo reg. Renumbering is not taken into account,
but for this use that makes no difference, since regs don't overlap
during their lifetimes. Therefore, this function may be used
at any time after deaths have been computed.
If REG is a hard reg that occupies multiple machine registers, this
function will only return 1 if each of those registers will be replaced
by INSN. */
int
dead_or_set_p (const rtx_insn *insn, const_rtx x)
{
unsigned int regno, end_regno;
unsigned int i;
gcc_assert (REG_P (x));
regno = REGNO (x);
end_regno = END_REGNO (x);
for (i = regno; i < end_regno; i++)
if (! dead_or_set_regno_p (insn, i))
return 0;
return 1;
}
/* Return TRUE iff DEST is a register or subreg of a register, is a
complete rather than read-modify-write destination, and contains
register TEST_REGNO. */
static bool
covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
{
unsigned int regno, endregno;
if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest))
dest = SUBREG_REG (dest);
if (!REG_P (dest))
return false;
regno = REGNO (dest);
endregno = END_REGNO (dest);
return (test_regno >= regno && test_regno < endregno);
}
/* Like covers_regno_no_parallel_p, but also handles PARALLELs where
any member matches the covers_regno_no_parallel_p criteria. */
static bool
covers_regno_p (const_rtx dest, unsigned int test_regno)
{
if (GET_CODE (dest) == PARALLEL)
{
/* Some targets place small structures in registers for return
values of functions, and those registers are wrapped in
PARALLELs that we may see as the destination of a SET. */
int i;
for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
{
rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
if (inner != NULL_RTX
&& covers_regno_no_parallel_p (inner, test_regno))
return true;
}
return false;
}
else
return covers_regno_no_parallel_p (dest, test_regno);
}
/* Utility function for dead_or_set_p to check an individual register. */
int
dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
{
const_rtx pattern;
/* See if there is a death note for something that includes TEST_REGNO. */
if (find_regno_note (insn, REG_DEAD, test_regno))
return 1;
if (CALL_P (insn)
&& find_regno_fusage (insn, CLOBBER, test_regno))
return 1;
pattern = PATTERN (insn);
/* If a COND_EXEC is not executed, the value survives. */
if (GET_CODE (pattern) == COND_EXEC)
return 0;
if (GET_CODE (pattern) == SET || GET_CODE (pattern) == CLOBBER)
return covers_regno_p (SET_DEST (pattern), test_regno);
else if (GET_CODE (pattern) == PARALLEL)
{
int i;
for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
{
rtx body = XVECEXP (pattern, 0, i);
if (GET_CODE (body) == COND_EXEC)
body = COND_EXEC_CODE (body);
if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
&& covers_regno_p (SET_DEST (body), test_regno))
return 1;
}
}
return 0;
}
/* Return the reg-note of kind KIND in insn INSN, if there is one.
If DATUM is nonzero, look for one whose datum is DATUM. */
rtx
find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
{
rtx link;
gcc_checking_assert (insn);
/* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
if (! INSN_P (insn))
return 0;
if (datum == 0)
{
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == kind)
return link;
return 0;
}
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
return link;
return 0;
}
/* Return the reg-note of kind KIND in insn INSN which applies to register
number REGNO, if any. Return 0 if there is no such reg-note. Note that
the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
it might be the case that the note overlaps REGNO. */
rtx
find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
{
rtx link;
/* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
if (! INSN_P (insn))
return 0;
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == kind
/* Verify that it is a register, so that scratch and MEM won't cause a
problem here. */
&& REG_P (XEXP (link, 0))
&& REGNO (XEXP (link, 0)) <= regno
&& END_REGNO (XEXP (link, 0)) > regno)
return link;
return 0;
}
/* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
has such a note. */
rtx
find_reg_equal_equiv_note (const_rtx insn)
{
rtx link;
if (!INSN_P (insn))
return 0;
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (REG_NOTE_KIND (link) == REG_EQUAL
|| REG_NOTE_KIND (link) == REG_EQUIV)
{
/* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
insns that have multiple sets. Checking single_set to
make sure of this is not the proper check, as explained
in the comment in set_unique_reg_note.
This should be changed into an assert. */
if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
return 0;
return link;
}
return NULL;
}
/* Check whether INSN is a single_set whose source is known to be
equivalent to a constant. Return that constant if so, otherwise
return null. */
rtx
find_constant_src (const rtx_insn *insn)
{
rtx note, set, x;
set = single_set (insn);
if (set)
{
x = avoid_constant_pool_reference (SET_SRC (set));
if (CONSTANT_P (x))
return x;
}
note = find_reg_equal_equiv_note (insn);
if (note && CONSTANT_P (XEXP (note, 0)))
return XEXP (note, 0);
return NULL_RTX;
}
/* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
in the CALL_INSN_FUNCTION_USAGE information of INSN. */
int
find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
{
/* If it's not a CALL_INSN, it can't possibly have a
CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
if (!CALL_P (insn))
return 0;
gcc_assert (datum);
if (!REG_P (datum))
{
rtx link;
for (link = CALL_INSN_FUNCTION_USAGE (insn);
link;
link = XEXP (link, 1))
if (GET_CODE (XEXP (link, 0)) == code
&& rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
return 1;
}
else
{
unsigned int regno = REGNO (datum);
/* CALL_INSN_FUNCTION_USAGE information cannot contain references
to pseudo registers, so don't bother checking. */
if (regno < FIRST_PSEUDO_REGISTER)
{
unsigned int end_regno = END_REGNO (datum);
unsigned int i;
for (i = regno; i < end_regno; i++)
if (find_regno_fusage (insn, code, i))
return 1;
}
}
return 0;
}
/* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
in the CALL_INSN_FUNCTION_USAGE information of INSN. */
int
find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
{
rtx link;
/* CALL_INSN_FUNCTION_USAGE information cannot contain references
to pseudo registers, so don't bother checking. */
if (regno >= FIRST_PSEUDO_REGISTER
|| !CALL_P (insn) )
return 0;
for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
{
rtx op, reg;
if (GET_CODE (op = XEXP (link, 0)) == code
&& REG_P (reg = XEXP (op, 0))
&& REGNO (reg) <= regno
&& END_REGNO (reg) > regno)
return 1;
}
return 0;
}
/* Return true if KIND is an integer REG_NOTE. */
static bool
int_reg_note_p (enum reg_note kind)
{
return kind == REG_BR_PROB;
}
/* Allocate a register note with kind KIND and datum DATUM. LIST is
stored as the pointer to the next register note. */
rtx
alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
{
rtx note;
gcc_checking_assert (!int_reg_note_p (kind));
switch (kind)
{
case REG_LABEL_TARGET:
case REG_LABEL_OPERAND:
case REG_TM:
/* These types of register notes use an INSN_LIST rather than an
EXPR_LIST, so that copying is done right and dumps look
better. */
note = alloc_INSN_LIST (datum, list);
PUT_REG_NOTE_KIND (note, kind);
break;
default:
note = alloc_EXPR_LIST (kind, datum, list);
break;
}
return note;
}
/* Add register note with kind KIND and datum DATUM to INSN. */
void
add_reg_note (rtx insn, enum reg_note kind, rtx datum)
{
REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
}
/* Add an integer register note with kind KIND and datum DATUM to INSN. */
void
add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
{
gcc_checking_assert (int_reg_note_p (kind));
REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
datum, REG_NOTES (insn));
}
/* Add a REG_ARGS_SIZE note to INSN with value VALUE. */
void
add_args_size_note (rtx_insn *insn, poly_int64 value)
{
gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX));
add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode));
}
/* Add a register note like NOTE to INSN. */
void
add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
{
if (GET_CODE (note) == INT_LIST)
add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
else
add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
}
/* Duplicate NOTE and return the copy. */
rtx
duplicate_reg_note (rtx note)
{
reg_note kind = REG_NOTE_KIND (note);
if (GET_CODE (note) == INT_LIST)
return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
else if (GET_CODE (note) == EXPR_LIST)
return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
else
return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
}
/* Remove register note NOTE from the REG_NOTES of INSN. */
void
remove_note (rtx_insn *insn, const_rtx note)
{
rtx link;
if (note == NULL_RTX)
return;
if (REG_NOTES (insn) == note)
REG_NOTES (insn) = XEXP (note, 1);
else
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
if (XEXP (link, 1) == note)
{
XEXP (link, 1) = XEXP (note, 1);
break;
}
switch (REG_NOTE_KIND (note))
{
case REG_EQUAL:
case REG_EQUIV:
df_notes_rescan (insn);
break;
default:
break;
}
}
/* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
If NO_RESCAN is false and any notes were removed, call
df_notes_rescan. Return true if any note has been removed. */
bool
remove_reg_equal_equiv_notes (rtx_insn *insn, bool no_rescan)
{
rtx *loc;
bool ret = false;
loc = &REG_NOTES (insn);
while (*loc)
{
enum reg_note kind = REG_NOTE_KIND (*loc);
if (kind == REG_EQUAL || kind == REG_EQUIV)
{
*loc = XEXP (*loc, 1);
ret = true;
}
else
loc = &XEXP (*loc, 1);
}
if (ret && !no_rescan)
df_notes_rescan (insn);
return ret;
}
/* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
void
remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
{
df_ref eq_use;
if (!df)
return;
/* This loop is a little tricky. We cannot just go down the chain because
it is being modified by some actions in the loop. So we just iterate
over the head. We plan to drain the list anyway. */
while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
{
rtx_insn *insn = DF_REF_INSN (eq_use);
rtx note = find_reg_equal_equiv_note (insn);
/* This assert is generally triggered when someone deletes a REG_EQUAL
or REG_EQUIV note by hacking the list manually rather than calling
remove_note. */
gcc_assert (note);
remove_note (insn, note);
}
}
/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
return 1 if it is found. A simple equality test is used to determine if
NODE matches. */
bool
in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
{
const_rtx x;
for (x = listp; x; x = XEXP (x, 1))
if (node == XEXP (x, 0))
return true;
return false;
}
/* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
remove that entry from the list if it is found.
A simple equality test is used to determine if NODE matches. */
void
remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
{
rtx_expr_list *temp = *listp;
rtx_expr_list *prev = NULL;
while (temp)
{
if (node == temp->element ())
{
/* Splice the node out of the list. */
if (prev)
XEXP (prev, 1) = temp->next ();
else
*listp = temp->next ();
return;
}
prev = temp;
temp = temp->next ();
}
}
/* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
remove that entry from the list if it is found.
A simple equality test is used to determine if NODE matches. */
void
remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
{
rtx_insn_list *temp = *listp;
rtx_insn_list *prev = NULL;
while (temp)
{
if (node == temp->insn ())
{
/* Splice the node out of the list. */
if (prev)
XEXP (prev, 1) = temp->next ();
else
*listp = temp->next ();
return;
}
prev = temp;
temp = temp->next ();
}
}
/* Nonzero if X contains any volatile instructions. These are instructions
which may cause unpredictable machine state instructions, and thus no
instructions or register uses should be moved or combined across them.
This includes only volatile asms and UNSPEC_VOLATILE instructions. */
int
volatile_insn_p (const_rtx x)
{
const RTX_CODE code = GET_CODE (x);
switch (code)
{
case LABEL_REF:
case SYMBOL_REF:
case CONST:
CASE_CONST_ANY:
case PC:
case REG:
case SCRATCH:
case CLOBBER:
case ADDR_VEC:
case ADDR_DIFF_VEC:
case CALL:
case MEM:
return 0;
case UNSPEC_VOLATILE:
return 1;
case ASM_INPUT:
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return 1;
default:
break;
}
/* Recursively scan the operands of this expression. */
{
const char *const fmt = GET_RTX_FORMAT (code);
int i;
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (volatile_insn_p (XEXP (x, i)))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (volatile_insn_p (XVECEXP (x, i, j)))
return 1;
}
}
}
return 0;
}
/* Nonzero if X contains any volatile memory references
UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
int
volatile_refs_p (const_rtx x)
{
const RTX_CODE code = GET_CODE (x);
switch (code)
{
case LABEL_REF:
case SYMBOL_REF:
case CONST:
CASE_CONST_ANY:
case PC:
case REG:
case SCRATCH:
case CLOBBER:
case ADDR_VEC:
case ADDR_DIFF_VEC:
return 0;
case UNSPEC_VOLATILE:
return 1;
case MEM:
case ASM_INPUT:
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return 1;
default:
break;
}
/* Recursively scan the operands of this expression. */
{
const char *const fmt = GET_RTX_FORMAT (code);
int i;
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (volatile_refs_p (XEXP (x, i)))
return 1;
}
else if (fmt[i] == 'E')
{
int j;
for (j = 0; j < XVECLEN (x, i); j++)
if (volatile_refs_p (XVECEXP (x, i, j)))
return 1;
}
}
}
return 0;
}
/* Similar to above, except that it also rejects register pre- and post-
incrementing. */
int
side_effects_p (const_rtx x)
{
const RTX_CODE code = GET_CODE (x);
switch (code)
{
case LABEL_REF:
case SYMBOL_REF:
case CONST:
CASE_CONST_ANY:
case PC:
case REG:
case SCRATCH:
case ADDR_VEC:
case ADDR_DIFF_VEC:
case VAR_LOCATION:
return 0;
case CLOBBER:
/* Reject CLOBBER with a non-VOID mode. These are made by combine.cc
when some combination can't be done. If we see one, don't think
that we can simplify the expression. */
return (GET_MODE (x) != VOIDmode);
case PRE_INC:
case PRE_DEC:
case POST_INC:
case POST_DEC:
case PRE_MODIFY:
case POST_MODIFY:
case CALL:
case UNSPEC_VOLATILE:
return 1;
case MEM:
case ASM_INPUT:
case ASM_OPERANDS:
if (MEM_VOLATILE_P (x))
return 1;
default:
break;
}
/* Recursively scan the operands of this expression. */
{
const char *fmt = GET_RTX_FORMAT (code);
int i;