blob: 262172b2c9c7d76423b0d2951549228e0f907814 [file] [log] [blame]
/* Expression translation
Copyright (C) 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
and Steven Bosscher <s.bosscher@student.tudelft.nl>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/* trans-expr.c-- generate GENERIC trees for gfc_expr. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "convert.h"
#include "ggc.h"
#include "toplev.h"
#include "real.h"
#include "tree-gimple.h"
#include "flags.h"
#include "gfortran.h"
#include "trans.h"
#include "trans-const.h"
#include "trans-types.h"
#include "trans-array.h"
/* Only for gfc_trans_assign and gfc_trans_pointer_assign. */
#include "trans-stmt.h"
#include "dependency.h"
static tree gfc_trans_structure_assign (tree dest, gfc_expr * expr);
static void gfc_apply_interface_mapping_to_expr (gfc_interface_mapping *,
gfc_expr *);
/* Copy the scalarization loop variables. */
static void
gfc_copy_se_loopvars (gfc_se * dest, gfc_se * src)
{
dest->ss = src->ss;
dest->loop = src->loop;
}
/* Initialize a simple expression holder.
Care must be taken when multiple se are created with the same parent.
The child se must be kept in sync. The easiest way is to delay creation
of a child se until after after the previous se has been translated. */
void
gfc_init_se (gfc_se * se, gfc_se * parent)
{
memset (se, 0, sizeof (gfc_se));
gfc_init_block (&se->pre);
gfc_init_block (&se->post);
se->parent = parent;
if (parent)
gfc_copy_se_loopvars (se, parent);
}
/* Advances to the next SS in the chain. Use this rather than setting
se->ss = se->ss->next because all the parents needs to be kept in sync.
See gfc_init_se. */
void
gfc_advance_se_ss_chain (gfc_se * se)
{
gfc_se *p;
gcc_assert (se != NULL && se->ss != NULL && se->ss != gfc_ss_terminator);
p = se;
/* Walk down the parent chain. */
while (p != NULL)
{
/* Simple consistency check. */
gcc_assert (p->parent == NULL || p->parent->ss == p->ss);
p->ss = p->ss->next;
p = p->parent;
}
}
/* Ensures the result of the expression as either a temporary variable
or a constant so that it can be used repeatedly. */
void
gfc_make_safe_expr (gfc_se * se)
{
tree var;
if (CONSTANT_CLASS_P (se->expr))
return;
/* We need a temporary for this result. */
var = gfc_create_var (TREE_TYPE (se->expr), NULL);
gfc_add_modify_expr (&se->pre, var, se->expr);
se->expr = var;
}
/* Return an expression which determines if a dummy parameter is present.
Also used for arguments to procedures with multiple entry points. */
tree
gfc_conv_expr_present (gfc_symbol * sym)
{
tree decl;
gcc_assert (sym->attr.dummy);
decl = gfc_get_symbol_decl (sym);
if (TREE_CODE (decl) != PARM_DECL)
{
/* Array parameters use a temporary descriptor, we want the real
parameter. */
gcc_assert (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (decl))
|| GFC_ARRAY_TYPE_P (TREE_TYPE (decl)));
decl = GFC_DECL_SAVED_DESCRIPTOR (decl);
}
return build2 (NE_EXPR, boolean_type_node, decl,
fold_convert (TREE_TYPE (decl), null_pointer_node));
}
/* Get the character length of an expression, looking through gfc_refs
if necessary. */
tree
gfc_get_expr_charlen (gfc_expr *e)
{
gfc_ref *r;
tree length;
gcc_assert (e->expr_type == EXPR_VARIABLE
&& e->ts.type == BT_CHARACTER);
length = NULL; /* To silence compiler warning. */
/* First candidate: if the variable is of type CHARACTER, the
expression's length could be the length of the character
variable. */
if (e->symtree->n.sym->ts.type == BT_CHARACTER)
length = e->symtree->n.sym->ts.cl->backend_decl;
/* Look through the reference chain for component references. */
for (r = e->ref; r; r = r->next)
{
switch (r->type)
{
case REF_COMPONENT:
if (r->u.c.component->ts.type == BT_CHARACTER)
length = r->u.c.component->ts.cl->backend_decl;
break;
case REF_ARRAY:
/* Do nothing. */
break;
default:
/* We should never got substring references here. These will be
broken down by the scalarizer. */
gcc_unreachable ();
}
}
gcc_assert (length != NULL);
return length;
}
/* Generate code to initialize a string length variable. Returns the
value. */
void
gfc_trans_init_string_length (gfc_charlen * cl, stmtblock_t * pblock)
{
gfc_se se;
tree tmp;
gfc_init_se (&se, NULL);
gfc_conv_expr_type (&se, cl->length, gfc_charlen_type_node);
gfc_add_block_to_block (pblock, &se.pre);
tmp = cl->backend_decl;
gfc_add_modify_expr (pblock, tmp, se.expr);
}
static void
gfc_conv_substring (gfc_se * se, gfc_ref * ref, int kind)
{
tree tmp;
tree type;
tree var;
gfc_se start;
gfc_se end;
type = gfc_get_character_type (kind, ref->u.ss.length);
type = build_pointer_type (type);
var = NULL_TREE;
gfc_init_se (&start, se);
gfc_conv_expr_type (&start, ref->u.ss.start, gfc_charlen_type_node);
gfc_add_block_to_block (&se->pre, &start.pre);
if (integer_onep (start.expr))
gfc_conv_string_parameter (se);
else
{
/* Change the start of the string. */
if (TYPE_STRING_FLAG (TREE_TYPE (se->expr)))
tmp = se->expr;
else
tmp = gfc_build_indirect_ref (se->expr);
tmp = gfc_build_array_ref (tmp, start.expr);
se->expr = gfc_build_addr_expr (type, tmp);
}
/* Length = end + 1 - start. */
gfc_init_se (&end, se);
if (ref->u.ss.end == NULL)
end.expr = se->string_length;
else
{
gfc_conv_expr_type (&end, ref->u.ss.end, gfc_charlen_type_node);
gfc_add_block_to_block (&se->pre, &end.pre);
}
tmp =
build2 (MINUS_EXPR, gfc_charlen_type_node,
fold_convert (gfc_charlen_type_node, integer_one_node),
start.expr);
tmp = build2 (PLUS_EXPR, gfc_charlen_type_node, end.expr, tmp);
se->string_length = fold (tmp);
}
/* Convert a derived type component reference. */
static void
gfc_conv_component_ref (gfc_se * se, gfc_ref * ref)
{
gfc_component *c;
tree tmp;
tree decl;
tree field;
c = ref->u.c.component;
gcc_assert (c->backend_decl);
field = c->backend_decl;
gcc_assert (TREE_CODE (field) == FIELD_DECL);
decl = se->expr;
tmp = build3 (COMPONENT_REF, TREE_TYPE (field), decl, field, NULL_TREE);
se->expr = tmp;
if (c->ts.type == BT_CHARACTER)
{
tmp = c->ts.cl->backend_decl;
/* Components must always be constant length. */
gcc_assert (tmp && INTEGER_CST_P (tmp));
se->string_length = tmp;
}
if (c->pointer && c->dimension == 0 && c->ts.type != BT_CHARACTER)
se->expr = gfc_build_indirect_ref (se->expr);
}
/* Return the contents of a variable. Also handles reference/pointer
variables (all Fortran pointer references are implicit). */
static void
gfc_conv_variable (gfc_se * se, gfc_expr * expr)
{
gfc_ref *ref;
gfc_symbol *sym;
sym = expr->symtree->n.sym;
if (se->ss != NULL)
{
/* Check that something hasn't gone horribly wrong. */
gcc_assert (se->ss != gfc_ss_terminator);
gcc_assert (se->ss->expr == expr);
/* A scalarized term. We already know the descriptor. */
se->expr = se->ss->data.info.descriptor;
se->string_length = se->ss->string_length;
for (ref = se->ss->data.info.ref; ref; ref = ref->next)
if (ref->type == REF_ARRAY && ref->u.ar.type != AR_ELEMENT)
break;
}
else
{
tree se_expr = NULL_TREE;
se->expr = gfc_get_symbol_decl (sym);
/* Special case for assigning the return value of a function.
Self recursive functions must have an explicit return value. */
if (se->expr == current_function_decl && sym->attr.function
&& (sym->result == sym))
se_expr = gfc_get_fake_result_decl (sym);
/* Similarly for alternate entry points. */
else if (sym->attr.function && sym->attr.entry
&& (sym->result == sym)
&& sym->ns->proc_name->backend_decl == current_function_decl)
{
gfc_entry_list *el = NULL;
for (el = sym->ns->entries; el; el = el->next)
if (sym == el->sym)
{
se_expr = gfc_get_fake_result_decl (sym);
break;
}
}
else if (sym->attr.result
&& sym->ns->proc_name->backend_decl == current_function_decl
&& sym->ns->proc_name->attr.entry_master
&& !gfc_return_by_reference (sym->ns->proc_name))
se_expr = gfc_get_fake_result_decl (sym);
if (se_expr)
se->expr = se_expr;
/* Procedure actual arguments. */
else if (sym->attr.flavor == FL_PROCEDURE
&& se->expr != current_function_decl)
{
gcc_assert (se->want_pointer);
if (!sym->attr.dummy)
{
gcc_assert (TREE_CODE (se->expr) == FUNCTION_DECL);
se->expr = gfc_build_addr_expr (NULL, se->expr);
}
return;
}
/* Dereference the expression, where needed. Since characters
are entirely different from other types, they are treated
separately. */
if (sym->ts.type == BT_CHARACTER)
{
/* Dereference character pointer dummy arguments
or results. */
if ((sym->attr.pointer || sym->attr.allocatable)
&& (sym->attr.dummy
|| sym->attr.function
|| sym->attr.result))
se->expr = gfc_build_indirect_ref (se->expr);
}
else
{
/* Dereference non-character scalar dummy arguments. */
if (sym->attr.dummy && !sym->attr.dimension)
se->expr = gfc_build_indirect_ref (se->expr);
/* Dereference scalar hidden result. */
if (gfc_option.flag_f2c && sym->ts.type == BT_COMPLEX
&& (sym->attr.function || sym->attr.result)
&& !sym->attr.dimension && !sym->attr.pointer)
se->expr = gfc_build_indirect_ref (se->expr);
/* Dereference non-character pointer variables.
These must be dummies, results, or scalars. */
if ((sym->attr.pointer || sym->attr.allocatable)
&& (sym->attr.dummy
|| sym->attr.function
|| sym->attr.result
|| !sym->attr.dimension))
se->expr = gfc_build_indirect_ref (se->expr);
}
ref = expr->ref;
}
/* For character variables, also get the length. */
if (sym->ts.type == BT_CHARACTER)
{
/* If the character length of an entry isn't set, get the length from
the master function instead. */
if (sym->attr.entry && !sym->ts.cl->backend_decl)
se->string_length = sym->ns->proc_name->ts.cl->backend_decl;
else
se->string_length = sym->ts.cl->backend_decl;
gcc_assert (se->string_length);
}
while (ref)
{
switch (ref->type)
{
case REF_ARRAY:
/* Return the descriptor if that's what we want and this is an array
section reference. */
if (se->descriptor_only && ref->u.ar.type != AR_ELEMENT)
return;
/* TODO: Pointers to single elements of array sections, eg elemental subs. */
/* Return the descriptor for array pointers and allocations. */
if (se->want_pointer
&& ref->next == NULL && (se->descriptor_only))
return;
gfc_conv_array_ref (se, &ref->u.ar);
/* Return a pointer to an element. */
break;
case REF_COMPONENT:
gfc_conv_component_ref (se, ref);
break;
case REF_SUBSTRING:
gfc_conv_substring (se, ref, expr->ts.kind);
break;
default:
gcc_unreachable ();
break;
}
ref = ref->next;
}
/* Pointer assignment, allocation or pass by reference. Arrays are handled
separately. */
if (se->want_pointer)
{
if (expr->ts.type == BT_CHARACTER)
gfc_conv_string_parameter (se);
else
se->expr = gfc_build_addr_expr (NULL, se->expr);
}
}
/* Unary ops are easy... Or they would be if ! was a valid op. */
static void
gfc_conv_unary_op (enum tree_code code, gfc_se * se, gfc_expr * expr)
{
gfc_se operand;
tree type;
gcc_assert (expr->ts.type != BT_CHARACTER);
/* Initialize the operand. */
gfc_init_se (&operand, se);
gfc_conv_expr_val (&operand, expr->value.op.op1);
gfc_add_block_to_block (&se->pre, &operand.pre);
type = gfc_typenode_for_spec (&expr->ts);
/* TRUTH_NOT_EXPR is not a "true" unary operator in GCC.
We must convert it to a compare to 0 (e.g. EQ_EXPR (op1, 0)).
All other unary operators have an equivalent GIMPLE unary operator. */
if (code == TRUTH_NOT_EXPR)
se->expr = build2 (EQ_EXPR, type, operand.expr,
convert (type, integer_zero_node));
else
se->expr = build1 (code, type, operand.expr);
}
/* Expand power operator to optimal multiplications when a value is raised
to a constant integer n. See section 4.6.3, "Evaluation of Powers" of
Donald E. Knuth, "Seminumerical Algorithms", Vol. 2, "The Art of Computer
Programming", 3rd Edition, 1998. */
/* This code is mostly duplicated from expand_powi in the backend.
We establish the "optimal power tree" lookup table with the defined size.
The items in the table are the exponents used to calculate the index
exponents. Any integer n less than the value can get an "addition chain",
with the first node being one. */
#define POWI_TABLE_SIZE 256
/* The table is from builtins.c. */
static const unsigned char powi_table[POWI_TABLE_SIZE] =
{
0, 1, 1, 2, 2, 3, 3, 4, /* 0 - 7 */
4, 6, 5, 6, 6, 10, 7, 9, /* 8 - 15 */
8, 16, 9, 16, 10, 12, 11, 13, /* 16 - 23 */
12, 17, 13, 18, 14, 24, 15, 26, /* 24 - 31 */
16, 17, 17, 19, 18, 33, 19, 26, /* 32 - 39 */
20, 25, 21, 40, 22, 27, 23, 44, /* 40 - 47 */
24, 32, 25, 34, 26, 29, 27, 44, /* 48 - 55 */
28, 31, 29, 34, 30, 60, 31, 36, /* 56 - 63 */
32, 64, 33, 34, 34, 46, 35, 37, /* 64 - 71 */
36, 65, 37, 50, 38, 48, 39, 69, /* 72 - 79 */
40, 49, 41, 43, 42, 51, 43, 58, /* 80 - 87 */
44, 64, 45, 47, 46, 59, 47, 76, /* 88 - 95 */
48, 65, 49, 66, 50, 67, 51, 66, /* 96 - 103 */
52, 70, 53, 74, 54, 104, 55, 74, /* 104 - 111 */
56, 64, 57, 69, 58, 78, 59, 68, /* 112 - 119 */
60, 61, 61, 80, 62, 75, 63, 68, /* 120 - 127 */
64, 65, 65, 128, 66, 129, 67, 90, /* 128 - 135 */
68, 73, 69, 131, 70, 94, 71, 88, /* 136 - 143 */
72, 128, 73, 98, 74, 132, 75, 121, /* 144 - 151 */
76, 102, 77, 124, 78, 132, 79, 106, /* 152 - 159 */
80, 97, 81, 160, 82, 99, 83, 134, /* 160 - 167 */
84, 86, 85, 95, 86, 160, 87, 100, /* 168 - 175 */
88, 113, 89, 98, 90, 107, 91, 122, /* 176 - 183 */
92, 111, 93, 102, 94, 126, 95, 150, /* 184 - 191 */
96, 128, 97, 130, 98, 133, 99, 195, /* 192 - 199 */
100, 128, 101, 123, 102, 164, 103, 138, /* 200 - 207 */
104, 145, 105, 146, 106, 109, 107, 149, /* 208 - 215 */
108, 200, 109, 146, 110, 170, 111, 157, /* 216 - 223 */
112, 128, 113, 130, 114, 182, 115, 132, /* 224 - 231 */
116, 200, 117, 132, 118, 158, 119, 206, /* 232 - 239 */
120, 240, 121, 162, 122, 147, 123, 152, /* 240 - 247 */
124, 166, 125, 214, 126, 138, 127, 153, /* 248 - 255 */
};
/* If n is larger than lookup table's max index, we use the "window
method". */
#define POWI_WINDOW_SIZE 3
/* Recursive function to expand the power operator. The temporary
values are put in tmpvar. The function returns tmpvar[1] ** n. */
static tree
gfc_conv_powi (gfc_se * se, int n, tree * tmpvar)
{
tree op0;
tree op1;
tree tmp;
int digit;
if (n < POWI_TABLE_SIZE)
{
if (tmpvar[n])
return tmpvar[n];
op0 = gfc_conv_powi (se, n - powi_table[n], tmpvar);
op1 = gfc_conv_powi (se, powi_table[n], tmpvar);
}
else if (n & 1)
{
digit = n & ((1 << POWI_WINDOW_SIZE) - 1);
op0 = gfc_conv_powi (se, n - digit, tmpvar);
op1 = gfc_conv_powi (se, digit, tmpvar);
}
else
{
op0 = gfc_conv_powi (se, n >> 1, tmpvar);
op1 = op0;
}
tmp = fold_build2 (MULT_EXPR, TREE_TYPE (op0), op0, op1);
tmp = gfc_evaluate_now (tmp, &se->pre);
if (n < POWI_TABLE_SIZE)
tmpvar[n] = tmp;
return tmp;
}
/* Expand lhs ** rhs. rhs is a constant integer. If it expands successfully,
return 1. Else return 0 and a call to runtime library functions
will have to be built. */
static int
gfc_conv_cst_int_power (gfc_se * se, tree lhs, tree rhs)
{
tree cond;
tree tmp;
tree type;
tree vartmp[POWI_TABLE_SIZE];
int n;
int sgn;
type = TREE_TYPE (lhs);
n = abs (TREE_INT_CST_LOW (rhs));
sgn = tree_int_cst_sgn (rhs);
if (((FLOAT_TYPE_P (type) && !flag_unsafe_math_optimizations) || optimize_size)
&& (n > 2 || n < -1))
return 0;
/* rhs == 0 */
if (sgn == 0)
{
se->expr = gfc_build_const (type, integer_one_node);
return 1;
}
/* If rhs < 0 and lhs is an integer, the result is -1, 0 or 1. */
if ((sgn == -1) && (TREE_CODE (type) == INTEGER_TYPE))
{
tmp = build2 (EQ_EXPR, boolean_type_node, lhs,
fold_convert (TREE_TYPE (lhs), integer_minus_one_node));
cond = build2 (EQ_EXPR, boolean_type_node, lhs,
convert (TREE_TYPE (lhs), integer_one_node));
/* If rhs is even,
result = (lhs == 1 || lhs == -1) ? 1 : 0. */
if ((n & 1) == 0)
{
tmp = build2 (TRUTH_OR_EXPR, boolean_type_node, tmp, cond);
se->expr = build3 (COND_EXPR, type, tmp,
convert (type, integer_one_node),
convert (type, integer_zero_node));
return 1;
}
/* If rhs is odd,
result = (lhs == 1) ? 1 : (lhs == -1) ? -1 : 0. */
tmp = build3 (COND_EXPR, type, tmp,
convert (type, integer_minus_one_node),
convert (type, integer_zero_node));
se->expr = build3 (COND_EXPR, type, cond,
convert (type, integer_one_node),
tmp);
return 1;
}
memset (vartmp, 0, sizeof (vartmp));
vartmp[1] = lhs;
if (sgn == -1)
{
tmp = gfc_build_const (type, integer_one_node);
vartmp[1] = build2 (RDIV_EXPR, type, tmp, vartmp[1]);
}
se->expr = gfc_conv_powi (se, n, vartmp);
return 1;
}
/* Power op (**). Constant integer exponent has special handling. */
static void
gfc_conv_power_op (gfc_se * se, gfc_expr * expr)
{
tree gfc_int4_type_node;
int kind;
int ikind;
gfc_se lse;
gfc_se rse;
tree fndecl;
tree tmp;
gfc_init_se (&lse, se);
gfc_conv_expr_val (&lse, expr->value.op.op1);
lse.expr = gfc_evaluate_now (lse.expr, &lse.pre);
gfc_add_block_to_block (&se->pre, &lse.pre);
gfc_init_se (&rse, se);
gfc_conv_expr_val (&rse, expr->value.op.op2);
gfc_add_block_to_block (&se->pre, &rse.pre);
if (expr->value.op.op2->ts.type == BT_INTEGER
&& expr->value.op.op2->expr_type == EXPR_CONSTANT)
if (gfc_conv_cst_int_power (se, lse.expr, rse.expr))
return;
gfc_int4_type_node = gfc_get_int_type (4);
kind = expr->value.op.op1->ts.kind;
switch (expr->value.op.op2->ts.type)
{
case BT_INTEGER:
ikind = expr->value.op.op2->ts.kind;
switch (ikind)
{
case 1:
case 2:
rse.expr = convert (gfc_int4_type_node, rse.expr);
/* Fall through. */
case 4:
ikind = 0;
break;
case 8:
ikind = 1;
break;
case 16:
ikind = 2;
break;
default:
gcc_unreachable ();
}
switch (kind)
{
case 1:
case 2:
if (expr->value.op.op1->ts.type == BT_INTEGER)
lse.expr = convert (gfc_int4_type_node, lse.expr);
else
gcc_unreachable ();
/* Fall through. */
case 4:
kind = 0;
break;
case 8:
kind = 1;
break;
case 10:
kind = 2;
break;
case 16:
kind = 3;
break;
default:
gcc_unreachable ();
}
switch (expr->value.op.op1->ts.type)
{
case BT_INTEGER:
if (kind == 3) /* Case 16 was not handled properly above. */
kind = 2;
fndecl = gfor_fndecl_math_powi[kind][ikind].integer;
break;
case BT_REAL:
fndecl = gfor_fndecl_math_powi[kind][ikind].real;
break;
case BT_COMPLEX:
fndecl = gfor_fndecl_math_powi[kind][ikind].cmplx;
break;
default:
gcc_unreachable ();
}
break;
case BT_REAL:
switch (kind)
{
case 4:
fndecl = built_in_decls[BUILT_IN_POWF];
break;
case 8:
fndecl = built_in_decls[BUILT_IN_POW];
break;
case 10:
case 16:
fndecl = built_in_decls[BUILT_IN_POWL];
break;
default:
gcc_unreachable ();
}
break;
case BT_COMPLEX:
switch (kind)
{
case 4:
fndecl = gfor_fndecl_math_cpowf;
break;
case 8:
fndecl = gfor_fndecl_math_cpow;
break;
case 10:
fndecl = gfor_fndecl_math_cpowl10;
break;
case 16:
fndecl = gfor_fndecl_math_cpowl16;
break;
default:
gcc_unreachable ();
}
break;
default:
gcc_unreachable ();
break;
}
tmp = gfc_chainon_list (NULL_TREE, lse.expr);
tmp = gfc_chainon_list (tmp, rse.expr);
se->expr = fold (gfc_build_function_call (fndecl, tmp));
}
/* Generate code to allocate a string temporary. */
tree
gfc_conv_string_tmp (gfc_se * se, tree type, tree len)
{
tree var;
tree tmp;
tree args;
gcc_assert (TREE_TYPE (len) == gfc_charlen_type_node);
if (gfc_can_put_var_on_stack (len))
{
/* Create a temporary variable to hold the result. */
tmp = fold_build2 (MINUS_EXPR, gfc_charlen_type_node, len,
convert (gfc_charlen_type_node, integer_one_node));
tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node, tmp);
tmp = build_array_type (gfc_character1_type_node, tmp);
var = gfc_create_var (tmp, "str");
var = gfc_build_addr_expr (type, var);
}
else
{
/* Allocate a temporary to hold the result. */
var = gfc_create_var (type, "pstr");
args = gfc_chainon_list (NULL_TREE, len);
tmp = gfc_build_function_call (gfor_fndecl_internal_malloc, args);
tmp = convert (type, tmp);
gfc_add_modify_expr (&se->pre, var, tmp);
/* Free the temporary afterwards. */
tmp = convert (pvoid_type_node, var);
args = gfc_chainon_list (NULL_TREE, tmp);
tmp = gfc_build_function_call (gfor_fndecl_internal_free, args);
gfc_add_expr_to_block (&se->post, tmp);
}
return var;
}
/* Handle a string concatenation operation. A temporary will be allocated to
hold the result. */
static void
gfc_conv_concat_op (gfc_se * se, gfc_expr * expr)
{
gfc_se lse;
gfc_se rse;
tree len;
tree type;
tree var;
tree args;
tree tmp;
gcc_assert (expr->value.op.op1->ts.type == BT_CHARACTER
&& expr->value.op.op2->ts.type == BT_CHARACTER);
gfc_init_se (&lse, se);
gfc_conv_expr (&lse, expr->value.op.op1);
gfc_conv_string_parameter (&lse);
gfc_init_se (&rse, se);
gfc_conv_expr (&rse, expr->value.op.op2);
gfc_conv_string_parameter (&rse);
gfc_add_block_to_block (&se->pre, &lse.pre);
gfc_add_block_to_block (&se->pre, &rse.pre);
type = gfc_get_character_type (expr->ts.kind, expr->ts.cl);
len = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
if (len == NULL_TREE)
{
len = fold_build2 (PLUS_EXPR, TREE_TYPE (lse.string_length),
lse.string_length, rse.string_length);
}
type = build_pointer_type (type);
var = gfc_conv_string_tmp (se, type, len);
/* Do the actual concatenation. */
args = NULL_TREE;
args = gfc_chainon_list (args, len);
args = gfc_chainon_list (args, var);
args = gfc_chainon_list (args, lse.string_length);
args = gfc_chainon_list (args, lse.expr);
args = gfc_chainon_list (args, rse.string_length);
args = gfc_chainon_list (args, rse.expr);
tmp = gfc_build_function_call (gfor_fndecl_concat_string, args);
gfc_add_expr_to_block (&se->pre, tmp);
/* Add the cleanup for the operands. */
gfc_add_block_to_block (&se->pre, &rse.post);
gfc_add_block_to_block (&se->pre, &lse.post);
se->expr = var;
se->string_length = len;
}
/* Translates an op expression. Common (binary) cases are handled by this
function, others are passed on. Recursion is used in either case.
We use the fact that (op1.ts == op2.ts) (except for the power
operator **).
Operators need no special handling for scalarized expressions as long as
they call gfc_conv_simple_val to get their operands.
Character strings get special handling. */
static void
gfc_conv_expr_op (gfc_se * se, gfc_expr * expr)
{
enum tree_code code;
gfc_se lse;
gfc_se rse;
tree type;
tree tmp;
int lop;
int checkstring;
checkstring = 0;
lop = 0;
switch (expr->value.op.operator)
{
case INTRINSIC_UPLUS:
case INTRINSIC_PARENTHESES:
gfc_conv_expr (se, expr->value.op.op1);
return;
case INTRINSIC_UMINUS:
gfc_conv_unary_op (NEGATE_EXPR, se, expr);
return;
case INTRINSIC_NOT:
gfc_conv_unary_op (TRUTH_NOT_EXPR, se, expr);
return;
case INTRINSIC_PLUS:
code = PLUS_EXPR;
break;
case INTRINSIC_MINUS:
code = MINUS_EXPR;
break;
case INTRINSIC_TIMES:
code = MULT_EXPR;
break;
case INTRINSIC_DIVIDE:
/* If expr is a real or complex expr, use an RDIV_EXPR. If op1 is
an integer, we must round towards zero, so we use a
TRUNC_DIV_EXPR. */
if (expr->ts.type == BT_INTEGER)
code = TRUNC_DIV_EXPR;
else
code = RDIV_EXPR;
break;
case INTRINSIC_POWER:
gfc_conv_power_op (se, expr);
return;
case INTRINSIC_CONCAT:
gfc_conv_concat_op (se, expr);
return;
case INTRINSIC_AND:
code = TRUTH_ANDIF_EXPR;
lop = 1;
break;
case INTRINSIC_OR:
code = TRUTH_ORIF_EXPR;
lop = 1;
break;
/* EQV and NEQV only work on logicals, but since we represent them
as integers, we can use EQ_EXPR and NE_EXPR for them in GIMPLE. */
case INTRINSIC_EQ:
case INTRINSIC_EQV:
code = EQ_EXPR;
checkstring = 1;
lop = 1;
break;
case INTRINSIC_NE:
case INTRINSIC_NEQV:
code = NE_EXPR;
checkstring = 1;
lop = 1;
break;
case INTRINSIC_GT:
code = GT_EXPR;
checkstring = 1;
lop = 1;
break;
case INTRINSIC_GE:
code = GE_EXPR;
checkstring = 1;
lop = 1;
break;
case INTRINSIC_LT:
code = LT_EXPR;
checkstring = 1;
lop = 1;
break;
case INTRINSIC_LE:
code = LE_EXPR;
checkstring = 1;
lop = 1;
break;
case INTRINSIC_USER:
case INTRINSIC_ASSIGN:
/* These should be converted into function calls by the frontend. */
gcc_unreachable ();
default:
fatal_error ("Unknown intrinsic op");
return;
}
/* The only exception to this is **, which is handled separately anyway. */
gcc_assert (expr->value.op.op1->ts.type == expr->value.op.op2->ts.type);
if (checkstring && expr->value.op.op1->ts.type != BT_CHARACTER)
checkstring = 0;
/* lhs */
gfc_init_se (&lse, se);
gfc_conv_expr (&lse, expr->value.op.op1);
gfc_add_block_to_block (&se->pre, &lse.pre);
/* rhs */
gfc_init_se (&rse, se);
gfc_conv_expr (&rse, expr->value.op.op2);
gfc_add_block_to_block (&se->pre, &rse.pre);
if (checkstring)
{
gfc_conv_string_parameter (&lse);
gfc_conv_string_parameter (&rse);
lse.expr = gfc_build_compare_string (lse.string_length, lse.expr,
rse.string_length, rse.expr);
rse.expr = integer_zero_node;
gfc_add_block_to_block (&lse.post, &rse.post);
}
type = gfc_typenode_for_spec (&expr->ts);
if (lop)
{
/* The result of logical ops is always boolean_type_node. */
tmp = fold_build2 (code, type, lse.expr, rse.expr);
se->expr = convert (type, tmp);
}
else
se->expr = fold_build2 (code, type, lse.expr, rse.expr);
/* Add the post blocks. */
gfc_add_block_to_block (&se->post, &rse.post);
gfc_add_block_to_block (&se->post, &lse.post);
}
/* If a string's length is one, we convert it to a single character. */
static tree
gfc_to_single_character (tree len, tree str)
{
gcc_assert (POINTER_TYPE_P (TREE_TYPE (str)));
if (INTEGER_CST_P (len) && TREE_INT_CST_LOW (len) == 1
&& TREE_INT_CST_HIGH (len) == 0)
{
str = fold_convert (pchar_type_node, str);
return build_fold_indirect_ref (str);
}
return NULL_TREE;
}
/* Compare two strings. If they are all single characters, the result is the
subtraction of them. Otherwise, we build a library call. */
tree
gfc_build_compare_string (tree len1, tree str1, tree len2, tree str2)
{
tree sc1;
tree sc2;
tree type;
tree tmp;
gcc_assert (POINTER_TYPE_P (TREE_TYPE (str1)));
gcc_assert (POINTER_TYPE_P (TREE_TYPE (str2)));
type = gfc_get_int_type (gfc_default_integer_kind);
sc1 = gfc_to_single_character (len1, str1);
sc2 = gfc_to_single_character (len2, str2);
/* Deal with single character specially. */
if (sc1 != NULL_TREE && sc2 != NULL_TREE)
{
sc1 = fold_convert (type, sc1);
sc2 = fold_convert (type, sc2);
tmp = fold_build2 (MINUS_EXPR, type, sc1, sc2);
}
else
{
tmp = NULL_TREE;
tmp = gfc_chainon_list (tmp, len1);
tmp = gfc_chainon_list (tmp, str1);
tmp = gfc_chainon_list (tmp, len2);
tmp = gfc_chainon_list (tmp, str2);
/* Build a call for the comparison. */
tmp = build_function_call_expr (gfor_fndecl_compare_string, tmp);
}
return tmp;
}
static void
gfc_conv_function_val (gfc_se * se, gfc_symbol * sym)
{
tree tmp;
if (sym->attr.dummy)
{
tmp = gfc_get_symbol_decl (sym);
gcc_assert (TREE_CODE (TREE_TYPE (tmp)) == POINTER_TYPE
&& TREE_CODE (TREE_TYPE (TREE_TYPE (tmp))) == FUNCTION_TYPE);
}
else
{
if (!sym->backend_decl)
sym->backend_decl = gfc_get_extern_function_decl (sym);
tmp = sym->backend_decl;
if (!POINTER_TYPE_P (TREE_TYPE (tmp)))
{
gcc_assert (TREE_CODE (tmp) == FUNCTION_DECL);
tmp = gfc_build_addr_expr (NULL, tmp);
}
}
se->expr = tmp;
}
/* Initialize MAPPING. */
void
gfc_init_interface_mapping (gfc_interface_mapping * mapping)
{
mapping->syms = NULL;
mapping->charlens = NULL;
}
/* Free all memory held by MAPPING (but not MAPPING itself). */
void
gfc_free_interface_mapping (gfc_interface_mapping * mapping)
{
gfc_interface_sym_mapping *sym;
gfc_interface_sym_mapping *nextsym;
gfc_charlen *cl;
gfc_charlen *nextcl;
for (sym = mapping->syms; sym; sym = nextsym)
{
nextsym = sym->next;
gfc_free_symbol (sym->new->n.sym);
gfc_free (sym->new);
gfc_free (sym);
}
for (cl = mapping->charlens; cl; cl = nextcl)
{
nextcl = cl->next;
gfc_free_expr (cl->length);
gfc_free (cl);
}
}
/* Return a copy of gfc_charlen CL. Add the returned structure to
MAPPING so that it will be freed by gfc_free_interface_mapping. */
static gfc_charlen *
gfc_get_interface_mapping_charlen (gfc_interface_mapping * mapping,
gfc_charlen * cl)
{
gfc_charlen *new;
new = gfc_get_charlen ();
new->next = mapping->charlens;
new->length = gfc_copy_expr (cl->length);
mapping->charlens = new;
return new;
}
/* A subroutine of gfc_add_interface_mapping. Return a descriptorless
array variable that can be used as the actual argument for dummy
argument SYM. Add any initialization code to BLOCK. PACKED is as
for gfc_get_nodesc_array_type and DATA points to the first element
in the passed array. */
static tree
gfc_get_interface_mapping_array (stmtblock_t * block, gfc_symbol * sym,
int packed, tree data)
{
tree type;
tree var;
type = gfc_typenode_for_spec (&sym->ts);
type = gfc_get_nodesc_array_type (type, sym->as, packed);
var = gfc_create_var (type, "ifm");
gfc_add_modify_expr (block, var, fold_convert (type, data));
return var;
}
/* A subroutine of gfc_add_interface_mapping. Set the stride, upper bounds
and offset of descriptorless array type TYPE given that it has the same
size as DESC. Add any set-up code to BLOCK. */
static void
gfc_set_interface_mapping_bounds (stmtblock_t * block, tree type, tree desc)
{
int n;
tree dim;
tree offset;
tree tmp;
offset = gfc_index_zero_node;
for (n = 0; n < GFC_TYPE_ARRAY_RANK (type); n++)
{
GFC_TYPE_ARRAY_STRIDE (type, n) = gfc_conv_array_stride (desc, n);
if (GFC_TYPE_ARRAY_UBOUND (type, n) == NULL_TREE)
{
dim = gfc_rank_cst[n];
tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
gfc_conv_descriptor_ubound (desc, dim),
gfc_conv_descriptor_lbound (desc, dim));
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
GFC_TYPE_ARRAY_LBOUND (type, n),
tmp);
tmp = gfc_evaluate_now (tmp, block);
GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
}
tmp = fold_build2 (MULT_EXPR, gfc_array_index_type,
GFC_TYPE_ARRAY_LBOUND (type, n),
GFC_TYPE_ARRAY_STRIDE (type, n));
offset = fold_build2 (MINUS_EXPR, gfc_array_index_type, offset, tmp);
}
offset = gfc_evaluate_now (offset, block);
GFC_TYPE_ARRAY_OFFSET (type) = offset;
}
/* Extend MAPPING so that it maps dummy argument SYM to the value stored
in SE. The caller may still use se->expr and se->string_length after
calling this function. */
void
gfc_add_interface_mapping (gfc_interface_mapping * mapping,
gfc_symbol * sym, gfc_se * se)
{
gfc_interface_sym_mapping *sm;
tree desc;
tree tmp;
tree value;
gfc_symbol *new_sym;
gfc_symtree *root;
gfc_symtree *new_symtree;
/* Create a new symbol to represent the actual argument. */
new_sym = gfc_new_symbol (sym->name, NULL);
new_sym->ts = sym->ts;
new_sym->attr.referenced = 1;
new_sym->attr.dimension = sym->attr.dimension;
new_sym->attr.pointer = sym->attr.pointer;
new_sym->attr.flavor = sym->attr.flavor;
/* Create a fake symtree for it. */
root = NULL;
new_symtree = gfc_new_symtree (&root, sym->name);
new_symtree->n.sym = new_sym;
gcc_assert (new_symtree == root);
/* Create a dummy->actual mapping. */
sm = gfc_getmem (sizeof (*sm));
sm->next = mapping->syms;
sm->old = sym;
sm->new = new_symtree;
mapping->syms = sm;
/* Stabilize the argument's value. */
se->expr = gfc_evaluate_now (se->expr, &se->pre);
if (sym->ts.type == BT_CHARACTER)
{
/* Create a copy of the dummy argument's length. */
new_sym->ts.cl = gfc_get_interface_mapping_charlen (mapping, sym->ts.cl);
/* If the length is specified as "*", record the length that
the caller is passing. We should use the callee's length
in all other cases. */
if (!new_sym->ts.cl->length)
{
se->string_length = gfc_evaluate_now (se->string_length, &se->pre);
new_sym->ts.cl->backend_decl = se->string_length;
}
}
/* Use the passed value as-is if the argument is a function. */
if (sym->attr.flavor == FL_PROCEDURE)
value = se->expr;
/* If the argument is either a string or a pointer to a string,
convert it to a boundless character type. */
else if (!sym->attr.dimension && sym->ts.type == BT_CHARACTER)
{
tmp = gfc_get_character_type_len (sym->ts.kind, NULL);
tmp = build_pointer_type (tmp);
if (sym->attr.pointer)
tmp = build_pointer_type (tmp);
value = fold_convert (tmp, se->expr);
if (sym->attr.pointer)
value = gfc_build_indirect_ref (value);
}
/* If the argument is a scalar or a pointer to an array, dereference it. */
else if (!sym->attr.dimension || sym->attr.pointer)
value = gfc_build_indirect_ref (se->expr);
/* If the argument is an array descriptor, use it to determine
information about the actual argument's shape. */
else if (POINTER_TYPE_P (TREE_TYPE (se->expr))
&& GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (TREE_TYPE (se->expr))))
{
/* Get the actual argument's descriptor. */
desc = gfc_build_indirect_ref (se->expr);
/* Create the replacement variable. */
tmp = gfc_conv_descriptor_data_get (desc);
value = gfc_get_interface_mapping_array (&se->pre, sym, 0, tmp);
/* Use DESC to work out the upper bounds, strides and offset. */
gfc_set_interface_mapping_bounds (&se->pre, TREE_TYPE (value), desc);
}
else
/* Otherwise we have a packed array. */
value = gfc_get_interface_mapping_array (&se->pre, sym, 2, se->expr);
new_sym->backend_decl = value;
}
/* Called once all dummy argument mappings have been added to MAPPING,
but before the mapping is used to evaluate expressions. Pre-evaluate
the length of each argument, adding any initialization code to PRE and
any finalization code to POST. */
void
gfc_finish_interface_mapping (gfc_interface_mapping * mapping,
stmtblock_t * pre, stmtblock_t * post)
{
gfc_interface_sym_mapping *sym;
gfc_expr *expr;
gfc_se se;
for (sym = mapping->syms; sym; sym = sym->next)
if (sym->new->n.sym->ts.type == BT_CHARACTER
&& !sym->new->n.sym->ts.cl->backend_decl)
{
expr = sym->new->n.sym->ts.cl->length;
gfc_apply_interface_mapping_to_expr (mapping, expr);
gfc_init_se (&se, NULL);
gfc_conv_expr (&se, expr);
se.expr = gfc_evaluate_now (se.expr, &se.pre);
gfc_add_block_to_block (pre, &se.pre);
gfc_add_block_to_block (post, &se.post);
sym->new->n.sym->ts.cl->backend_decl = se.expr;
}
}
/* Like gfc_apply_interface_mapping_to_expr, but applied to
constructor C. */
static void
gfc_apply_interface_mapping_to_cons (gfc_interface_mapping * mapping,
gfc_constructor * c)
{
for (; c; c = c->next)
{
gfc_apply_interface_mapping_to_expr (mapping, c->expr);
if (c->iterator)
{
gfc_apply_interface_mapping_to_expr (mapping, c->iterator->start);
gfc_apply_interface_mapping_to_expr (mapping, c->iterator->end);
gfc_apply_interface_mapping_to_expr (mapping, c->iterator->step);
}
}
}
/* Like gfc_apply_interface_mapping_to_expr, but applied to
reference REF. */
static void
gfc_apply_interface_mapping_to_ref (gfc_interface_mapping * mapping,
gfc_ref * ref)
{
int n;
for (; ref; ref = ref->next)
switch (ref->type)
{
case REF_ARRAY:
for (n = 0; n < ref->u.ar.dimen; n++)
{
gfc_apply_interface_mapping_to_expr (mapping, ref->u.ar.start[n]);
gfc_apply_interface_mapping_to_expr (mapping, ref->u.ar.end[n]);
gfc_apply_interface_mapping_to_expr (mapping, ref->u.ar.stride[n]);
}
gfc_apply_interface_mapping_to_expr (mapping, ref->u.ar.offset);
break;
case REF_COMPONENT:
break;
case REF_SUBSTRING:
gfc_apply_interface_mapping_to_expr (mapping, ref->u.ss.start);
gfc_apply_interface_mapping_to_expr (mapping, ref->u.ss.end);
break;
}
}
/* EXPR is a copy of an expression that appeared in the interface
associated with MAPPING. Walk it recursively looking for references to
dummy arguments that MAPPING maps to actual arguments. Replace each such
reference with a reference to the associated actual argument. */
static void
gfc_apply_interface_mapping_to_expr (gfc_interface_mapping * mapping,
gfc_expr * expr)
{
gfc_interface_sym_mapping *sym;
gfc_actual_arglist *actual;
if (!expr)
return;
/* Copying an expression does not copy its length, so do that here. */
if (expr->ts.type == BT_CHARACTER && expr->ts.cl)
{
expr->ts.cl = gfc_get_interface_mapping_charlen (mapping, expr->ts.cl);
gfc_apply_interface_mapping_to_expr (mapping, expr->ts.cl->length);
}
/* Apply the mapping to any references. */
gfc_apply_interface_mapping_to_ref (mapping, expr->ref);
/* ...and to the expression's symbol, if it has one. */
if (expr->symtree)
for (sym = mapping->syms; sym; sym = sym->next)
if (sym->old == expr->symtree->n.sym)
expr->symtree = sym->new;
/* ...and to subexpressions in expr->value. */
switch (expr->expr_type)
{
case EXPR_VARIABLE:
case EXPR_CONSTANT:
case EXPR_NULL:
case EXPR_SUBSTRING:
break;
case EXPR_OP:
gfc_apply_interface_mapping_to_expr (mapping, expr->value.op.op1);
gfc_apply_interface_mapping_to_expr (mapping, expr->value.op.op2);
break;
case EXPR_FUNCTION:
for (sym = mapping->syms; sym; sym = sym->next)
if (sym->old == expr->value.function.esym)
expr->value.function.esym = sym->new->n.sym;
for (actual = expr->value.function.actual; actual; actual = actual->next)
gfc_apply_interface_mapping_to_expr (mapping, actual->expr);
break;
case EXPR_ARRAY:
case EXPR_STRUCTURE:
gfc_apply_interface_mapping_to_cons (mapping, expr->value.constructor);
break;
}
}
/* Evaluate interface expression EXPR using MAPPING. Store the result
in SE. */
void
gfc_apply_interface_mapping (gfc_interface_mapping * mapping,
gfc_se * se, gfc_expr * expr)
{
expr = gfc_copy_expr (expr);
gfc_apply_interface_mapping_to_expr (mapping, expr);
gfc_conv_expr (se, expr);
se->expr = gfc_evaluate_now (se->expr, &se->pre);
gfc_free_expr (expr);
}
/* Returns a reference to a temporary array into which a component of
an actual argument derived type array is copied and then returned
after the function call.
TODO Get rid of this kludge, when array descriptors are capable of
handling aliased arrays. */
static void
gfc_conv_aliased_arg (gfc_se * parmse, gfc_expr * expr, int g77)
{
gfc_se lse;
gfc_se rse;
gfc_ss *lss;
gfc_ss *rss;
gfc_loopinfo loop;
gfc_loopinfo loop2;
gfc_ss_info *info;
tree offset;
tree tmp_index;
tree tmp;
tree base_type;
stmtblock_t body;
int n;
gcc_assert (expr->expr_type == EXPR_VARIABLE);
gfc_init_se (&lse, NULL);
gfc_init_se (&rse, NULL);
/* Walk the argument expression. */
rss = gfc_walk_expr (expr);
gcc_assert (rss != gfc_ss_terminator);
/* Initialize the scalarizer. */
gfc_init_loopinfo (&loop);
gfc_add_ss_to_loop (&loop, rss);
/* Calculate the bounds of the scalarization. */
gfc_conv_ss_startstride (&loop);
/* Build an ss for the temporary. */
base_type = gfc_typenode_for_spec (&expr->ts);
if (GFC_ARRAY_TYPE_P (base_type)
|| GFC_DESCRIPTOR_TYPE_P (base_type))
base_type = gfc_get_element_type (base_type);
loop.temp_ss = gfc_get_ss ();;
loop.temp_ss->type = GFC_SS_TEMP;
loop.temp_ss->data.temp.type = base_type;
if (expr->ts.type == BT_CHARACTER)
loop.temp_ss->string_length = expr->ts.cl->backend_decl;
loop.temp_ss->data.temp.dimen = loop.dimen;
loop.temp_ss->next = gfc_ss_terminator;
/* Associate the SS with the loop. */
gfc_add_ss_to_loop (&loop, loop.temp_ss);
/* Setup the scalarizing loops. */
gfc_conv_loop_setup (&loop);
/* Pass the temporary descriptor back to the caller. */
info = &loop.temp_ss->data.info;
parmse->expr = info->descriptor;
/* Setup the gfc_se structures. */
gfc_copy_loopinfo_to_se (&lse, &loop);
gfc_copy_loopinfo_to_se (&rse, &loop);
rse.ss = rss;
lse.ss = loop.temp_ss;
gfc_mark_ss_chain_used (rss, 1);
gfc_mark_ss_chain_used (loop.temp_ss, 1);
/* Start the scalarized loop body. */
gfc_start_scalarized_body (&loop, &body);
/* Translate the expression. */
gfc_conv_expr (&rse, expr);
gfc_conv_tmp_array_ref (&lse);
gfc_advance_se_ss_chain (&lse);
tmp = gfc_trans_scalar_assign (&lse, &rse, expr->ts.type);
gfc_add_expr_to_block (&body, tmp);
gcc_assert (rse.ss == gfc_ss_terminator);
gfc_trans_scalarizing_loops (&loop, &body);
/* Add the post block after the second loop, so that any
freeing of allocated memory is done at the right time. */
gfc_add_block_to_block (&parmse->pre, &loop.pre);
/**********Copy the temporary back again.*********/
gfc_init_se (&lse, NULL);
gfc_init_se (&rse, NULL);
/* Walk the argument expression. */
lss = gfc_walk_expr (expr);
rse.ss = loop.temp_ss;
lse.ss = lss;
/* Initialize the scalarizer. */
gfc_init_loopinfo (&loop2);
gfc_add_ss_to_loop (&loop2, lss);
/* Calculate the bounds of the scalarization. */
gfc_conv_ss_startstride (&loop2);
/* Setup the scalarizing loops. */
gfc_conv_loop_setup (&loop2);
gfc_copy_loopinfo_to_se (&lse, &loop2);
gfc_copy_loopinfo_to_se (&rse, &loop2);
gfc_mark_ss_chain_used (lss, 1);
gfc_mark_ss_chain_used (loop.temp_ss, 1);
/* Declare the variable to hold the temporary offset and start the
scalarized loop body. */
offset = gfc_create_var (gfc_array_index_type, NULL);
gfc_start_scalarized_body (&loop2, &body);
/* Build the offsets for the temporary from the loop variables. The
temporary array has lbounds of zero and strides of one in all
dimensions, so this is very simple. The offset is only computed
outside the innermost loop, so the overall transfer could be
optimised further. */
info = &rse.ss->data.info;
tmp_index = gfc_index_zero_node;
for (n = info->dimen - 1; n > 0; n--)
{
tree tmp_str;
tmp = rse.loop->loopvar[n];
tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type,
tmp, rse.loop->from[n]);
tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type,
tmp, tmp_index);
tmp_str = fold_build2 (MINUS_EXPR, gfc_array_index_type,
rse.loop->to[n-1], rse.loop->from[n-1]);
tmp_str = fold_build2 (PLUS_EXPR, gfc_array_index_type,
tmp_str, gfc_index_one_node);
tmp_index = fold_build2 (MULT_EXPR, gfc_array_index_type,
tmp, tmp_str);
}
tmp_index = fold_build2 (MINUS_EXPR, gfc_array_index_type,
tmp_index, rse.loop->from[0]);
gfc_add_modify_expr (&rse.loop->code[0], offset, tmp_index);
tmp_index = fold_build2 (PLUS_EXPR, gfc_array_index_type,
rse.loop->loopvar[0], offset);
/* Now use the offset for the reference. */
tmp = build_fold_indirect_ref (info->data);
rse.expr = gfc_build_array_ref (tmp, tmp_index);
if (expr->ts.type == BT_CHARACTER)
rse.string_length = expr->ts.cl->backend_decl;
gfc_conv_expr (&lse, expr);
gcc_assert (lse.ss == gfc_ss_terminator);
tmp = gfc_trans_scalar_assign (&lse, &rse, expr->ts.type);
gfc_add_expr_to_block (&body, tmp);
/* Generate the copying loops. */
gfc_trans_scalarizing_loops (&loop2, &body);
/* Wrap the whole thing up by adding the second loop to the post-block
and following it by the post-block of the fist loop. In this way,
if the temporary needs freeing, it is done after use! */
gfc_add_block_to_block (&parmse->post, &loop2.pre);
gfc_add_block_to_block (&parmse->post, &loop2.post);
gfc_add_block_to_block (&parmse->post, &loop.post);
gfc_cleanup_loop (&loop);
gfc_cleanup_loop (&loop2);
/* Pass the string length to the argument expression. */
if (expr->ts.type == BT_CHARACTER)
parmse->string_length = expr->ts.cl->backend_decl;
/* We want either the address for the data or the address of the descriptor,
depending on the mode of passing array arguments. */
if (g77)
parmse->expr = gfc_conv_descriptor_data_get (parmse->expr);
else
parmse->expr = build_fold_addr_expr (parmse->expr);
return;
}
/* Is true if the last array reference is followed by a component reference. */
static bool
is_aliased_array (gfc_expr * e)
{
gfc_ref * ref;
bool seen_array;
seen_array = false;
for (ref = e->ref; ref; ref = ref->next)
{
if (ref->type == REF_ARRAY)
seen_array = true;
if (ref->next == NULL && ref->type == REF_COMPONENT)
return seen_array;
}
return false;
}
/* Generate code for a procedure call. Note can return se->post != NULL.
If se->direct_byref is set then se->expr contains the return parameter.
Return nonzero, if the call has alternate specifiers. */
int
gfc_conv_function_call (gfc_se * se, gfc_symbol * sym,
gfc_actual_arglist * arg)
{
gfc_interface_mapping mapping;
tree arglist;
tree retargs;
tree tmp;
tree fntype;
gfc_se parmse;
gfc_ss *argss;
gfc_ss_info *info;
int byref;
tree type;
tree var;
tree len;
tree stringargs;
gfc_formal_arglist *formal;
int has_alternate_specifier = 0;
bool need_interface_mapping;
gfc_typespec ts;
gfc_charlen cl;
arglist = NULL_TREE;
retargs = NULL_TREE;
stringargs = NULL_TREE;
var = NULL_TREE;
len = NULL_TREE;
if (se->ss != NULL)
{
if (!sym->attr.elemental)
{
gcc_assert (se->ss->type == GFC_SS_FUNCTION);
if (se->ss->useflags)
{
gcc_assert (gfc_return_by_reference (sym)
&& sym->result->attr.dimension);
gcc_assert (se->loop != NULL);
/* Access the previously obtained result. */
gfc_conv_tmp_array_ref (se);
gfc_advance_se_ss_chain (se);
return 0;
}
}
info = &se->ss->data.info;
}
else
info = NULL;
gfc_init_interface_mapping (&mapping);
need_interface_mapping = ((sym->ts.type == BT_CHARACTER
&& sym->ts.cl->length
&& sym->ts.cl->length->expr_type
!= EXPR_CONSTANT)
|| sym->attr.dimension);
formal = sym->formal;
/* Evaluate the arguments. */
for (; arg != NULL; arg = arg->next, formal = formal ? formal->next : NULL)
{
if (arg->expr == NULL)
{
if (se->ignore_optional)
{
/* Some intrinsics have already been resolved to the correct
parameters. */
continue;
}
else if (arg->label)
{
has_alternate_specifier = 1;
continue;
}
else
{
/* Pass a NULL pointer for an absent arg. */
gfc_init_se (&parmse, NULL);
parmse.expr = null_pointer_node;
if (arg->missing_arg_type == BT_CHARACTER)
parmse.string_length = convert (gfc_charlen_type_node,
integer_zero_node);
}
}
else if (se->ss && se->ss->useflags)
{
/* An elemental function inside a scalarized loop. */
gfc_init_se (&parmse, se);
gfc_conv_expr_reference (&parmse, arg->expr);
}
else
{
/* A scalar or transformational function. */
gfc_init_se (&parmse, NULL);
argss = gfc_walk_expr (arg->expr);
if (argss == gfc_ss_terminator)
{
gfc_conv_expr_reference (&parmse, arg->expr);
if (formal && formal->sym->attr.pointer
&& arg->expr->expr_type != EXPR_NULL)
{
/* Scalar pointer dummy args require an extra level of
indirection. The null pointer already contains
this level of indirection. */
parmse.expr = gfc_build_addr_expr (NULL, parmse.expr);
}
}
else
{
/* If the procedure requires an explicit interface, the
actual argument is passed according to the
corresponding formal argument. If the corresponding
formal argument is a POINTER or assumed shape, we do
not use g77's calling convention, and pass the
address of the array descriptor instead. Otherwise we
use g77's calling convention. */
int f;
f = (formal != NULL)
&& !formal->sym->attr.pointer
&& formal->sym->as->type != AS_ASSUMED_SHAPE;
f = f || !sym->attr.always_explicit;
if (arg->expr->expr_type == EXPR_VARIABLE
&& is_aliased_array (arg->expr))
/* The actual argument is a component reference to an
array of derived types. In this case, the argument
is converted to a temporary, which is passed and then
written back after the procedure call. */
gfc_conv_aliased_arg (&parmse, arg->expr, f);
else
gfc_conv_array_parameter (&parmse, arg->expr, argss, f);
}
}
if (formal && need_interface_mapping)
gfc_add_interface_mapping (&mapping, formal->sym, &parmse);
gfc_add_block_to_block (&se->pre, &parmse.pre);
gfc_add_block_to_block (&se->post, &parmse.post);
/* Character strings are passed as two parameters, a length and a
pointer. */
if (parmse.string_length != NULL_TREE)
stringargs = gfc_chainon_list (stringargs, parmse.string_length);
arglist = gfc_chainon_list (arglist, parmse.expr);
}
gfc_finish_interface_mapping (&mapping, &se->pre, &se->post);
ts = sym->ts;
if (ts.type == BT_CHARACTER)
{
if (sym->ts.cl->length == NULL)
{
/* Assumed character length results are not allowed by 5.1.1.5 of the
standard and are trapped in resolve.c; except in the case of SPREAD
(and other intrinsics?). In this case, we take the character length
of the first argument for the result. */
cl.backend_decl = TREE_VALUE (stringargs);
}
else
{
/* Calculate the length of the returned string. */
gfc_init_se (&parmse, NULL);
if (need_interface_mapping)
gfc_apply_interface_mapping (&mapping, &parmse, sym->ts.cl->length);
else
gfc_conv_expr (&parmse, sym->ts.cl->length);
gfc_add_block_to_block (&se->pre, &parmse.pre);
gfc_add_block_to_block (&se->post, &parmse.post);
cl.backend_decl = fold_convert (gfc_charlen_type_node, parmse.expr);
}
/* Set up a charlen structure for it. */
cl.next = NULL;
cl.length = NULL;
ts.cl = &cl;
len = cl.backend_decl;
}
byref = gfc_return_by_reference (sym);
if (byref)
{
if (se->direct_byref)
retargs = gfc_chainon_list (retargs, se->expr);
else if (sym->result->attr.dimension)
{
gcc_assert (se->loop && info);
/* Set the type of the array. */
tmp = gfc_typenode_for_spec (&ts);
info->dimen = se->loop->dimen;
/* Evaluate the bounds of the result, if known. */
gfc_set_loop_bounds_from_array_spec (&mapping, se, sym->result->as);
/* Allocate a temporary to store the result. In case the function
returns a pointer, the temporary will be a shallow copy and
mustn't be deallocated. */
gfc_trans_allocate_temp_array (&se->pre, &se->post, se->loop, info,
tmp, false, !sym->attr.pointer);
/* Zero the first stride to indicate a temporary. */
tmp = gfc_conv_descriptor_stride (info->descriptor, gfc_rank_cst[0]);
gfc_add_modify_expr (&se->pre, tmp,
convert (TREE_TYPE (tmp), integer_zero_node));
/* Pass the temporary as the first argument. */
tmp = info->descriptor;
tmp = gfc_build_addr_expr (NULL, tmp);
retargs = gfc_chainon_list (retargs, tmp);
}
else if (ts.type == BT_CHARACTER)
{
/* Pass the string length. */
type = gfc_get_character_type (ts.kind, ts.cl);
type = build_pointer_type (type);
/* Return an address to a char[0:len-1]* temporary for
character pointers. */
if (sym->attr.pointer || sym->attr.allocatable)
{
/* Build char[0:len-1] * pstr. */
tmp = fold_build2 (MINUS_EXPR, gfc_charlen_type_node, len,
build_int_cst (gfc_charlen_type_node, 1));
tmp = build_range_type (gfc_array_index_type,
gfc_index_zero_node, tmp);
tmp = build_array_type (gfc_character1_type_node, tmp);
var = gfc_create_var (build_pointer_type (tmp), "pstr");
/* Provide an address expression for the function arguments. */
var = gfc_build_addr_expr (NULL, var);
}
else
var = gfc_conv_string_tmp (se, type, len);
retargs = gfc_chainon_list (retargs, var);
}
else
{
gcc_assert (gfc_option.flag_f2c && ts.type == BT_COMPLEX);
type = gfc_get_complex_type (ts.kind);
var = gfc_build_addr_expr (NULL, gfc_create_var (type, "cmplx"));
retargs = gfc_chainon_list (retargs, var);
}
/* Add the string length to the argument list. */
if (ts.type == BT_CHARACTER)
retargs = gfc_chainon_list (retargs, len);
}
gfc_free_interface_mapping (&mapping);
/* Add the return arguments. */
arglist = chainon (retargs, arglist);
/* Add the hidden string length parameters to the arguments. */
arglist = chainon (arglist, stringargs);
/* Generate the actual call. */
gfc_conv_function_val (se, sym);
/* If there are alternate return labels, function type should be
integer. Can't modify the type in place though, since it can be shared
with other functions. */
if (has_alternate_specifier
&& TREE_TYPE (TREE_TYPE (TREE_TYPE (se->expr))) != integer_type_node)
{
gcc_assert (! sym->attr.dummy);
TREE_TYPE (sym->backend_decl)
= build_function_type (integer_type_node,
TYPE_ARG_TYPES (TREE_TYPE (sym->backend_decl)));
se->expr = gfc_build_addr_expr (NULL, sym->backend_decl);
}
fntype = TREE_TYPE (TREE_TYPE (se->expr));
se->expr = build3 (CALL_EXPR, TREE_TYPE (fntype), se->expr,
arglist, NULL_TREE);
/* If we have a pointer function, but we don't want a pointer, e.g.
something like
x = f()
where f is pointer valued, we have to dereference the result. */
if (!se->want_pointer && !byref && sym->attr.pointer)
se->expr = gfc_build_indirect_ref (se->expr);
/* f2c calling conventions require a scalar default real function to
return a double precision result. Convert this back to default
real. We only care about the cases that can happen in Fortran 77.
*/
if (gfc_option.flag_f2c && sym->ts.type == BT_REAL
&& sym->ts.kind == gfc_default_real_kind
&& !sym->attr.always_explicit)
se->expr = fold_convert (gfc_get_real_type (sym->ts.kind), se->expr);
/* A pure function may still have side-effects - it may modify its
parameters. */
TREE_SIDE_EFFECTS (se->expr) = 1;
#if 0
if (!sym->attr.pure)
TREE_SIDE_EFFECTS (se->expr) = 1;
#endif
if (byref)
{
/* Add the function call to the pre chain. There is no expression. */
gfc_add_expr_to_block (&se->pre, se->expr);
se->expr = NULL_TREE;
if (!se->direct_byref)
{
if (sym->attr.dimension)
{
if (flag_bounds_check)
{
/* Check the data pointer hasn't been modified. This would
happen in a function returning a pointer. */
tmp = gfc_conv_descriptor_data_get (info->descriptor);
tmp = build2 (NE_EXPR, boolean_type_node, tmp, info->data);
gfc_trans_runtime_check (tmp, gfc_strconst_fault, &se->pre);
}
se->expr = info->descriptor;
/* Bundle in the string length. */
se->string_length = len;
}
else if (sym->ts.type == BT_CHARACTER)
{
/* Dereference for character pointer results. */
if (sym->attr.pointer || sym->attr.allocatable)
se->expr = gfc_build_indirect_ref (var);
else
se->expr = var;
se->string_length = len;
}
else
{
gcc_assert (sym->ts.type == BT_COMPLEX && gfc_option.flag_f2c);
se->expr = gfc_build_indirect_ref (var);
}
}
}
return has_alternate_specifier;
}
/* Generate code to copy a string. */
static void
gfc_trans_string_copy (stmtblock_t * block, tree dlen, tree dest,
tree slen, tree src)
{
tree tmp;
tree dsc;
tree ssc;
/* Deal with single character specially. */
dsc = gfc_to_single_character (dlen, dest);
ssc = gfc_to_single_character (slen, src);
if (dsc != NULL_TREE && ssc != NULL_TREE)
{
gfc_add_modify_expr (block, dsc, ssc);
return;
}
tmp = NULL_TREE;
tmp = gfc_chainon_list (tmp, dlen);
tmp = gfc_chainon_list (tmp, dest);
tmp = gfc_chainon_list (tmp, slen);
tmp = gfc_chainon_list (tmp, src);
tmp = gfc_build_function_call (gfor_fndecl_copy_string, tmp);
gfc_add_expr_to_block (block, tmp);
}
/* Translate a statement function.
The value of a statement function reference is obtained by evaluating the
expression using the values of the actual arguments for the values of the
corresponding dummy arguments. */
static void
gfc_conv_statement_function (gfc_se * se, gfc_expr * expr)
{
gfc_symbol *sym;
gfc_symbol *fsym;
gfc_formal_arglist *fargs;
gfc_actual_arglist *args;
gfc_se lse;
gfc_se rse;
gfc_saved_var *saved_vars;
tree *temp_vars;
tree type;
tree tmp;
int n;
sym = expr->symtree->n.sym;
args = expr->value.function.actual;
gfc_init_se (&lse, NULL);
gfc_init_se (&rse, NULL);
n = 0;
for (fargs = sym->formal; fargs; fargs = fargs->next)
n++;
saved_vars = (gfc_saved_var *)gfc_getmem (n * sizeof (gfc_saved_var));
temp_vars = (tree *)gfc_getmem (n * sizeof (tree));
for (fargs = sym->formal, n = 0; fargs; fargs = fargs->next, n++)
{
/* Each dummy shall be specified, explicitly or implicitly, to be
scalar. */
gcc_assert (fargs->sym->attr.dimension == 0);
fsym = fargs->sym;
/* Create a temporary to hold the value. */
type = gfc_typenode_for_spec (&fsym->ts);
temp_vars[n] = gfc_create_var (type, fsym->name);
if (fsym->ts.type == BT_CHARACTER)
{
/* Copy string arguments. */
tree arglen;
gcc_assert (fsym->ts.cl && fsym->ts.cl->length
&& fsym->ts.cl->length->expr_type == EXPR_CONSTANT);
arglen = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
tmp = gfc_build_addr_expr (build_pointer_type (type),
temp_vars[n]);
gfc_conv_expr (&rse, args->expr);
gfc_conv_string_parameter (&rse);
gfc_add_block_to_block (&se->pre, &lse.pre);
gfc_add_block_to_block (&se->pre, &rse.pre);
gfc_trans_string_copy (&se->pre, arglen, tmp, rse.string_length,
rse.expr);
gfc_add_block_to_block (&se->pre, &lse.post);
gfc_add_block_to_block (&se->pre, &rse.post);
}
else
{
/* For everything else, just evaluate the expression. */
gfc_conv_expr (&lse, args->expr);
gfc_add_block_to_block (&se->pre, &lse.pre);
gfc_add_modify_expr (&se->pre, temp_vars[n], lse.expr);
gfc_add_block_to_block (&se->pre, &lse.post);
}
args = args->next;
}
/* Use the temporary variables in place of the real ones. */
for (fargs = sym->formal, n = 0; fargs; fargs = fargs->next, n++)
gfc_shadow_sym (fargs->sym, temp_vars[n], &saved_vars[n]);
gfc_conv_expr (se, sym->value);
if (sym->ts.type == BT_CHARACTER)
{
gfc_conv_const_charlen (sym->ts.cl);
/* Force the expression to the correct length. */
if (!INTEGER_CST_P (se->string_length)
|| tree_int_cst_lt (se->string_length,
sym->ts.cl->backend_decl))
{
type = gfc_get_character_type (sym->ts.kind, sym->ts.cl);
tmp = gfc_create_var (type, sym->name);
tmp = gfc_build_addr_expr (build_pointer_type (type), tmp);
gfc_trans_string_copy (&se->pre, sym->ts.cl->backend_decl, tmp,
se->string_length, se->expr);
se->expr = tmp;
}
se->string_length = sym->ts.cl->backend_decl;
}
/* Restore the original variables. */
for (fargs = sym->formal, n = 0; fargs; fargs = fargs->next, n++)
gfc_restore_sym (fargs->sym, &saved_vars[n]);
gfc_free (saved_vars);
}
/* Translate a function expression. */
static void
gfc_conv_function_expr (gfc_se * se, gfc_expr * expr)
{
gfc_symbol *sym;
if (expr->value.function.isym)
{
gfc_conv_intrinsic_function (se, expr);
return;
}
/* We distinguish statement functions from general functions to improve
runtime performance. */
if (expr->symtree->n.sym->attr.proc == PROC_ST_FUNCTION)
{
gfc_conv_statement_function (se, expr);
return;
}
/* expr.value.function.esym is the resolved (specific) function symbol for
most functions. However this isn't set for dummy procedures. */
sym = expr->value.function.esym;
if (!sym)
sym = expr->symtree->n.sym;
gfc_conv_function_call (se, sym, expr->value.function.actual);
}
static void
gfc_conv_array_constructor_expr (gfc_se * se, gfc_expr * expr)
{
gcc_assert (se->ss != NULL && se->ss != gfc_ss_terminator);
gcc_assert (se->ss->expr == expr && se->ss->type == GFC_SS_CONSTRUCTOR);
gfc_conv_tmp_array_ref (se);
gfc_advance_se_ss_chain (se);
}
/* Build a static initializer. EXPR is the expression for the initial value.
The other parameters describe the variable of the component being
initialized. EXPR may be null. */
tree
gfc_conv_initializer (gfc_expr * expr, gfc_typespec * ts, tree type,
bool array, bool pointer)
{
gfc_se se;
if (!(expr || pointer))
return NULL_TREE;
if (array)
{
/* Arrays need special handling. */
if (pointer)
return gfc_build_null_descriptor (type);
else
return gfc_conv_array_initializer (type, expr);
}
else if (pointer)
return fold_convert (type, null_pointer_node);
else
{
switch (ts->type)
{
case BT_DERIVED:
gfc_init_se (&se, NULL);
gfc_conv_structure (&se, expr, 1);
return se.expr;
case BT_CHARACTER:
return gfc_conv_string_init (ts->cl->backend_decl,expr);
default:
gfc_init_se (&se, NULL);
gfc_conv_constant (&se, expr);
return se.expr;
}
}
}
static tree
gfc_trans_subarray_assign (tree dest, gfc_component * cm, gfc_expr * expr)
{
gfc_se rse;
gfc_se lse;
gfc_ss *rss;
gfc_ss *lss;
stmtblock_t body;
stmtblock_t block;
gfc_loopinfo loop;
int n;
tree tmp;
gfc_start_block (&block);
/* Initialize the scalarizer. */
gfc_init_loopinfo (&loop);
gfc_init_se (&lse, NULL);
gfc_init_se (&rse, NULL);
/* Walk the rhs. */
rss = gfc_walk_expr (expr);
if (rss == gfc_ss_terminator)
{
/* The rhs is scalar. Add a ss for the expression. */
rss = gfc_get_ss ();
rss->next = gfc_ss_terminator;
rss->type = GFC_SS_SCALAR;
rss->expr = expr;
}
/* Create a SS for the destination. */
lss = gfc_get_ss ();
lss->type = GFC_SS_COMPONENT;
lss->expr = NULL;
lss->shape = gfc_get_shape (cm->as->rank);
lss->next = gfc_ss_terminator;
lss->data.info.dimen = cm->as->rank;
lss->data.info.descriptor = dest;
lss->data.info.data = gfc_conv_array_data (dest);
lss->data.info.offset = gfc_conv_array_offset (dest);
for (n = 0; n < cm->as->rank; n++)
{
lss->data.info.dim[n] = n;
lss->data.info.start[n] = gfc_conv_array_lbound (dest, n);
lss->data.info.stride[n] = gfc_index_one_node;
mpz_init (lss->shape[n]);
mpz_sub (lss->shape[n], cm->as->upper[n]->value.integer,
cm->as->lower[n]->value.integer);
mpz_add_ui (lss->shape[n], lss->shape[n], 1);
}
/* Associate the SS with the loop. */
gfc_add_ss_to_loop (&loop, lss);
gfc_add_ss_to_loop (&loop, rss);
/* Calculate the bounds of the scalarization. */
gfc_conv_ss_startstride (&loop);
/* Setup the scalarizing loops. */
gfc_conv_loop_setup (&loop);
/* Setup the gfc_se structures. */
gfc_copy_loopinfo_to_se (&lse, &loop);
gfc_copy_loopinfo_to_se (&rse, &loop);
rse.ss = rss;
gfc_mark_ss_chain_used (rss, 1);
lse.ss = lss;
gfc_mark_ss_chain_used (lss, 1);
/* Start the scalarized loop body. */
gfc_start_scalarized_body (&loop, &body);
gfc_conv_tmp_array_ref (&lse);
if (cm->ts.type == BT_CHARACTER)
lse.string_length = cm->ts.cl->backend_decl;
gfc_conv_expr (&rse, expr);
tmp = gfc_trans_scalar_assign (&lse, &rse, cm->ts.type);
gfc_add_expr_to_block (&body, tmp);
gcc_assert (rse.ss == gfc_ss_terminator);
/* Generate the copying loops. */
gfc_trans_scalarizing_loops (&loop, &body);
/* Wrap the whole thing up. */
gfc_add_block_to_block (&block, &loop.pre);
gfc_add_block_to_block (&block, &loop.post);
for (n = 0; n < cm->as->rank; n++)
mpz_clear (lss->shape[n]);
gfc_free (lss->shape);
gfc_cleanup_loop (&loop);
return gfc_finish_block (&block);
}
/* Assign a single component of a derived type constructor. */
static tree
gfc_trans_subcomponent_assign (tree dest, gfc_component * cm, gfc_expr * expr)
{
gfc_se se;
gfc_ss *rss;
stmtblock_t block;
tree tmp;
gfc_start_block (&block);
if (cm->pointer)
{
gfc_init_se (&se, NULL);
/* Pointer component. */
if (cm->dimension)
{
/* Array pointer. */
if (expr->expr_type == EXPR_NULL)
gfc_conv_descriptor_data_set (&block, dest, null_pointer_node);
else
{
rss = gfc_walk_expr (expr);
se.direct_byref = 1;
se.expr = dest;
gfc_conv_expr_descriptor (&se, expr, rss);
gfc_add_block_to_block (&block, &se.pre);
gfc_add_block_to_block (&block, &se.post);
}
}
else
{
/* Scalar pointers. */
se.want_pointer = 1;
gfc_conv_expr (&se, expr);
gfc_add_block_to_block (&block, &se.pre);
gfc_add_modify_expr (&block, dest,
fold_convert (TREE_TYPE (dest), se.expr));
gfc_add_block_to_block (&block, &se.post);
}
}
else if (cm->dimension)
{
tmp = gfc_trans_subarray_assign (dest, cm, expr);
gfc_add_expr_to_block (&block, tmp);
}
else if (expr->ts.type == BT_DERIVED)
{
/* Nested derived type. */
tmp = gfc_trans_structure_assign (dest, expr);
gfc_add_expr_to_block (&block, tmp);
}
else
{
/* Scalar component. */
gfc_se lse;
gfc_init_se (&se, NULL);
gfc_init_se (&lse, NULL);
gfc_conv_expr (&se, expr);
if (cm->ts.type == BT_CHARACTER)
lse.string_length = cm->ts.cl->backend_decl;
lse.expr = dest;
tmp = gfc_trans_scalar_assign (&lse, &se, cm->ts.type);
gfc_add_expr_to_block (&block, tmp);
}
return gfc_finish_block (&block);
}
/* Assign a derived type constructor to a variable. */
static tree
gfc_trans_structure_assign (tree dest, gfc_expr * expr)
{
gfc_constructor *c;
gfc_component *cm;
stmtblock_t block;
tree field;
tree tmp;
gfc_start_block (&block);
cm = expr->ts.derived->components;
for (c = expr->value.constructor; c; c = c->next, cm = cm->next)
{
/* Skip absent members in default initializers. */
if (!c->expr)
continue;
field = cm->backend_decl;
tmp = build3 (COMPONENT_REF, TREE_TYPE (field), dest, field, NULL_TREE);
tmp = gfc_trans_subcomponent_assign (tmp, cm, c->expr);
gfc_add_expr_to_block (&block, tmp);
}
return gfc_finish_block (&block);
}
/* Build an expression for a constructor. If init is nonzero then
this is part of a static variable initializer. */
void
gfc_conv_structure (gfc_se * se, gfc_expr * expr, int init)
{
gfc_constructor *c;
gfc_component *cm;
tree val;
tree type;
tree tmp;
VEC(constructor_elt,gc) *v = NULL;
gcc_assert (se->ss == NULL);
gcc_assert (expr->expr_type == EXPR_STRUCTURE);
type = gfc_typenode_for_spec (&expr->ts);
if (!init)
{
/* Create a temporary variable and fill it in. */
se->expr = gfc_create_var (type, expr->ts.derived->name);
tmp = gfc_trans_structure_assign (se->expr, expr);
gfc_add_expr_to_block (&se->pre, tmp);
return;
}
cm = expr->ts.derived->components;
for (c = expr->value.constructor; c; c = c->next, cm = cm->next)
{
/* Skip absent members in default initializers. */
if (!c->expr)
continue;
val = gfc_conv_initializer (c->expr, &cm->ts,
TREE_TYPE (cm->backend_decl), cm->dimension, cm->pointer);
/* Append it to the constructor list. */
CONSTRUCTOR_APPEND_ELT (v, cm->backend_decl, val);
}
se->expr = build_constructor (type, v);
}
/* Translate a substring expression. */
static void
gfc_conv_substring_expr (gfc_se * se, gfc_expr * expr)
{
gfc_ref *ref;
ref = expr->ref;
gcc_assert (ref->type == REF_SUBSTRING);
se->expr = gfc_build_string_const(expr->value.character.length,
expr->value.character.string);
se->string_length = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (se->expr)));
TYPE_STRING_FLAG (TREE_TYPE (se->expr))=1;
gfc_conv_substring(se,ref,expr->ts.kind);
}
/* Entry point for expression translation. Evaluates a scalar quantity.
EXPR is the expression to be translated, and SE is the state structure if
called from within the scalarized. */
void
gfc_conv_expr (gfc_se * se, gfc_expr * expr)
{
if (se->ss && se->ss->expr == expr
&& (se->ss->type == GFC_SS_SCALAR || se->ss->type == GFC_SS_REFERENCE))
{
/* Substitute a scalar expression evaluated outside the scalarization
loop. */
se->expr = se->ss->data.scalar.expr;
se->string_length = se->ss->string_length;
gfc_advance_se_ss_chain (se);
return;
}
switch (expr->expr_type)
{
case EXPR_OP:
gfc_conv_expr_op (se, expr);
break;
case EXPR_FUNCTION:
gfc_conv_function_expr (se, expr);
break;
case EXPR_CONSTANT:
gfc_conv_constant (se, expr);
break;
case EXPR_VARIABLE:
gfc_conv_variable (se, expr);
break;
case EXPR_NULL:
se->expr = null_pointer_node;
break;
case EXPR_SUBSTRING:
gfc_conv_substring_expr (se, expr);
break;
case EXPR_STRUCTURE:
gfc_conv_structure (se, expr, 0);
break;
case EXPR_ARRAY:
gfc_conv_array_constructor_expr (se, expr);
break;
default:
gcc_unreachable ();
break;
}
}
/* Like gfc_conv_expr_val, but the value is also suitable for use in the lhs
of an assignment. */
void
gfc_conv_expr_lhs (gfc_se * se, gfc_expr * expr)
{
gfc_conv_expr (se, expr);
/* All numeric lvalues should have empty post chains. If not we need to
figure out a way of rewriting an lvalue so that it has no post chain. */
gcc_assert (expr->ts.type == BT_CHARACTER || !se->post.head);
}
/* Like gfc_conv_expr, but the POST block is guaranteed to be empty for
numeric expressions. Used for scalar values whee inserting cleanup code
is inconvenient. */
void
gfc_conv_expr_val (gfc_se * se, gfc_expr * expr)
{
tree val;
gcc_assert (expr->ts.type != BT_CHARACTER);
gfc_conv_expr (se, expr);
if (se->post.head)
{
val = gfc_create_var (TREE_TYPE (se->expr), NULL);
gfc_add_modify_expr (&se->pre, val, se->expr);
se->expr = val;
gfc_add_block_to_block (&se->pre, &se->post);
}
}
/* Helper to translate and expression and convert it to a particular type. */
void
gfc_conv_expr_type (gfc_se * se, gfc_expr * expr, tree type)
{
gfc_conv_expr_val (se, expr);
se->expr = convert (type, se->expr);
}
/* Converts an expression so that it can be passed by reference. Scalar
values only. */
void
gfc_conv_expr_reference (gfc_se * se, gfc_expr * expr)
{
tree var;
if (se->ss && se->ss->expr == expr
&& se->ss->type == GFC_SS_REFERENCE)
{
se->expr = se->ss->data.scalar.expr;
se->string_length = se->ss->string_length;
gfc_advance_se_ss_chain (se);
return;
}
if (expr->ts.type == BT_CHARACTER)
{
gfc_conv_expr (se, expr);
gfc_conv_string_parameter (se);
return;
}
if (expr->expr_type == EXPR_VARIABLE)
{
se->want_pointer = 1;
gfc_conv_expr (se, expr);
if (se->post.head)
{
var = gfc_create_var (TREE_TYPE (se->expr), NULL);
gfc_add_modify_expr (&se->pre, var, se->expr);
gfc_add_block_to_block (&se->pre, &se->post);
se->expr = var;
}
return;
}
gfc_conv_expr (se, expr);
/* Create a temporary var to hold the value. */
if (TREE_CONSTANT (se->expr))
{
var = build_decl (CONST_DECL, NULL, TREE_TYPE (se->expr));
DECL_INITIAL (var) = se->expr;
pushdecl (var);
}
else
{
var = gfc_create_var (TREE_TYPE (se->expr), NULL);
gfc_add_modify_expr (&se->pre, var, se->expr);
}
gfc_add_block_to_block (&se->pre, &se->post);
/* Take the address of that value. */
se->expr = gfc_build_addr_expr (NULL, var);
}
tree
gfc_trans_pointer_assign (gfc_code * code)
{
return gfc_trans_pointer_assignment (code->expr, code->expr2);
}
/* Generate code for a pointer assignment. */
tree
gfc_trans_pointer_assignment (gfc_expr * expr1, gfc_expr * expr2)
{
gfc_se lse;
gfc_se rse;
gfc_ss *lss;
gfc_ss *rss;
stmtblock_t block;
tree desc;
tree tmp;
gfc_start_block (&block);
gfc_init_se (&lse, NULL);
lss = gfc_walk_expr (expr1);
rss = gfc_walk_expr (expr2);
if (lss == gfc_ss_terminator)
{
/* Scalar pointers. */
lse.want_pointer = 1;
gfc_conv_expr (&lse, expr1);
gcc_assert (rss == gfc_ss_terminator);
gfc_init_se (&rse, NULL);
rse.want_pointer = 1;
gfc_conv_expr (&rse, expr2);
gfc_add_block_to_block (&block, &lse.pre);
gfc_add_block_to_block (&block, &rse.pre);
gfc_add_modify_expr (&block, lse.expr,
fold_convert (TREE_TYPE (lse.expr), rse.expr));
gfc_add_block_to_block (&block, &rse.post);
gfc_add_block_to_block (&block, &lse.post);
}
else
{
/* Array pointer. */
gfc_conv_expr_descriptor (&lse, expr1, lss);
switch (expr2->expr_type)
{
case EXPR_NULL:
/* Just set the data pointer to null. */
gfc_conv_descriptor_data_set (&block, lse.expr, null_pointer_node);
break;
case EXPR_VARIABLE:
/* Assign directly to the pointer's descriptor. */
lse.direct_byref = 1;
gfc_conv_expr_descriptor (&lse, expr2, rss);
break;
default:
/* Assign to a temporary descriptor and then copy that
temporary to the pointer. */
desc = lse.expr;
tmp = gfc_create_var (TREE_TYPE (desc), "ptrtemp");
lse.expr = tmp;
lse.direct_byref = 1;
gfc_conv_expr_descriptor (&lse, expr2, rss);
gfc_add_modify_expr (&lse.pre, desc, tmp);
break;
}
gfc_add_block_to_block (&block, &lse.pre);
gfc_add_block_to_block (&block, &lse.post);
}
return gfc_finish_block (&block);
}
/* Makes sure se is suitable for passing as a function string parameter. */
/* TODO: Need to check all callers fo this function. It may be abused. */
void
gfc_conv_string_parameter (gfc_se * se)
{
tree type;
if (TREE_CODE (se->expr) == STRING_CST)
{
se->expr = gfc_build_addr_expr (pchar_type_node, se->expr);
return;
}
type = TREE_TYPE (se->expr);
if (TYPE_STRING_FLAG (type))
{
gcc_assert (TREE_CODE (se->expr) != INDIRECT_REF);
se->expr = gfc_build_addr_expr (pchar_type_node, se->expr);
}
gcc_assert (POINTER_TYPE_P (TREE_TYPE (se->expr)));
gcc_assert (se->string_length
&& TREE_CODE (TREE_TYPE (se->string_length)) == INTEGER_TYPE);
}
/* Generate code for assignment of scalar variables. Includes character
strings. */
tree
gfc_trans_scalar_assign (gfc_se * lse, gfc_se * rse, bt type)
{
stmtblock_t block;
gfc_init_block (&block);
if (type == BT_CHARACTER)
{
gcc_assert (lse->string_length != NULL_TREE
&& rse->string_length != NULL_TREE);
gfc_conv_string_parameter (lse);
gfc_conv_string_parameter (rse);
gfc_add_block_to_block (&block, &lse->pre);
gfc_add_block_to_block (&block, &rse->pre);
gfc_trans_string_copy (&block, lse->string_length, lse->expr,
rse->string_length, rse->expr);
}
else
{
gfc_add_block_to_block (&block, &lse->pre);
gfc_add_block_to_block (&block, &rse->pre);
gfc_add_modify_expr (&block, lse->expr,
fold_convert (TREE_TYPE (lse->expr), rse->expr));
}
gfc_add_block_to_block (&block, &lse->post);
gfc_add_block_to_block (&block, &rse->post);
return gfc_finish_block (&block);
}
/* Try to translate array(:) = func (...), where func is a transformational
array function, without using a temporary. Returns NULL is this isn't the
case. */
static tree
gfc_trans_arrayfunc_assign (gfc_expr * expr1, gfc_expr * expr2)
{
gfc_se se;
gfc_ss *ss;
gfc_ref * ref;
bool seen_array_ref;
/* The caller has already checked rank>0 and expr_type == EXPR_FUNCTION. */
if (expr2->value.function.isym && !gfc_is_intrinsic_libcall (expr2))
return NULL;
/* Elemental functions don't need a temporary anyway. */
if (expr2->value.function.esym != NULL
&& expr2->value.function.esym->attr.elemental)
return NULL;
/* Fail if EXPR1 can't be expressed as a descriptor. */
if (gfc_ref_needs_temporary_p (expr1->ref))
return NULL;
/* Functions returning pointers need temporaries. */
if (expr2->symtree->n.sym->attr.pointer)
return NULL;
/* Check that no LHS component references appear during an array
reference. This is needed because we do not have the means to
span any arbitrary stride with an array descriptor. This check
is not needed for the rhs because the function result has to be
a complete type. */
seen_array_ref = false;
for (ref = expr1->ref; ref; ref = ref->next)
{
if (ref->type == REF_ARRAY)
seen_array_ref= true;
else if (ref->type == REF_COMPONENT && seen_array_ref)
return NULL;
}
/* Check for a dependency. */
if (gfc_check_fncall_dependency (expr1, expr2))
return NULL;
/* The frontend doesn't seem to bother filling in expr->symtree for intrinsic
functions. */
gcc_assert (expr2->value.function.isym
|| (gfc_return_by_reference (expr2->value.function.esym)
&& expr2->value.function.esym->result->attr.dimension));
ss = gfc_walk_expr (expr1);
gcc_assert (ss != gfc_ss_terminator);
gfc_init_se (&se, NULL);
gfc_start_block (&se.pre);
se.want_pointer = 1;
gfc_conv_array_parameter (&se, expr1, ss, 0);
se.direct_byref = 1;
se.ss = gfc_walk_expr (expr2);
gcc_assert (se.ss != gfc_ss_terminator);
gfc_conv_function_expr (&se, expr2);
gfc_add_block_to_block (&se.pre, &se.post);
return gfc_finish_block (&se.pre);
}
/* Translate an assignment. Most of the code is concerned with
setting up the scalarizer. */
tree
gfc_trans_assignment (gfc_expr * expr1, gfc_expr * expr2)
{
gfc_se lse;
gfc_se rse;
gfc_ss *lss;
gfc_ss *lss_section;
gfc_ss *rss;
gfc_loopinfo loop;
tree tmp;
stmtblock_t block;
stmtblock_t body;
/* Special case a single function returning an array. */
if (expr2->expr_type == EXPR_FUNCTION && expr2->rank > 0)
{
tmp = gfc_trans_arrayfunc_assign (expr1, expr2);
if (tmp)
return tmp;
}
/* Assignment of the form lhs = rhs. */
gfc_start_block (&block);
gfc_init_se (&lse, NULL);
gfc_init_se (&rse, NULL);
/* Walk the lhs. */
lss = gfc_walk_expr (expr1);
rss = NULL;
if (lss != gfc_ss_terminator)
{
/* The assignment needs scalarization. */
lss_section = lss;
/* Find a non-scalar SS from the lhs. */
while (lss_section != gfc_ss_terminator
&& lss_section->type != GFC_SS_SECTION)
lss_section = lss_section->next;
gcc_assert (lss_section != gfc_ss_terminator);
/* Initialize the scalarizer. */
gfc_init_loopinfo (&loop);
/* Walk the rhs. */
rss = gfc_walk_expr (expr2);
if (rss == gfc_ss_terminator)
{
/* The rhs is scalar. Add a ss for the expression. */
rss = gfc_get_ss ();
rss->next = gfc_ss_terminator;
rss->type = GFC_SS_SCALAR;
rss->expr = expr2;
}
/* Associate the SS with the loop. */
gfc_add_ss_to_loop (&loop, lss);
gfc_add_ss_to_loop (&loop, rss);
/* Calculate the bounds of the scalarization. */
gfc_conv_ss_startstride (&loop);
/* Resolve any data dependencies in the statement. */
gfc_conv_resolve_dependencies (&loop, lss, rss);
/* Setup the scalarizing loops. */
gfc_conv_loop_setup (&loop);
/* Setup the gfc_se structures. */
gfc_copy_loopinfo_to_se (&lse, &loop);
gfc_copy_loopinfo_to_se (&rse, &loop);
rse.ss = rss;
gfc_mark_ss_chain_used (rss, 1);
if (loop.temp_ss == NULL)
{
lse.ss = lss;
gfc_mark_ss_chain_used (lss, 1);
}
else
{
lse.ss = loop.temp_ss;
gfc_mark_ss_chain_used (lss, 3);
gfc_mark_ss_chain_used (loop.temp_ss, 3);
}
/* Start the scalarized loop body. */
gfc_start_scalarized_body (&loop, &body);
}
else
gfc_init_block (&body);
/* Translate the expression. */
gfc_conv_expr (&rse, expr2);
if (lss != gfc_ss_terminator && loop.temp_ss != NULL)
{
gfc_conv_tmp_array_ref (&lse);
gfc_advance_se_ss_chain (&lse);
}
else
gfc_conv_expr (&lse, expr1);
tmp = gfc_trans_scalar_assign (&lse, &rse, expr1->ts.type);
gfc_add_expr_to_block (&body, tmp);
if (lss == gfc_ss_terminator)
{
/* Use the scalar assignment as is. */
gfc_add_block_to_block (&block, &body);
}
else
{
gcc_assert (lse.ss == gfc_ss_terminator
&& rse.ss == gfc_ss_terminator);
if (loop.temp_ss != NULL)
{
gfc_trans_scalarized_loop_boundary (&loop, &body);
/* We need to copy the temporary to the actual lhs. */
gfc_init_se (&lse, NULL);
gfc_init_se (&rse, NULL);
gfc_copy_loopinfo_to_se (&lse, &loop);
gfc_copy_loopinfo_to_se (&rse, &loop);
rse.ss = loop.temp_ss;
lse.ss = lss;
gfc_conv_tmp_array_ref (&rse);
gfc_advance_se_ss_chain (&rse);
gfc_conv_expr (&lse, expr1);
gcc_assert (lse.ss == gfc_ss_terminator
&& rse.ss == gfc_ss_terminator);
tmp = gfc_trans_scalar_assign (&lse, &rse, expr1->ts.type);
gfc_add_expr_to_block (&body, tmp);
}
/* Generate the copying loops. */
gfc_trans_scalarizing_loops (&loop, &body);
/* Wrap the whole thing up. */
gfc_add_block_to_block (&block, &loop.pre);
gfc_add_block_to_block (&block, &loop.post);
gfc_cleanup_loop (&loop);
}
return gfc_finish_block (&block);
}
tree
gfc_trans_assign (gfc_code * code)
{
return gfc_trans_assignment (code->expr, code->expr2);
}