| /* Translation of isl AST to Gimple. |
| Copyright (C) 2014-2017 Free Software Foundation, Inc. |
| Contributed by Roman Gareev <gareevroman@gmail.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #define USES_ISL |
| |
| #include "config.h" |
| |
| #ifdef HAVE_isl |
| |
| #define INCLUDE_MAP |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "cfghooks.h" |
| #include "tree.h" |
| #include "gimple.h" |
| #include "params.h" |
| #include "fold-const.h" |
| #include "gimple-fold.h" |
| #include "gimple-iterator.h" |
| #include "gimplify.h" |
| #include "gimplify-me.h" |
| #include "tree-eh.h" |
| #include "tree-ssa-loop.h" |
| #include "tree-ssa-operands.h" |
| #include "tree-ssa-propagate.h" |
| #include "tree-pass.h" |
| #include "cfgloop.h" |
| #include "tree-data-ref.h" |
| #include "tree-ssa-loop-manip.h" |
| #include "tree-scalar-evolution.h" |
| #include "gimple-ssa.h" |
| #include "tree-phinodes.h" |
| #include "tree-into-ssa.h" |
| #include "ssa-iterators.h" |
| #include "tree-cfg.h" |
| #include "gimple-pretty-print.h" |
| #include "cfganal.h" |
| #include "value-prof.h" |
| #include "graphite.h" |
| |
| /* We always try to use signed 128 bit types, but fall back to smaller types |
| in case a platform does not provide types of these sizes. In the future we |
| should use isl to derive the optimal type for each subexpression. */ |
| |
| static int max_mode_int_precision = |
| GET_MODE_PRECISION (mode_for_size (MAX_FIXED_MODE_SIZE, MODE_INT, 0)); |
| static int graphite_expression_type_precision = 128 <= max_mode_int_precision ? |
| 128 : max_mode_int_precision; |
| |
| struct ast_build_info |
| { |
| ast_build_info() |
| : is_parallelizable(false) |
| { } |
| bool is_parallelizable; |
| }; |
| |
| /* Verifies properties that GRAPHITE should maintain during translation. */ |
| |
| static inline void |
| graphite_verify (void) |
| { |
| checking_verify_loop_structure (); |
| checking_verify_loop_closed_ssa (true); |
| } |
| |
| /* IVS_PARAMS maps isl's scattering and parameter identifiers |
| to corresponding trees. */ |
| |
| typedef std::map<isl_id *, tree> ivs_params; |
| |
| /* Free all memory allocated for isl's identifiers. */ |
| |
| static void ivs_params_clear (ivs_params &ip) |
| { |
| std::map<isl_id *, tree>::iterator it; |
| for (it = ip.begin (); |
| it != ip.end (); it++) |
| { |
| isl_id_free (it->first); |
| } |
| } |
| |
| /* Set the "separate" option for the schedule node. */ |
| |
| static isl_schedule_node * |
| set_separate_option (__isl_take isl_schedule_node *node, void *user) |
| { |
| if (user) |
| return node; |
| |
| if (isl_schedule_node_get_type (node) != isl_schedule_node_band) |
| return node; |
| |
| /* Set the "separate" option unless it is set earlier to another option. */ |
| if (isl_schedule_node_band_member_get_ast_loop_type (node, 0) |
| == isl_ast_loop_default) |
| return isl_schedule_node_band_member_set_ast_loop_type |
| (node, 0, isl_ast_loop_separate); |
| |
| return node; |
| } |
| |
| /* Print SCHEDULE under an AST form on file F. */ |
| |
| void |
| print_schedule_ast (FILE *f, __isl_keep isl_schedule *schedule, scop_p scop) |
| { |
| isl_set *set = isl_set_params (isl_set_copy (scop->param_context)); |
| isl_ast_build *context = isl_ast_build_from_context (set); |
| isl_ast_node *ast |
| = isl_ast_build_node_from_schedule (context, isl_schedule_copy (schedule)); |
| isl_ast_build_free (context); |
| print_isl_ast (f, ast); |
| isl_ast_node_free (ast); |
| } |
| |
| DEBUG_FUNCTION void |
| debug_schedule_ast (__isl_keep isl_schedule *s, scop_p scop) |
| { |
| print_schedule_ast (stderr, s, scop); |
| } |
| |
| enum phi_node_kind |
| { |
| unknown_phi, |
| loop_phi, |
| close_phi, |
| cond_phi |
| }; |
| |
| class translate_isl_ast_to_gimple |
| { |
| public: |
| translate_isl_ast_to_gimple (sese_info_p r) |
| : region (r), codegen_error (false) { } |
| edge translate_isl_ast (loop_p context_loop, __isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip); |
| edge translate_isl_ast_node_for (loop_p context_loop, |
| __isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip); |
| edge translate_isl_ast_for_loop (loop_p context_loop, |
| __isl_keep isl_ast_node *node_for, |
| edge next_e, |
| tree type, tree lb, tree ub, |
| ivs_params &ip); |
| edge translate_isl_ast_node_if (loop_p context_loop, |
| __isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip); |
| edge translate_isl_ast_node_user (__isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip); |
| edge translate_isl_ast_node_block (loop_p context_loop, |
| __isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip); |
| tree unary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, |
| ivs_params &ip); |
| tree binary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, |
| ivs_params &ip); |
| tree ternary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, |
| ivs_params &ip); |
| tree nary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, |
| ivs_params &ip); |
| tree gcc_expression_from_isl_expression (tree type, |
| __isl_take isl_ast_expr *, |
| ivs_params &ip); |
| tree gcc_expression_from_isl_ast_expr_id (tree type, |
| __isl_keep isl_ast_expr *expr_id, |
| ivs_params &ip); |
| tree gcc_expression_from_isl_expr_int (tree type, |
| __isl_take isl_ast_expr *expr); |
| tree gcc_expression_from_isl_expr_op (tree type, |
| __isl_take isl_ast_expr *expr, |
| ivs_params &ip); |
| struct loop *graphite_create_new_loop (edge entry_edge, |
| __isl_keep isl_ast_node *node_for, |
| loop_p outer, tree type, |
| tree lb, tree ub, ivs_params &ip); |
| edge graphite_create_new_loop_guard (edge entry_edge, |
| __isl_keep isl_ast_node *node_for, |
| tree *type, |
| tree *lb, tree *ub, ivs_params &ip); |
| edge graphite_create_new_guard (edge entry_edge, |
| __isl_take isl_ast_expr *if_cond, |
| ivs_params &ip); |
| void build_iv_mapping (vec<tree> iv_map, gimple_poly_bb_p gbb, |
| __isl_keep isl_ast_expr *user_expr, ivs_params &ip, |
| sese_l ®ion); |
| void translate_pending_phi_nodes (void); |
| void add_parameters_to_ivs_params (scop_p scop, ivs_params &ip); |
| __isl_give isl_ast_build *generate_isl_context (scop_p scop); |
| |
| __isl_give isl_ast_node * scop_to_isl_ast (scop_p scop); |
| |
| bool is_valid_rename (tree rename, basic_block def_bb, basic_block use_bb, |
| phi_node_kind, tree old_name, basic_block old_bb) const; |
| tree get_rename (basic_block new_bb, tree old_name, |
| basic_block old_bb, phi_node_kind) const; |
| tree get_rename_from_scev (tree old_name, gimple_seq *stmts, loop_p loop, |
| basic_block new_bb, basic_block old_bb, |
| vec<tree> iv_map); |
| basic_block get_def_bb_for_const (basic_block bb, basic_block old_bb) const; |
| tree get_new_name (basic_block new_bb, tree op, |
| basic_block old_bb, phi_node_kind) const; |
| void collect_all_ssa_names (tree new_expr, vec<tree> *vec_ssa); |
| bool copy_loop_phi_args (gphi *old_phi, init_back_edge_pair_t &ibp_old_bb, |
| gphi *new_phi, init_back_edge_pair_t &ibp_new_bb, |
| bool postpone); |
| bool copy_loop_phi_nodes (basic_block bb, basic_block new_bb); |
| bool add_close_phis_to_merge_points (gphi *old_phi, gphi *new_phi, |
| tree default_value); |
| tree add_close_phis_to_outer_loops (tree last_merge_name, edge merge_e, |
| gimple *old_close_phi); |
| bool copy_loop_close_phi_args (basic_block old_bb, basic_block new_bb, |
| vec<tree> iv_map, bool postpone); |
| bool copy_loop_close_phi_nodes (basic_block old_bb, basic_block new_bb, |
| vec<tree> iv_map); |
| bool copy_cond_phi_args (gphi *phi, gphi *new_phi, vec<tree> iv_map, |
| bool postpone); |
| bool copy_cond_phi_nodes (basic_block bb, basic_block new_bb, |
| vec<tree> iv_map); |
| bool graphite_copy_stmts_from_block (basic_block bb, basic_block new_bb, |
| vec<tree> iv_map); |
| edge copy_bb_and_scalar_dependences (basic_block bb, edge next_e, |
| vec<tree> iv_map); |
| edge edge_for_new_close_phis (basic_block bb); |
| bool add_phi_arg_for_new_expr (tree old_phi_args[2], tree new_phi_args[2], |
| edge old_bb_dominating_edge, |
| edge old_bb_non_dominating_edge, |
| gphi *phi, gphi *new_phi, |
| basic_block new_bb); |
| bool rename_uses (gimple *copy, gimple_stmt_iterator *gsi_tgt, |
| basic_block old_bb, loop_p loop, vec<tree> iv_map); |
| void set_rename (tree old_name, tree expr); |
| void set_rename_for_each_def (gimple *stmt); |
| void gsi_insert_earliest (gimple_seq seq); |
| tree rename_all_uses (tree new_expr, basic_block new_bb, basic_block old_bb); |
| bool codegen_error_p () const { return codegen_error; } |
| bool is_constant (tree op) const |
| { |
| return TREE_CODE (op) == INTEGER_CST |
| || TREE_CODE (op) == REAL_CST |
| || TREE_CODE (op) == COMPLEX_CST |
| || TREE_CODE (op) == VECTOR_CST; |
| } |
| |
| private: |
| /* The region to be translated. */ |
| sese_info_p region; |
| |
| /* This flag is set when an error occurred during the translation of isl AST |
| to Gimple. */ |
| bool codegen_error; |
| |
| /* A vector of all the edges at if_condition merge points. */ |
| auto_vec<edge, 2> merge_points; |
| }; |
| |
| /* Return the tree variable that corresponds to the given isl ast identifier |
| expression (an isl_ast_expr of type isl_ast_expr_id). |
| |
| FIXME: We should replace blind conversion of id's type with derivation |
| of the optimal type when we get the corresponding isl support. Blindly |
| converting type sizes may be problematic when we switch to smaller |
| types. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| gcc_expression_from_isl_ast_expr_id (tree type, |
| __isl_take isl_ast_expr *expr_id, |
| ivs_params &ip) |
| { |
| gcc_assert (isl_ast_expr_get_type (expr_id) == isl_ast_expr_id); |
| isl_id *tmp_isl_id = isl_ast_expr_get_id (expr_id); |
| std::map<isl_id *, tree>::iterator res; |
| res = ip.find (tmp_isl_id); |
| isl_id_free (tmp_isl_id); |
| gcc_assert (res != ip.end () && |
| "Could not map isl_id to tree expression"); |
| isl_ast_expr_free (expr_id); |
| tree t = res->second; |
| tree *val = region->parameter_rename_map->get(t); |
| |
| if (!val) |
| val = &t; |
| return fold_convert (type, *val); |
| } |
| |
| /* Converts an isl_ast_expr_int expression E to a GCC expression tree of |
| type TYPE. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| gcc_expression_from_isl_expr_int (tree type, __isl_take isl_ast_expr *expr) |
| { |
| gcc_assert (isl_ast_expr_get_type (expr) == isl_ast_expr_int); |
| isl_val *val = isl_ast_expr_get_val (expr); |
| size_t n = isl_val_n_abs_num_chunks (val, sizeof (HOST_WIDE_INT)); |
| HOST_WIDE_INT *chunks = XALLOCAVEC (HOST_WIDE_INT, n); |
| tree res; |
| if (isl_val_get_abs_num_chunks (val, sizeof (HOST_WIDE_INT), chunks) == -1) |
| res = NULL_TREE; |
| else |
| { |
| widest_int wi = widest_int::from_array (chunks, n, true); |
| if (isl_val_is_neg (val)) |
| wi = -wi; |
| res = wide_int_to_tree (type, wi); |
| } |
| isl_val_free (val); |
| isl_ast_expr_free (expr); |
| return res; |
| } |
| |
| /* Converts a binary isl_ast_expr_op expression E to a GCC expression tree of |
| type TYPE. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| binary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip) |
| { |
| isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0); |
| tree tree_lhs_expr = gcc_expression_from_isl_expression (type, arg_expr, ip); |
| arg_expr = isl_ast_expr_get_op_arg (expr, 1); |
| tree tree_rhs_expr = gcc_expression_from_isl_expression (type, arg_expr, ip); |
| |
| enum isl_ast_op_type expr_type = isl_ast_expr_get_op_type (expr); |
| isl_ast_expr_free (expr); |
| |
| if (codegen_error_p ()) |
| return NULL_TREE; |
| |
| switch (expr_type) |
| { |
| case isl_ast_op_add: |
| return fold_build2 (PLUS_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_sub: |
| return fold_build2 (MINUS_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_mul: |
| return fold_build2 (MULT_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_div: |
| /* As isl operates on arbitrary precision numbers, we may end up with |
| division by 2^64 that is folded to 0. */ |
| if (integer_zerop (tree_rhs_expr)) |
| { |
| codegen_error = true; |
| return NULL_TREE; |
| } |
| return fold_build2 (EXACT_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_pdiv_q: |
| /* As isl operates on arbitrary precision numbers, we may end up with |
| division by 2^64 that is folded to 0. */ |
| if (integer_zerop (tree_rhs_expr)) |
| { |
| codegen_error = true; |
| return NULL_TREE; |
| } |
| return fold_build2 (TRUNC_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_zdiv_r: |
| case isl_ast_op_pdiv_r: |
| /* As isl operates on arbitrary precision numbers, we may end up with |
| division by 2^64 that is folded to 0. */ |
| if (integer_zerop (tree_rhs_expr)) |
| { |
| codegen_error = true; |
| return NULL_TREE; |
| } |
| return fold_build2 (TRUNC_MOD_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_fdiv_q: |
| /* As isl operates on arbitrary precision numbers, we may end up with |
| division by 2^64 that is folded to 0. */ |
| if (integer_zerop (tree_rhs_expr)) |
| { |
| codegen_error = true; |
| return NULL_TREE; |
| } |
| return fold_build2 (FLOOR_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_and: |
| return fold_build2 (TRUTH_ANDIF_EXPR, type, |
| tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_or: |
| return fold_build2 (TRUTH_ORIF_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_eq: |
| return fold_build2 (EQ_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_le: |
| return fold_build2 (LE_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_lt: |
| return fold_build2 (LT_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_ge: |
| return fold_build2 (GE_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| case isl_ast_op_gt: |
| return fold_build2 (GT_EXPR, type, tree_lhs_expr, tree_rhs_expr); |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Converts a ternary isl_ast_expr_op expression E to a GCC expression tree of |
| type TYPE. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| ternary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip) |
| { |
| enum isl_ast_op_type t = isl_ast_expr_get_op_type (expr); |
| gcc_assert (t == isl_ast_op_cond || t == isl_ast_op_select); |
| isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0); |
| tree a = gcc_expression_from_isl_expression (type, arg_expr, ip); |
| arg_expr = isl_ast_expr_get_op_arg (expr, 1); |
| tree b = gcc_expression_from_isl_expression (type, arg_expr, ip); |
| arg_expr = isl_ast_expr_get_op_arg (expr, 2); |
| tree c = gcc_expression_from_isl_expression (type, arg_expr, ip); |
| isl_ast_expr_free (expr); |
| |
| if (codegen_error_p ()) |
| return NULL_TREE; |
| |
| return fold_build3 (COND_EXPR, type, a, b, c); |
| } |
| |
| /* Converts a unary isl_ast_expr_op expression E to a GCC expression tree of |
| type TYPE. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| unary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip) |
| { |
| gcc_assert (isl_ast_expr_get_op_type (expr) == isl_ast_op_minus); |
| isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0); |
| tree tree_expr = gcc_expression_from_isl_expression (type, arg_expr, ip); |
| isl_ast_expr_free (expr); |
| return codegen_error_p () ? NULL_TREE |
| : fold_build1 (NEGATE_EXPR, type, tree_expr); |
| } |
| |
| /* Converts an isl_ast_expr_op expression E with unknown number of arguments |
| to a GCC expression tree of type TYPE. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| nary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip) |
| { |
| enum tree_code op_code; |
| switch (isl_ast_expr_get_op_type (expr)) |
| { |
| case isl_ast_op_max: |
| op_code = MAX_EXPR; |
| break; |
| |
| case isl_ast_op_min: |
| op_code = MIN_EXPR; |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0); |
| tree res = gcc_expression_from_isl_expression (type, arg_expr, ip); |
| |
| if (codegen_error_p ()) |
| { |
| isl_ast_expr_free (expr); |
| return NULL_TREE; |
| } |
| |
| int i; |
| for (i = 1; i < isl_ast_expr_get_op_n_arg (expr); i++) |
| { |
| arg_expr = isl_ast_expr_get_op_arg (expr, i); |
| tree t = gcc_expression_from_isl_expression (type, arg_expr, ip); |
| |
| if (codegen_error_p ()) |
| { |
| isl_ast_expr_free (expr); |
| return NULL_TREE; |
| } |
| |
| res = fold_build2 (op_code, type, res, t); |
| } |
| isl_ast_expr_free (expr); |
| return res; |
| } |
| |
| /* Converts an isl_ast_expr_op expression E to a GCC expression tree of |
| type TYPE. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| gcc_expression_from_isl_expr_op (tree type, __isl_take isl_ast_expr *expr, |
| ivs_params &ip) |
| { |
| if (codegen_error_p ()) |
| { |
| isl_ast_expr_free (expr); |
| return NULL_TREE; |
| } |
| |
| gcc_assert (isl_ast_expr_get_type (expr) == isl_ast_expr_op); |
| switch (isl_ast_expr_get_op_type (expr)) |
| { |
| /* These isl ast expressions are not supported yet. */ |
| case isl_ast_op_error: |
| case isl_ast_op_call: |
| case isl_ast_op_and_then: |
| case isl_ast_op_or_else: |
| gcc_unreachable (); |
| |
| case isl_ast_op_max: |
| case isl_ast_op_min: |
| return nary_op_to_tree (type, expr, ip); |
| |
| case isl_ast_op_add: |
| case isl_ast_op_sub: |
| case isl_ast_op_mul: |
| case isl_ast_op_div: |
| case isl_ast_op_pdiv_q: |
| case isl_ast_op_pdiv_r: |
| case isl_ast_op_fdiv_q: |
| case isl_ast_op_zdiv_r: |
| case isl_ast_op_and: |
| case isl_ast_op_or: |
| case isl_ast_op_eq: |
| case isl_ast_op_le: |
| case isl_ast_op_lt: |
| case isl_ast_op_ge: |
| case isl_ast_op_gt: |
| return binary_op_to_tree (type, expr, ip); |
| |
| case isl_ast_op_minus: |
| return unary_op_to_tree (type, expr, ip); |
| |
| case isl_ast_op_cond: |
| case isl_ast_op_select: |
| return ternary_op_to_tree (type, expr, ip); |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| return NULL_TREE; |
| } |
| |
| /* Converts an isl AST expression E back to a GCC expression tree of |
| type TYPE. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| gcc_expression_from_isl_expression (tree type, __isl_take isl_ast_expr *expr, |
| ivs_params &ip) |
| { |
| if (codegen_error_p ()) |
| { |
| isl_ast_expr_free (expr); |
| return NULL_TREE; |
| } |
| |
| switch (isl_ast_expr_get_type (expr)) |
| { |
| case isl_ast_expr_id: |
| return gcc_expression_from_isl_ast_expr_id (type, expr, ip); |
| |
| case isl_ast_expr_int: |
| return gcc_expression_from_isl_expr_int (type, expr); |
| |
| case isl_ast_expr_op: |
| return gcc_expression_from_isl_expr_op (type, expr, ip); |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| return NULL_TREE; |
| } |
| |
| /* Creates a new LOOP corresponding to isl_ast_node_for. Inserts an |
| induction variable for the new LOOP. New LOOP is attached to CFG |
| starting at ENTRY_EDGE. LOOP is inserted into the loop tree and |
| becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds |
| isl's scattering name to the induction variable created for the |
| loop of STMT. The new induction variable is inserted in the NEWIVS |
| vector and is of type TYPE. */ |
| |
| struct loop *translate_isl_ast_to_gimple:: |
| graphite_create_new_loop (edge entry_edge, __isl_keep isl_ast_node *node_for, |
| loop_p outer, tree type, tree lb, tree ub, |
| ivs_params &ip) |
| { |
| isl_ast_expr *for_inc = isl_ast_node_for_get_inc (node_for); |
| tree stride = gcc_expression_from_isl_expression (type, for_inc, ip); |
| |
| /* To fail code generation, we generate wrong code until we discard it. */ |
| if (codegen_error_p ()) |
| stride = integer_zero_node; |
| |
| tree ivvar = create_tmp_var (type, "graphite_IV"); |
| tree iv, iv_after_increment; |
| loop_p loop = create_empty_loop_on_edge |
| (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment, |
| outer ? outer : entry_edge->src->loop_father); |
| |
| isl_ast_expr *for_iterator = isl_ast_node_for_get_iterator (node_for); |
| isl_id *id = isl_ast_expr_get_id (for_iterator); |
| std::map<isl_id *, tree>::iterator res; |
| res = ip.find (id); |
| if (ip.count (id)) |
| isl_id_free (res->first); |
| ip[id] = iv; |
| isl_ast_expr_free (for_iterator); |
| return loop; |
| } |
| |
| /* Create the loop for a isl_ast_node_for. |
| |
| - NEXT_E is the edge where new generated code should be attached. */ |
| |
| edge translate_isl_ast_to_gimple:: |
| translate_isl_ast_for_loop (loop_p context_loop, |
| __isl_keep isl_ast_node *node_for, edge next_e, |
| tree type, tree lb, tree ub, |
| ivs_params &ip) |
| { |
| gcc_assert (isl_ast_node_get_type (node_for) == isl_ast_node_for); |
| struct loop *loop = graphite_create_new_loop (next_e, node_for, context_loop, |
| type, lb, ub, ip); |
| edge last_e = single_exit (loop); |
| edge to_body = single_succ_edge (loop->header); |
| basic_block after = to_body->dest; |
| |
| /* Translate the body of the loop. */ |
| isl_ast_node *for_body = isl_ast_node_for_get_body (node_for); |
| next_e = translate_isl_ast (loop, for_body, to_body, ip); |
| isl_ast_node_free (for_body); |
| |
| /* Early return if we failed to translate loop body. */ |
| if (!next_e || codegen_error_p ()) |
| return NULL; |
| |
| if (next_e->dest != after) |
| redirect_edge_succ_nodup (next_e, after); |
| set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src); |
| |
| if (flag_loop_parallelize_all) |
| { |
| isl_id *id = isl_ast_node_get_annotation (node_for); |
| gcc_assert (id); |
| ast_build_info *for_info = (ast_build_info *) isl_id_get_user (id); |
| loop->can_be_parallel = for_info->is_parallelizable; |
| free (for_info); |
| isl_id_free (id); |
| } |
| |
| return last_e; |
| } |
| |
| /* We use this function to get the upper bound because of the form, |
| which is used by isl to represent loops: |
| |
| for (iterator = init; cond; iterator += inc) |
| |
| { |
| |
| ... |
| |
| } |
| |
| The loop condition is an arbitrary expression, which contains the |
| current loop iterator. |
| |
| (e.g. iterator + 3 < B && C > iterator + A) |
| |
| We have to know the upper bound of the iterator to generate a loop |
| in Gimple form. It can be obtained from the special representation |
| of the loop condition, which is generated by isl, |
| if the ast_build_atomic_upper_bound option is set. In this case, |
| isl generates a loop condition that consists of the current loop |
| iterator, + an operator (< or <=) and an expression not involving |
| the iterator, which is processed and returned by this function. |
| |
| (e.g iterator <= upper-bound-expression-without-iterator) */ |
| |
| static __isl_give isl_ast_expr * |
| get_upper_bound (__isl_keep isl_ast_node *node_for) |
| { |
| gcc_assert (isl_ast_node_get_type (node_for) == isl_ast_node_for); |
| isl_ast_expr *for_cond = isl_ast_node_for_get_cond (node_for); |
| gcc_assert (isl_ast_expr_get_type (for_cond) == isl_ast_expr_op); |
| isl_ast_expr *res; |
| switch (isl_ast_expr_get_op_type (for_cond)) |
| { |
| case isl_ast_op_le: |
| res = isl_ast_expr_get_op_arg (for_cond, 1); |
| break; |
| |
| case isl_ast_op_lt: |
| { |
| /* (iterator < ub) => (iterator <= ub - 1). */ |
| isl_val *one = |
| isl_val_int_from_si (isl_ast_expr_get_ctx (for_cond), 1); |
| isl_ast_expr *ub = isl_ast_expr_get_op_arg (for_cond, 1); |
| res = isl_ast_expr_sub (ub, isl_ast_expr_from_val (one)); |
| break; |
| } |
| |
| default: |
| gcc_unreachable (); |
| } |
| isl_ast_expr_free (for_cond); |
| return res; |
| } |
| |
| /* All loops generated by create_empty_loop_on_edge have the form of |
| a post-test loop: |
| |
| do |
| |
| { |
| body of the loop; |
| } while (lower bound < upper bound); |
| |
| We create a new if region protecting the loop to be executed, if |
| the execution count is zero (lower bound > upper bound). */ |
| |
| edge translate_isl_ast_to_gimple:: |
| graphite_create_new_loop_guard (edge entry_edge, |
| __isl_keep isl_ast_node *node_for, tree *type, |
| tree *lb, tree *ub, ivs_params &ip) |
| { |
| gcc_assert (isl_ast_node_get_type (node_for) == isl_ast_node_for); |
| tree cond_expr; |
| edge exit_edge; |
| |
| *type = |
| build_nonstandard_integer_type (graphite_expression_type_precision, 0); |
| isl_ast_expr *for_init = isl_ast_node_for_get_init (node_for); |
| *lb = gcc_expression_from_isl_expression (*type, for_init, ip); |
| |
| /* To fail code generation, we generate wrong code until we discard it. */ |
| if (codegen_error_p ()) |
| *lb = integer_zero_node; |
| |
| isl_ast_expr *upper_bound = get_upper_bound (node_for); |
| *ub = gcc_expression_from_isl_expression (*type, upper_bound, ip); |
| |
| /* To fail code generation, we generate wrong code until we discard it. */ |
| if (codegen_error_p ()) |
| *ub = integer_zero_node; |
| |
| /* When ub is simply a constant or a parameter, use lb <= ub. */ |
| if (TREE_CODE (*ub) == INTEGER_CST || TREE_CODE (*ub) == SSA_NAME) |
| cond_expr = fold_build2 (LE_EXPR, boolean_type_node, *lb, *ub); |
| else |
| { |
| tree one = (POINTER_TYPE_P (*type) |
| ? convert_to_ptrofftype (integer_one_node) |
| : fold_convert (*type, integer_one_node)); |
| /* Adding +1 and using LT_EXPR helps with loop latches that have a |
| loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this |
| becomes 2^k-1 due to integer overflow, and the condition lb <= ub |
| is true, even if we do not want this. However lb < ub + 1 is false, |
| as expected. */ |
| tree ub_one = fold_build2 (POINTER_TYPE_P (*type) ? POINTER_PLUS_EXPR |
| : PLUS_EXPR, *type, *ub, one); |
| |
| cond_expr = fold_build2 (LT_EXPR, boolean_type_node, *lb, ub_one); |
| } |
| |
| if (integer_onep (cond_expr)) |
| exit_edge = entry_edge; |
| else |
| exit_edge = create_empty_if_region_on_edge (entry_edge, |
| unshare_expr (cond_expr)); |
| |
| return exit_edge; |
| } |
| |
| /* Translates an isl_ast_node_for to Gimple. */ |
| |
| edge translate_isl_ast_to_gimple:: |
| translate_isl_ast_node_for (loop_p context_loop, __isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip) |
| { |
| gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_for); |
| tree type, lb, ub; |
| edge last_e = graphite_create_new_loop_guard (next_e, node, &type, |
| &lb, &ub, ip); |
| |
| if (last_e == next_e) |
| { |
| /* There was no guard generated. */ |
| last_e = single_succ_edge (split_edge (last_e)); |
| |
| translate_isl_ast_for_loop (context_loop, node, next_e, |
| type, lb, ub, ip); |
| return last_e; |
| } |
| |
| edge true_e = get_true_edge_from_guard_bb (next_e->dest); |
| merge_points.safe_push (last_e); |
| |
| last_e = single_succ_edge (split_edge (last_e)); |
| translate_isl_ast_for_loop (context_loop, node, true_e, type, lb, ub, ip); |
| |
| return last_e; |
| } |
| |
| /* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the induction |
| variables of the loops around GBB in SESE. |
| |
| FIXME: Instead of using a vec<tree> that maps each loop id to a possible |
| chrec, we could consider using a map<int, tree> that maps loop ids to the |
| corresponding tree expressions. */ |
| |
| void translate_isl_ast_to_gimple:: |
| build_iv_mapping (vec<tree> iv_map, gimple_poly_bb_p gbb, |
| __isl_keep isl_ast_expr *user_expr, ivs_params &ip, |
| sese_l ®ion) |
| { |
| gcc_assert (isl_ast_expr_get_type (user_expr) == isl_ast_expr_op && |
| isl_ast_expr_get_op_type (user_expr) == isl_ast_op_call); |
| int i; |
| isl_ast_expr *arg_expr; |
| for (i = 1; i < isl_ast_expr_get_op_n_arg (user_expr); i++) |
| { |
| arg_expr = isl_ast_expr_get_op_arg (user_expr, i); |
| tree type = |
| build_nonstandard_integer_type (graphite_expression_type_precision, 0); |
| tree t = gcc_expression_from_isl_expression (type, arg_expr, ip); |
| |
| /* To fail code generation, we generate wrong code until we discard it. */ |
| if (codegen_error_p ()) |
| t = integer_zero_node; |
| |
| loop_p old_loop = gbb_loop_at_index (gbb, region, i - 1); |
| iv_map[old_loop->num] = t; |
| } |
| } |
| |
| /* Translates an isl_ast_node_user to Gimple. |
| |
| FIXME: We should remove iv_map.create (loop->num + 1), if it is possible. */ |
| |
| edge translate_isl_ast_to_gimple:: |
| translate_isl_ast_node_user (__isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip) |
| { |
| gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_user); |
| |
| isl_ast_expr *user_expr = isl_ast_node_user_get_expr (node); |
| isl_ast_expr *name_expr = isl_ast_expr_get_op_arg (user_expr, 0); |
| gcc_assert (isl_ast_expr_get_type (name_expr) == isl_ast_expr_id); |
| |
| isl_id *name_id = isl_ast_expr_get_id (name_expr); |
| poly_bb_p pbb = (poly_bb_p) isl_id_get_user (name_id); |
| gcc_assert (pbb); |
| |
| gimple_poly_bb_p gbb = PBB_BLACK_BOX (pbb); |
| |
| isl_ast_expr_free (name_expr); |
| isl_id_free (name_id); |
| |
| gcc_assert (GBB_BB (gbb) != ENTRY_BLOCK_PTR_FOR_FN (cfun) && |
| "The entry block should not even appear within a scop"); |
| |
| const int nb_loops = number_of_loops (cfun); |
| vec<tree> iv_map; |
| iv_map.create (nb_loops); |
| iv_map.safe_grow_cleared (nb_loops); |
| |
| build_iv_mapping (iv_map, gbb, user_expr, ip, pbb->scop->scop_info->region); |
| isl_ast_expr_free (user_expr); |
| |
| basic_block old_bb = GBB_BB (gbb); |
| if (dump_file) |
| { |
| fprintf (dump_file, |
| "[codegen] copying from bb_%d on edge (bb_%d, bb_%d)\n", |
| old_bb->index, next_e->src->index, next_e->dest->index); |
| print_loops_bb (dump_file, GBB_BB (gbb), 0, 3); |
| |
| } |
| |
| next_e = copy_bb_and_scalar_dependences (old_bb, next_e, iv_map); |
| |
| iv_map.release (); |
| |
| if (codegen_error_p ()) |
| return NULL; |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] (after copy) new basic block\n"); |
| print_loops_bb (dump_file, next_e->src, 0, 3); |
| } |
| |
| return next_e; |
| } |
| |
| /* Translates an isl_ast_node_block to Gimple. */ |
| |
| edge translate_isl_ast_to_gimple:: |
| translate_isl_ast_node_block (loop_p context_loop, |
| __isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip) |
| { |
| gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_block); |
| isl_ast_node_list *node_list = isl_ast_node_block_get_children (node); |
| int i; |
| for (i = 0; i < isl_ast_node_list_n_ast_node (node_list); i++) |
| { |
| isl_ast_node *tmp_node = isl_ast_node_list_get_ast_node (node_list, i); |
| next_e = translate_isl_ast (context_loop, tmp_node, next_e, ip); |
| isl_ast_node_free (tmp_node); |
| } |
| isl_ast_node_list_free (node_list); |
| return next_e; |
| } |
| |
| /* Creates a new if region corresponding to isl's cond. */ |
| |
| edge translate_isl_ast_to_gimple:: |
| graphite_create_new_guard (edge entry_edge, __isl_take isl_ast_expr *if_cond, |
| ivs_params &ip) |
| { |
| tree type = |
| build_nonstandard_integer_type (graphite_expression_type_precision, 0); |
| tree cond_expr = gcc_expression_from_isl_expression (type, if_cond, ip); |
| |
| /* To fail code generation, we generate wrong code until we discard it. */ |
| if (codegen_error_p ()) |
| cond_expr = integer_zero_node; |
| |
| edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr); |
| return exit_edge; |
| } |
| |
| /* Translates an isl_ast_node_if to Gimple. */ |
| |
| edge translate_isl_ast_to_gimple:: |
| translate_isl_ast_node_if (loop_p context_loop, |
| __isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip) |
| { |
| gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_if); |
| isl_ast_expr *if_cond = isl_ast_node_if_get_cond (node); |
| edge last_e = graphite_create_new_guard (next_e, if_cond, ip); |
| edge true_e = get_true_edge_from_guard_bb (next_e->dest); |
| merge_points.safe_push (last_e); |
| |
| isl_ast_node *then_node = isl_ast_node_if_get_then (node); |
| translate_isl_ast (context_loop, then_node, true_e, ip); |
| isl_ast_node_free (then_node); |
| |
| edge false_e = get_false_edge_from_guard_bb (next_e->dest); |
| isl_ast_node *else_node = isl_ast_node_if_get_else (node); |
| if (isl_ast_node_get_type (else_node) != isl_ast_node_error) |
| translate_isl_ast (context_loop, else_node, false_e, ip); |
| |
| isl_ast_node_free (else_node); |
| return last_e; |
| } |
| |
| /* Translates an isl AST node NODE to GCC representation in the |
| context of a SESE. */ |
| |
| edge translate_isl_ast_to_gimple:: |
| translate_isl_ast (loop_p context_loop, __isl_keep isl_ast_node *node, |
| edge next_e, ivs_params &ip) |
| { |
| if (codegen_error_p ()) |
| return NULL; |
| |
| switch (isl_ast_node_get_type (node)) |
| { |
| case isl_ast_node_error: |
| gcc_unreachable (); |
| |
| case isl_ast_node_for: |
| return translate_isl_ast_node_for (context_loop, node, |
| next_e, ip); |
| |
| case isl_ast_node_if: |
| return translate_isl_ast_node_if (context_loop, node, |
| next_e, ip); |
| |
| case isl_ast_node_user: |
| return translate_isl_ast_node_user (node, next_e, ip); |
| |
| case isl_ast_node_block: |
| return translate_isl_ast_node_block (context_loop, node, |
| next_e, ip); |
| |
| case isl_ast_node_mark: |
| { |
| isl_ast_node *n = isl_ast_node_mark_get_node (node); |
| edge e = translate_isl_ast (context_loop, n, next_e, ip); |
| isl_ast_node_free (n); |
| return e; |
| } |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Return true when BB contains loop close phi nodes. A loop close phi node is |
| at the exit of loop which takes one argument that is the last value of the |
| variable being used out of the loop. */ |
| |
| static bool |
| bb_contains_loop_close_phi_nodes (basic_block bb) |
| { |
| return single_pred_p (bb) |
| && bb->loop_father != single_pred_edge (bb)->src->loop_father; |
| } |
| |
| /* Return true when BB contains loop phi nodes. A loop phi node is the loop |
| header containing phi nodes which has one init-edge and one back-edge. */ |
| |
| static bool |
| bb_contains_loop_phi_nodes (basic_block bb) |
| { |
| if (EDGE_COUNT (bb->preds) != 2) |
| return false; |
| |
| unsigned depth = loop_depth (bb->loop_father); |
| |
| edge preds[2] = { (*bb->preds)[0], (*bb->preds)[1] }; |
| |
| if (depth > loop_depth (preds[0]->src->loop_father) |
| || depth > loop_depth (preds[1]->src->loop_father)) |
| return true; |
| |
| /* When one of the edges correspond to the same loop father and other |
| doesn't. */ |
| if (bb->loop_father != preds[0]->src->loop_father |
| && bb->loop_father == preds[1]->src->loop_father) |
| return true; |
| |
| if (bb->loop_father != preds[1]->src->loop_father |
| && bb->loop_father == preds[0]->src->loop_father) |
| return true; |
| |
| return false; |
| } |
| |
| /* Check if USE is defined in a basic block from where the definition of USE can |
| propagate from all the paths. FIXME: Verify checks for virtual operands. */ |
| |
| static bool |
| is_loop_closed_ssa_use (basic_block bb, tree use) |
| { |
| if (TREE_CODE (use) != SSA_NAME || virtual_operand_p (use)) |
| return true; |
| |
| /* For close-phi nodes def always comes from a loop which has a back-edge. */ |
| if (bb_contains_loop_close_phi_nodes (bb)) |
| return true; |
| |
| gimple *def = SSA_NAME_DEF_STMT (use); |
| basic_block def_bb = gimple_bb (def); |
| return (!def_bb |
| || flow_bb_inside_loop_p (def_bb->loop_father, bb)); |
| } |
| |
| /* Return the number of phi nodes in BB. */ |
| |
| static int |
| number_of_phi_nodes (basic_block bb) |
| { |
| int num_phis = 0; |
| for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi); |
| gsi_next (&psi)) |
| num_phis++; |
| return num_phis; |
| } |
| |
| /* Returns true if BB uses name in one of its PHIs. */ |
| |
| static bool |
| phi_uses_name (basic_block bb, tree name) |
| { |
| for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi); |
| gsi_next (&psi)) |
| { |
| gphi *phi = psi.phi (); |
| for (unsigned i = 0; i < gimple_phi_num_args (phi); i++) |
| { |
| tree use_arg = gimple_phi_arg_def (phi, i); |
| if (use_arg == name) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /* Return true if RENAME (defined in BB) is a valid use in NEW_BB. The |
| definition should flow into use, and the use should respect the loop-closed |
| SSA form. */ |
| |
| bool translate_isl_ast_to_gimple:: |
| is_valid_rename (tree rename, basic_block def_bb, basic_block use_bb, |
| phi_node_kind phi_kind, tree old_name, basic_block old_bb) const |
| { |
| if (SSA_NAME_IS_DEFAULT_DEF (rename)) |
| return true; |
| |
| /* The def of the rename must either dominate the uses or come from a |
| back-edge. Also the def must respect the loop closed ssa form. */ |
| if (!is_loop_closed_ssa_use (use_bb, rename)) |
| { |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] rename not in loop closed ssa: "); |
| print_generic_expr (dump_file, rename, 0); |
| fprintf (dump_file, "\n"); |
| } |
| return false; |
| } |
| |
| if (dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)) |
| return true; |
| |
| if (bb_contains_loop_phi_nodes (use_bb) && phi_kind == loop_phi) |
| { |
| /* The loop-header dominates the loop-body. */ |
| if (!dominated_by_p (CDI_DOMINATORS, def_bb, use_bb)) |
| return false; |
| |
| /* RENAME would be used in loop-phi. */ |
| gcc_assert (number_of_phi_nodes (use_bb)); |
| |
| /* For definitions coming from back edges, we should check that |
| old_name is used in a loop PHI node. |
| FIXME: Verify if this is true. */ |
| if (phi_uses_name (old_bb, old_name)) |
| return true; |
| } |
| return false; |
| } |
| |
| /* Returns the expression associated to OLD_NAME (which is used in OLD_BB), in |
| NEW_BB from RENAME_MAP. PHI_KIND determines the kind of phi node. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| get_rename (basic_block new_bb, tree old_name, basic_block old_bb, |
| phi_node_kind phi_kind) const |
| { |
| gcc_assert (TREE_CODE (old_name) == SSA_NAME); |
| vec <tree> *renames = region->rename_map->get (old_name); |
| |
| if (!renames || renames->is_empty ()) |
| return NULL_TREE; |
| |
| if (1 == renames->length ()) |
| { |
| tree rename = (*renames)[0]; |
| if (TREE_CODE (rename) == SSA_NAME) |
| { |
| basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (rename)); |
| if (is_valid_rename (rename, bb, new_bb, phi_kind, old_name, old_bb) |
| && (phi_kind == close_phi |
| || ! bb |
| || flow_bb_inside_loop_p (bb->loop_father, new_bb))) |
| return rename; |
| return NULL_TREE; |
| } |
| |
| if (is_constant (rename)) |
| return rename; |
| |
| return NULL_TREE; |
| } |
| |
| /* More than one renames corresponding to the old_name. Find the rename for |
| which the definition flows into usage at new_bb. */ |
| int i; |
| tree t1 = NULL_TREE, t2; |
| basic_block t1_bb = NULL; |
| FOR_EACH_VEC_ELT (*renames, i, t2) |
| { |
| basic_block t2_bb = gimple_bb (SSA_NAME_DEF_STMT (t2)); |
| |
| /* Defined in the same basic block as used. */ |
| if (t2_bb == new_bb) |
| return t2; |
| |
| /* NEW_BB and T2_BB are in two unrelated if-clauses. */ |
| if (!dominated_by_p (CDI_DOMINATORS, new_bb, t2_bb)) |
| continue; |
| |
| if (!flow_bb_inside_loop_p (t2_bb->loop_father, new_bb)) |
| continue; |
| |
| /* Compute the nearest dominator. */ |
| if (!t1 || dominated_by_p (CDI_DOMINATORS, t2_bb, t1_bb)) |
| { |
| t1_bb = t2_bb; |
| t1 = t2; |
| } |
| } |
| |
| return t1; |
| } |
| |
| /* Register in RENAME_MAP the rename tuple (OLD_NAME, EXPR). |
| When OLD_NAME and EXPR are the same we assert. */ |
| |
| void translate_isl_ast_to_gimple:: |
| set_rename (tree old_name, tree expr) |
| { |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] setting rename: old_name = "); |
| print_generic_expr (dump_file, old_name, 0); |
| fprintf (dump_file, ", new_name = "); |
| print_generic_expr (dump_file, expr, 0); |
| fprintf (dump_file, "\n"); |
| } |
| |
| if (old_name == expr) |
| return; |
| |
| vec <tree> *renames = region->rename_map->get (old_name); |
| |
| if (renames) |
| renames->safe_push (expr); |
| else |
| { |
| vec<tree> r; |
| r.create (2); |
| r.safe_push (expr); |
| region->rename_map->put (old_name, r); |
| } |
| |
| tree t; |
| int i; |
| /* For a parameter of a scop we don't want to rename it. */ |
| FOR_EACH_VEC_ELT (region->params, i, t) |
| if (old_name == t) |
| region->parameter_rename_map->put(old_name, expr); |
| } |
| |
| /* Return an iterator to the instructions comes last in the execution order. |
| Either GSI1 and GSI2 should belong to the same basic block or one of their |
| respective basic blocks should dominate the other. */ |
| |
| gimple_stmt_iterator |
| later_of_the_two (gimple_stmt_iterator gsi1, gimple_stmt_iterator gsi2) |
| { |
| basic_block bb1 = gsi_bb (gsi1); |
| basic_block bb2 = gsi_bb (gsi2); |
| |
| /* Find the iterator which is the latest. */ |
| if (bb1 == bb2) |
| { |
| gimple *stmt1 = gsi_stmt (gsi1); |
| gimple *stmt2 = gsi_stmt (gsi2); |
| |
| if (stmt1 != NULL && stmt2 != NULL) |
| { |
| bool is_phi1 = gimple_code (stmt1) == GIMPLE_PHI; |
| bool is_phi2 = gimple_code (stmt2) == GIMPLE_PHI; |
| |
| if (is_phi1 != is_phi2) |
| return is_phi1 ? gsi2 : gsi1; |
| } |
| |
| /* For empty basic blocks gsis point to the end of the sequence. Since |
| there is no operator== defined for gimple_stmt_iterator and for gsis |
| not pointing to a valid statement gsi_next would assert. */ |
| gimple_stmt_iterator gsi = gsi1; |
| do { |
| if (gsi_stmt (gsi) == gsi_stmt (gsi2)) |
| return gsi2; |
| gsi_next (&gsi); |
| } while (!gsi_end_p (gsi)); |
| |
| return gsi1; |
| } |
| |
| /* Find the basic block closest to the basic block which defines stmt. */ |
| if (dominated_by_p (CDI_DOMINATORS, bb1, bb2)) |
| return gsi1; |
| |
| gcc_assert (dominated_by_p (CDI_DOMINATORS, bb2, bb1)); |
| return gsi2; |
| } |
| |
| /* Insert each statement from SEQ at its earliest insertion p. */ |
| |
| void translate_isl_ast_to_gimple:: |
| gsi_insert_earliest (gimple_seq seq) |
| { |
| update_modified_stmts (seq); |
| sese_l &codegen_region = region->if_region->true_region->region; |
| basic_block begin_bb = get_entry_bb (codegen_region); |
| |
| /* Inserting the gimple statements in a vector because gimple_seq behave |
| in strage ways when inserting the stmts from it into different basic |
| blocks one at a time. */ |
| auto_vec<gimple *, 3> stmts; |
| for (gimple_stmt_iterator gsi = gsi_start (seq); !gsi_end_p (gsi); |
| gsi_next (&gsi)) |
| stmts.safe_push (gsi_stmt (gsi)); |
| |
| int i; |
| gimple *use_stmt; |
| FOR_EACH_VEC_ELT (stmts, i, use_stmt) |
| { |
| gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI); |
| gimple_stmt_iterator gsi_def_stmt = gsi_start_bb_nondebug (begin_bb); |
| |
| use_operand_p use_p; |
| ssa_op_iter op_iter; |
| FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, op_iter, SSA_OP_USE) |
| { |
| /* Iterator to the current def of use_p. For function parameters or |
| anything where def is not found, insert at the beginning of the |
| generated region. */ |
| gimple_stmt_iterator gsi_stmt = gsi_def_stmt; |
| |
| tree op = USE_FROM_PTR (use_p); |
| gimple *stmt = SSA_NAME_DEF_STMT (op); |
| if (stmt && (gimple_code (stmt) != GIMPLE_NOP)) |
| gsi_stmt = gsi_for_stmt (stmt); |
| |
| /* For region parameters, insert at the beginning of the generated |
| region. */ |
| if (!bb_in_sese_p (gsi_bb (gsi_stmt), codegen_region)) |
| gsi_stmt = gsi_def_stmt; |
| |
| gsi_def_stmt = later_of_the_two (gsi_stmt, gsi_def_stmt); |
| } |
| |
| if (!gsi_stmt (gsi_def_stmt)) |
| { |
| gimple_stmt_iterator gsi = gsi_after_labels (gsi_bb (gsi_def_stmt)); |
| gsi_insert_before (&gsi, use_stmt, GSI_NEW_STMT); |
| } |
| else if (gimple_code (gsi_stmt (gsi_def_stmt)) == GIMPLE_PHI) |
| { |
| gimple_stmt_iterator bsi |
| = gsi_start_bb_nondebug (gsi_bb (gsi_def_stmt)); |
| /* Insert right after the PHI statements. */ |
| gsi_insert_before (&bsi, use_stmt, GSI_NEW_STMT); |
| } |
| else |
| gsi_insert_after (&gsi_def_stmt, use_stmt, GSI_NEW_STMT); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] inserting statement: "); |
| print_gimple_stmt (dump_file, use_stmt, 0, TDF_VOPS | TDF_MEMSYMS); |
| print_loops_bb (dump_file, gimple_bb (use_stmt), 0, 3); |
| } |
| } |
| } |
| |
| /* Collect all the operands of NEW_EXPR by recursively visiting each |
| operand. */ |
| |
| void translate_isl_ast_to_gimple:: |
| collect_all_ssa_names (tree new_expr, vec<tree> *vec_ssa) |
| { |
| if (new_expr == NULL_TREE) |
| return; |
| |
| /* Rename all uses in new_expr. */ |
| if (TREE_CODE (new_expr) == SSA_NAME) |
| { |
| vec_ssa->safe_push (new_expr); |
| return; |
| } |
| |
| /* Iterate over SSA_NAMES in NEW_EXPR. */ |
| for (int i = 0; i < (TREE_CODE_LENGTH (TREE_CODE (new_expr))); i++) |
| { |
| tree op = TREE_OPERAND (new_expr, i); |
| collect_all_ssa_names (op, vec_ssa); |
| } |
| } |
| |
| /* This is abridged version of the function copied from: |
| tree.c:substitute_in_expr (tree exp, tree f, tree r). */ |
| |
| static tree |
| substitute_ssa_name (tree exp, tree f, tree r) |
| { |
| enum tree_code code = TREE_CODE (exp); |
| tree op0, op1, op2, op3; |
| tree new_tree; |
| |
| /* We handle TREE_LIST and COMPONENT_REF separately. */ |
| if (code == TREE_LIST) |
| { |
| op0 = substitute_ssa_name (TREE_CHAIN (exp), f, r); |
| op1 = substitute_ssa_name (TREE_VALUE (exp), f, r); |
| if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp)) |
| return exp; |
| |
| return tree_cons (TREE_PURPOSE (exp), op1, op0); |
| } |
| else if (code == COMPONENT_REF) |
| { |
| tree inner; |
| |
| /* If this expression is getting a value from a PLACEHOLDER_EXPR |
| and it is the right field, replace it with R. */ |
| for (inner = TREE_OPERAND (exp, 0); |
| REFERENCE_CLASS_P (inner); |
| inner = TREE_OPERAND (inner, 0)) |
| ; |
| |
| /* The field. */ |
| op1 = TREE_OPERAND (exp, 1); |
| |
| if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f) |
| return r; |
| |
| /* If this expression hasn't been completed let, leave it alone. */ |
| if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner)) |
| return exp; |
| |
| op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r); |
| if (op0 == TREE_OPERAND (exp, 0)) |
| return exp; |
| |
| new_tree |
| = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE); |
| } |
| else |
| switch (TREE_CODE_CLASS (code)) |
| { |
| case tcc_constant: |
| return exp; |
| |
| case tcc_declaration: |
| if (exp == f) |
| return r; |
| else |
| return exp; |
| |
| case tcc_expression: |
| if (exp == f) |
| return r; |
| |
| /* Fall through. */ |
| |
| case tcc_exceptional: |
| case tcc_unary: |
| case tcc_binary: |
| case tcc_comparison: |
| case tcc_reference: |
| switch (TREE_CODE_LENGTH (code)) |
| { |
| case 0: |
| if (exp == f) |
| return r; |
| return exp; |
| |
| case 1: |
| op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r); |
| if (op0 == TREE_OPERAND (exp, 0)) |
| return exp; |
| |
| new_tree = fold_build1 (code, TREE_TYPE (exp), op0); |
| break; |
| |
| case 2: |
| op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r); |
| op1 = substitute_ssa_name (TREE_OPERAND (exp, 1), f, r); |
| |
| if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)) |
| return exp; |
| |
| new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1); |
| break; |
| |
| case 3: |
| op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r); |
| op1 = substitute_ssa_name (TREE_OPERAND (exp, 1), f, r); |
| op2 = substitute_ssa_name (TREE_OPERAND (exp, 2), f, r); |
| |
| if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1) |
| && op2 == TREE_OPERAND (exp, 2)) |
| return exp; |
| |
| new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2); |
| break; |
| |
| case 4: |
| op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r); |
| op1 = substitute_ssa_name (TREE_OPERAND (exp, 1), f, r); |
| op2 = substitute_ssa_name (TREE_OPERAND (exp, 2), f, r); |
| op3 = substitute_ssa_name (TREE_OPERAND (exp, 3), f, r); |
| |
| if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1) |
| && op2 == TREE_OPERAND (exp, 2) |
| && op3 == TREE_OPERAND (exp, 3)) |
| return exp; |
| |
| new_tree |
| = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3)); |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| break; |
| |
| case tcc_vl_exp: |
| default: |
| gcc_unreachable (); |
| } |
| |
| TREE_READONLY (new_tree) |= TREE_READONLY (exp); |
| |
| if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF) |
| TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp); |
| |
| return new_tree; |
| } |
| |
| /* Rename all the operands of NEW_EXPR by recursively visiting each operand. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| rename_all_uses (tree new_expr, basic_block new_bb, basic_block old_bb) |
| { |
| auto_vec<tree, 2> ssa_names; |
| collect_all_ssa_names (new_expr, &ssa_names); |
| tree t; |
| int i; |
| FOR_EACH_VEC_ELT (ssa_names, i, t) |
| if (tree r = get_rename (new_bb, t, old_bb, unknown_phi)) |
| new_expr = substitute_ssa_name (new_expr, t, r); |
| |
| return new_expr; |
| } |
| |
| /* For ops which are scev_analyzeable, we can regenerate a new name from its |
| scalar evolution around LOOP. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| get_rename_from_scev (tree old_name, gimple_seq *stmts, loop_p loop, |
| basic_block new_bb, basic_block old_bb, |
| vec<tree> iv_map) |
| { |
| tree scev = scalar_evolution_in_region (region->region, loop, old_name); |
| |
| /* At this point we should know the exact scev for each |
| scalar SSA_NAME used in the scop: all the other scalar |
| SSA_NAMEs should have been translated out of SSA using |
| arrays with one element. */ |
| tree new_expr; |
| if (chrec_contains_undetermined (scev)) |
| { |
| codegen_error = true; |
| return build_zero_cst (TREE_TYPE (old_name)); |
| } |
| |
| new_expr = chrec_apply_map (scev, iv_map); |
| |
| /* The apply should produce an expression tree containing |
| the uses of the new induction variables. We should be |
| able to use new_expr instead of the old_name in the newly |
| generated loop nest. */ |
| if (chrec_contains_undetermined (new_expr) |
| || tree_contains_chrecs (new_expr, NULL)) |
| { |
| codegen_error = true; |
| return build_zero_cst (TREE_TYPE (old_name)); |
| } |
| |
| if (TREE_CODE (new_expr) == SSA_NAME) |
| { |
| basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (new_expr)); |
| if (bb && !dominated_by_p (CDI_DOMINATORS, new_bb, bb)) |
| { |
| codegen_error = true; |
| return build_zero_cst (TREE_TYPE (old_name)); |
| } |
| } |
| |
| new_expr = rename_all_uses (new_expr, new_bb, old_bb); |
| |
| /* We check all the operands and all of them should dominate the use at |
| new_expr. */ |
| auto_vec <tree, 2> new_ssa_names; |
| collect_all_ssa_names (new_expr, &new_ssa_names); |
| int i; |
| tree new_ssa_name; |
| FOR_EACH_VEC_ELT (new_ssa_names, i, new_ssa_name) |
| { |
| if (TREE_CODE (new_ssa_name) == SSA_NAME) |
| { |
| basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (new_ssa_name)); |
| if (bb && !dominated_by_p (CDI_DOMINATORS, new_bb, bb)) |
| { |
| codegen_error = true; |
| return build_zero_cst (TREE_TYPE (old_name)); |
| } |
| } |
| } |
| |
| /* Replace the old_name with the new_expr. */ |
| return force_gimple_operand (unshare_expr (new_expr), stmts, |
| true, NULL_TREE); |
| } |
| |
| /* Renames the scalar uses of the statement COPY, using the |
| substitution map RENAME_MAP, inserting the gimplification code at |
| GSI_TGT, for the translation REGION, with the original copied |
| statement in LOOP, and using the induction variable renaming map |
| IV_MAP. Returns true when something has been renamed. */ |
| |
| bool translate_isl_ast_to_gimple:: |
| rename_uses (gimple *copy, gimple_stmt_iterator *gsi_tgt, basic_block old_bb, |
| loop_p loop, vec<tree> iv_map) |
| { |
| bool changed = false; |
| |
| if (is_gimple_debug (copy)) |
| { |
| if (gimple_debug_bind_p (copy)) |
| gimple_debug_bind_reset_value (copy); |
| else if (gimple_debug_source_bind_p (copy)) |
| return false; |
| else |
| gcc_unreachable (); |
| |
| return false; |
| } |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] renaming uses of stmt: "); |
| print_gimple_stmt (dump_file, copy, 0, 0); |
| } |
| |
| use_operand_p use_p; |
| ssa_op_iter op_iter; |
| FOR_EACH_SSA_USE_OPERAND (use_p, copy, op_iter, SSA_OP_USE) |
| { |
| tree old_name = USE_FROM_PTR (use_p); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] renaming old_name = "); |
| print_generic_expr (dump_file, old_name, 0); |
| fprintf (dump_file, "\n"); |
| } |
| |
| if (TREE_CODE (old_name) != SSA_NAME |
| || SSA_NAME_IS_DEFAULT_DEF (old_name)) |
| continue; |
| |
| changed = true; |
| tree new_expr = get_rename (gsi_tgt->bb, old_name, |
| old_bb, unknown_phi); |
| |
| if (new_expr) |
| { |
| tree type_old_name = TREE_TYPE (old_name); |
| tree type_new_expr = TREE_TYPE (new_expr); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] from rename_map: new_name = "); |
| print_generic_expr (dump_file, new_expr, 0); |
| fprintf (dump_file, "\n"); |
| } |
| |
| if (type_old_name != type_new_expr |
| || TREE_CODE (new_expr) != SSA_NAME) |
| { |
| tree var = create_tmp_var (type_old_name, "var"); |
| |
| if (!useless_type_conversion_p (type_old_name, type_new_expr)) |
| new_expr = fold_convert (type_old_name, new_expr); |
| |
| gimple_seq stmts; |
| new_expr = force_gimple_operand (new_expr, &stmts, true, var); |
| gsi_insert_earliest (stmts); |
| } |
| |
| replace_exp (use_p, new_expr); |
| continue; |
| } |
| |
| gimple_seq stmts; |
| new_expr = get_rename_from_scev (old_name, &stmts, loop, gimple_bb (copy), |
| old_bb, iv_map); |
| if (!new_expr || codegen_error_p ()) |
| return false; |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] not in rename map, scev: "); |
| print_generic_expr (dump_file, new_expr, 0); |
| fprintf (dump_file, "\n"); |
| } |
| |
| gsi_insert_earliest (stmts); |
| replace_exp (use_p, new_expr); |
| |
| if (TREE_CODE (new_expr) == INTEGER_CST |
| && is_gimple_assign (copy)) |
| { |
| tree rhs = gimple_assign_rhs1 (copy); |
| |
| if (TREE_CODE (rhs) == ADDR_EXPR) |
| recompute_tree_invariant_for_addr_expr (rhs); |
| } |
| |
| set_rename (old_name, new_expr); |
| } |
| |
| return changed; |
| } |
| |
| /* Returns a basic block that could correspond to where a constant was defined |
| in the original code. In the original code OLD_BB had the definition, we |
| need to find which basic block out of the copies of old_bb, in the new |
| region, should a definition correspond to if it has to reach BB. */ |
| |
| basic_block translate_isl_ast_to_gimple:: |
| get_def_bb_for_const (basic_block bb, basic_block old_bb) const |
| { |
| vec <basic_block> *bbs = region->copied_bb_map->get (old_bb); |
| |
| if (!bbs || bbs->is_empty ()) |
| return NULL; |
| |
| if (1 == bbs->length ()) |
| return (*bbs)[0]; |
| |
| int i; |
| basic_block b1 = NULL, b2; |
| FOR_EACH_VEC_ELT (*bbs, i, b2) |
| { |
| if (b2 == bb) |
| return bb; |
| |
| /* BB and B2 are in two unrelated if-clauses. */ |
| if (!dominated_by_p (CDI_DOMINATORS, bb, b2)) |
| continue; |
| |
| /* Compute the nearest dominator. */ |
| if (!b1 || dominated_by_p (CDI_DOMINATORS, b2, b1)) |
| b1 = b2; |
| } |
| |
| return b1; |
| } |
| |
| /* Get the new name of OP (from OLD_BB) to be used in NEW_BB. PHI_KIND |
| determines the kind of phi node. */ |
| |
| tree translate_isl_ast_to_gimple:: |
| get_new_name (basic_block new_bb, tree op, |
| basic_block old_bb, phi_node_kind phi_kind) const |
| { |
| /* For constants the names are the same. */ |
| if (TREE_CODE (op) != SSA_NAME) |
| return op; |
| |
| return get_rename (new_bb, op, old_bb, phi_kind); |
| } |
| |
| /* Return a debug location for OP. */ |
| |
| static location_t |
| get_loc (tree op) |
| { |
| location_t loc = UNKNOWN_LOCATION; |
| |
| if (TREE_CODE (op) == SSA_NAME) |
| loc = gimple_location (SSA_NAME_DEF_STMT (op)); |
| return loc; |
| } |
| |
| /* Returns the incoming edges of basic_block BB in the pair. The first edge is |
| the init edge (from outside the loop) and the second one is the back edge |
| from the same loop. */ |
| |
| std::pair<edge, edge> |
| get_edges (basic_block bb) |
| { |
| std::pair<edge, edge> edges; |
| edge e; |
| edge_iterator ei; |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| if (bb->loop_father != e->src->loop_father) |
| edges.first = e; |
| else |
| edges.second = e; |
| return edges; |
| } |
| |
| /* Copy the PHI arguments from OLD_PHI to the NEW_PHI. The arguments to NEW_PHI |
| must be found unless they can be POSTPONEd for later. */ |
| |
| bool translate_isl_ast_to_gimple:: |
| copy_loop_phi_args (gphi *old_phi, init_back_edge_pair_t &ibp_old_bb, |
| gphi *new_phi, init_back_edge_pair_t &ibp_new_bb, |
| bool postpone) |
| { |
| gcc_assert (gimple_phi_num_args (old_phi) == gimple_phi_num_args (new_phi)); |
| |
| basic_block new_bb = gimple_bb (new_phi); |
| for (unsigned i = 0; i < gimple_phi_num_args (old_phi); i++) |
| { |
| edge e; |
| if (gimple_phi_arg_edge (old_phi, i) == ibp_old_bb.first) |
| e = ibp_new_bb.first; |
| else |
| e = ibp_new_bb.second; |
| |
| tree old_name = gimple_phi_arg_def (old_phi, i); |
| tree new_name = get_new_name (new_bb, old_name, |
| gimple_bb (old_phi), loop_phi); |
| if (new_name) |
| { |
| add_phi_arg (new_phi, new_name, e, get_loc (old_name)); |
| continue; |
| } |
| |
| gimple *old_def_stmt = SSA_NAME_DEF_STMT (old_name); |
| if (!old_def_stmt || gimple_code (old_def_stmt) == GIMPLE_NOP) |
| /* If the phi arg was a function arg, or wasn't defined, just use the |
| old name. */ |
| add_phi_arg (new_phi, old_name, e, get_loc (old_name)); |
| else if (postpone) |
| { |
| /* Postpone code gen for later for those back-edges we don't have the |
| names yet. */ |
| region->incomplete_phis.safe_push (std::make_pair (old_phi, new_phi)); |
| if (dump_file) |
| fprintf (dump_file, "[codegen] postpone loop phi nodes.\n"); |
| } |
| else |
| /* Either we should add the arg to phi or, we should postpone. */ |
| return false; |
| } |
| return true; |
| } |
| |
| /* Copy loop phi nodes from BB to NEW_BB. */ |
| |
| bool translate_isl_ast_to_gimple:: |
| copy_loop_phi_nodes (basic_block bb, basic_block new_bb) |
| { |
| if (dump_file) |
| fprintf (dump_file, "[codegen] copying loop phi nodes in bb_%d.\n", |
| new_bb->index); |
| |
| /* Loop phi nodes should have only two arguments. */ |
| gcc_assert (2 == EDGE_COUNT (bb->preds)); |
| |
| /* First edge is the init edge and second is the back edge. */ |
| init_back_edge_pair_t ibp_old_bb = get_edges (bb); |
| |
| /* First edge is the init edge and second is the back edge. */ |
| init_back_edge_pair_t ibp_new_bb = get_edges (new_bb); |
| |
| for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi); |
| gsi_next (&psi)) |
| { |
| gphi *phi = psi.phi (); |
| tree res = gimple_phi_result (phi); |
| if (virtual_operand_p (res)) |
| continue; |
| if (is_gimple_reg (res) && scev_analyzable_p (res, region->region)) |
| continue; |
| |
| gphi *new_phi = create_phi_node (NULL_TREE, new_bb); |
| tree new_res = create_new_def_for (res, new_phi, |
| gimple_phi_result_ptr (new_phi)); |
| set_rename (res, new_res); |
| codegen_error = !copy_loop_phi_args (phi, ibp_old_bb, new_phi, |
| ibp_new_bb, true); |
| update_stmt (new_phi); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] creating loop-phi node: "); |
| print_gimple_stmt (dump_file, new_phi, 0, 0); |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Return the init value of PHI, the value coming from outside the loop. */ |
| |
| static tree |
| get_loop_init_value (gphi *phi) |
| { |
| |
| loop_p loop = gimple_bb (phi)->loop_father; |
| |
| edge e; |
| edge_iterator ei; |
| FOR_EACH_EDGE (e, ei, gimple_bb (phi)->preds) |
| if (e->src->loop_father != loop) |
| return gimple_phi_arg_def (phi, e->dest_idx); |
| |
| return NULL_TREE; |
| } |
| |
| /* Find the init value (the value which comes from outside the loop), of one of |
| the operands of DEF which is defined by a loop phi. */ |
| |
| static tree |
| find_init_value (gimple *def) |
| { |
| if (gimple_code (def) == GIMPLE_PHI) |
| return get_loop_init_value (as_a <gphi*> (def)); |
| |
| if (gimple_vuse (def)) |
| return NULL_TREE; |
| |
| ssa_op_iter iter; |
| use_operand_p use_p; |
| FOR_EACH_SSA_USE_OPERAND (use_p, def, iter, SSA_OP_USE) |
| { |
| tree use = USE_FROM_PTR (use_p); |
| if (TREE_CODE (use) == SSA_NAME) |
| { |
| if (tree res = find_init_value (SSA_NAME_DEF_STMT (use))) |
| return res; |
| } |
| } |
| |
| return NULL_TREE; |
| } |
| |
| /* Return the init value, the value coming from outside the loop. */ |
| |
| static tree |
| find_init_value_close_phi (gphi *phi) |
| { |
| gcc_assert (gimple_phi_num_args (phi) == 1); |
| tree use_arg = gimple_phi_arg_def (phi, 0); |
| gimple *def = SSA_NAME_DEF_STMT (use_arg); |
| return find_init_value (def); |
| } |
| |
| |
| tree translate_isl_ast_to_gimple:: |
| add_close_phis_to_outer_loops (tree last_merge_name, edge last_e, |
| gimple *old_close_phi) |
| { |
| sese_l &codegen_region = region->if_region->true_region->region; |
| gimple *stmt = SSA_NAME_DEF_STMT (last_merge_name); |
| basic_block bb = gimple_bb (stmt); |
| if (!bb_in_sese_p (bb, codegen_region)) |
| return last_merge_name; |
| |
| loop_p loop = bb->loop_father; |
| if (!loop_in_sese_p (loop, codegen_region)) |
| return last_merge_name; |
| |
| edge e = single_exit (loop); |
| |
| if (dominated_by_p (CDI_DOMINATORS, e->dest, last_e->src)) |
| return last_merge_name; |
| |
| tree old_name = gimple_phi_arg_def (old_close_phi, 0); |
| tree old_close_phi_name = gimple_phi_result (old_close_phi); |
| |
| bb = e->dest; |
| if (!bb_contains_loop_close_phi_nodes (bb) || !single_succ_p (bb)) |
| bb = split_edge (e); |
| |
| gphi *close_phi = create_phi_node (NULL_TREE, bb); |
| tree res = create_new_def_for (last_merge_name, close_phi, |
| gimple_phi_result_ptr (close_phi)); |
| set_rename (old_close_phi_name, res); |
| add_phi_arg (close_phi, last_merge_name, e, get_loc (old_name)); |
| last_merge_name = res; |
| |
| return add_close_phis_to_outer_loops (last_merge_name, last_e, old_close_phi); |
| } |
| |
| /* Add phi nodes to all merge points of all the diamonds enclosing the loop of |
| the close phi node PHI. */ |
| |
| bool translate_isl_ast_to_gimple:: |
| add_close_phis_to_merge_points (gphi *old_close_phi, gphi *new_close_phi, |
| tree default_value) |
| { |
| sese_l &codegen_region = region->if_region->true_region->region; |
| basic_block default_value_bb = get_entry_bb (codegen_region); |
| if (SSA_NAME == TREE_CODE (default_value)) |
| { |
| gimple *stmt = SSA_NAME_DEF_STMT (default_value); |
| if (!stmt || gimple_code (stmt) == GIMPLE_NOP) |
| return false; |
| default_value_bb = gimple_bb (stmt); |
| } |
| |
| basic_block new_close_phi_bb = gimple_bb (new_close_phi); |
| |
| tree old_close_phi_name = gimple_phi_result (old_close_phi); |
| tree new_close_phi_name = gimple_phi_result (new_close_phi); |
| tree last_merge_name = new_close_phi_name; |
| tree old_name = gimple_phi_arg_def (old_close_phi, 0); |
| |
| int i; |
| edge merge_e; |
| FOR_EACH_VEC_ELT_REVERSE (merge_points, i, merge_e) |
| { |
| basic_block new_merge_bb = merge_e->src; |
| if (!dominated_by_p (CDI_DOMINATORS, new_merge_bb, default_value_bb)) |
| continue; |
| |
| last_merge_name = add_close_phis_to_outer_loops (last_merge_name, merge_e, |
| old_close_phi); |
| |
| gphi *merge_phi = create_phi_node (NULL_TREE, new_merge_bb); |
| tree merge_res = create_new_def_for (old_close_phi_name, merge_phi, |
| gimple_phi_result_ptr (merge_phi)); |
| set_rename (old_close_phi_name, merge_res); |
| |
| edge from_loop = NULL, from_default_value = NULL; |
| edge e; |
| edge_iterator ei; |
| FOR_EACH_EDGE (e, ei, new_merge_bb->preds) |
| if (dominated_by_p (CDI_DOMINATORS, e->src, new_close_phi_bb)) |
| from_loop = e; |
| else |
| from_default_value = e; |
| |
| /* Because CDI_POST_DOMINATORS are not updated, we only rely on |
| CDI_DOMINATORS, which may not handle all cases where new_close_phi_bb |
| is contained in another condition. */ |
| if (!from_default_value || !from_loop) |
| return false; |
| |
| add_phi_arg (merge_phi, last_merge_name, from_loop, get_loc (old_name)); |
| add_phi_arg (merge_phi, default_value, from_default_value, get_loc (old_name)); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] Adding guard-phi: "); |
| print_gimple_stmt (dump_file, merge_phi, 0, 0); |
| } |
| |
| update_stmt (merge_phi); |
| last_merge_name = merge_res; |
| } |
| |
| return true; |
| } |
| |
| /* Copy all the loop-close phi args from BB to NEW_BB. */ |
| |
| bool translate_isl_ast_to_gimple:: |
| copy_loop_close_phi_args (basic_block old_bb, basic_block new_bb, |
| vec<tree> iv_map, bool postpone) |
| { |
| for (gphi_iterator psi = gsi_start_phis (old_bb); !gsi_end_p (psi); |
| gsi_next (&psi)) |
| { |
| gphi *old_close_phi = psi.phi (); |
| tree res = gimple_phi_result (old_close_phi); |
| if (virtual_operand_p (res)) |
| continue; |
| |
| gphi *new_close_phi = create_phi_node (NULL_TREE, new_bb); |
| tree new_res = create_new_def_for (res, new_close_phi, |
| gimple_phi_result_ptr (new_close_phi)); |
| set_rename (res, new_res); |
| |
| tree old_name = gimple_phi_arg_def (old_close_phi, 0); |
| tree new_name; |
| if (is_gimple_reg (res) && scev_analyzable_p (res, region->region)) |
| { |
| gimple_seq stmts; |
| new_name = get_rename_from_scev (old_name, &stmts, |
| old_bb->loop_father, |
| new_bb, old_bb, iv_map); |
| if (! codegen_error_p ()) |
| gsi_insert_earliest (stmts); |
| } |
| else |
| new_name = get_new_name (new_bb, old_name, old_bb, close_phi); |
| |
| /* Predecessor basic blocks of a loop close phi should have been code |
| generated before. FIXME: This is fixable by merging PHIs from inner |
| loops as well. See: gfortran.dg/graphite/interchange-3.f90. */ |
| if (!new_name || codegen_error_p ()) |
| return false; |
| |
| add_phi_arg (new_close_phi, new_name, single_pred_edge (new_bb), |
| get_loc (old_name)); |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] Adding loop close phi: "); |
| print_gimple_stmt (dump_file, new_close_phi, 0, 0); |
| } |
| |
| update_stmt (new_close_phi); |
| |
| /* When there is no loop guard around this codegenerated loop, there is no |
| need to collect the close-phi arg. */ |
| if (merge_points.is_empty ()) |
| continue; |
| |
| /* Add a PHI in the succ_new_bb for each close phi of the loop. */ |
| tree default_value = find_init_value_close_phi (new_close_phi); |
| |
| /* A close phi must come from a loop-phi having a default value. */ |
| if (!default_value) |
| { |
| if (!postpone) |
| return false; |
| |
| region->incomplete_phis.safe_push (std::make_pair (old_close_phi, |
| new_close_phi)); |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] postpone close phi nodes: "); |
| print_gimple_stmt (dump_file, new_close_phi, 0, 0); |
| } |
| continue; |
| } |
| |
| if (!add_close_phis_to_merge_points (old_close_phi, new_close_phi, |
| default_value)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Copy loop close phi nodes from BB to NEW_BB. */ |
| |
| bool translate_isl_ast_to_gimple:: |
| copy_loop_close_phi_nodes (basic_block old_bb, basic_block new_bb, |
| vec<tree> iv_map) |
| { |
| if (dump_file) |
| fprintf (dump_file, "[codegen] copying loop close phi nodes in bb_%d.\n", |
| new_bb->index); |
| /* Loop close phi nodes should have only one argument. */ |
| gcc_assert (1 == EDGE_COUNT (old_bb->preds)); |
| |
| return copy_loop_close_phi_args (old_bb, new_bb, iv_map, true); |
| } |
| |
| |
| /* Add NEW_NAME as the ARGNUM-th arg of NEW_PHI which is in NEW_BB. |
| DOMINATING_PRED is the predecessor basic block of OLD_BB which dominates the |
| other pred of OLD_BB as well. If no such basic block exists then it is NULL. |
| NON_DOMINATING_PRED is a pred which does not dominate OLD_BB, it cannot be |
| NULL. |
| |
| Case1: OLD_BB->preds {BB1, BB2} and BB1 does not dominate BB2 and vice versa. |
| In this case DOMINATING_PRED = NULL. |
| |
| Case2: OLD_BB->preds {BB1, BB2} and BB1 dominates BB2. |
| |
| Returns true on successful copy of the args, false otherwise. */ |
| |
| bool translate_isl_ast_to_gimple:: |
| add_phi_arg_for_new_expr (tree old_phi_args[2], tree new_phi_args[2], |
| edge old_bb_dominating_edge, |
| edge old_bb_non_dominating_edge, |
| gphi *phi, gphi *new_phi, |
| basic_block new_bb) |
| { |
| basic_block def_pred[2] = { NULL, NULL }; |
| int not_found_bb_index = -1; |
| for (int i = 0; i < 2; i++) |
| { |
| /* If the corresponding def_bb could not be found the entry will be |
| NULL. */ |
| if (TREE_CODE (old_phi_args[i]) == INTEGER_CST) |
| def_pred[i] = get_def_bb_for_const (new_bb, |
| gimple_phi_arg_edge (phi, i)->src); |
| else if (new_phi_args[i] && (TREE_CODE (new_phi_args[i]) == SSA_NAME)) |
| def_pred[i] = gimple_bb (SSA_NAME_DEF_STMT (new_phi_args[i])); |
| |
| if (!def_pred[i]) |
| { |
| /* When non are available bail out. */ |
| if (not_found_bb_index != -1) |
| return false; |
| not_found_bb_index = i; |
| } |
| } |
| |
| /* Here we are pattern matching on the structure of CFG w.r.t. old one. */ |
| if (old_bb_dominating_edge) |
| { |
| if (not_found_bb_index != -1) |
| return false; |
| |
| basic_block new_pred1 = (*new_bb->preds)[0]->src; |
| basic_block new_pred2 = (*new_bb->preds)[1]->src; |
| vec <basic_block> *bbs |
| = region->copied_bb_map->get (old_bb_non_dominating_edge->src); |
| |
| /* Could not find a mapping. */ |
| if (!bbs) |
| return false; |
| |
| basic_block new_pred = NULL; |
| basic_block b; |
| int i; |
| FOR_EACH_VEC_ELT (*bbs, i, b) |
| { |
| if (dominated_by_p (CDI_DOMINATORS, new_pred1, b)) |
| { |
| /* FIXME: If we have already found new_pred then we have to |
| disambiguate, bail out for now. */ |
| if (new_pred) |
| return false; |
| new_pred = new_pred1; |
| } |
| if (dominated_by_p (CDI_DOMINATORS, new_pred2, b)) |
| { |
| /* FIXME: If we have already found new_pred then we have to either |
| it dominates both or we have to disambiguate, bail out. */ |
| if (new_pred) |
| return false; |
| new_pred = new_pred2; |
| } |
| } |
| |
| if (!new_pred) |
| return false; |
| |
| edge new_non_dominating_edge = find_edge (new_pred, new_bb); |
| gcc_assert (new_non_dominating_edge); |
| /* FIXME: Validate each args just like in loop-phis. */ |
| /* By the process of elimination we first insert insert phi-edge for |
| non-dominating pred which is computed above and then we insert the |
| remaining one. */ |
| int inserted_edge = 0; |
| for (; inserted_edge < 2; inserted_edge++) |
| { |
| edge new_bb_pred_edge = gimple_phi_arg_edge (new_phi, inserted_edge); |
| if (new_non_dominating_edge == new_bb_pred_edge) |
| { |
| add_phi_arg (new_phi, new_phi_args[inserted_edge], |
| new_non_dominating_edge, |
| get_loc (old_phi_args[inserted_edge])); |
| break; |
| } |
| } |
| if (inserted_edge == 2) |
| return false; |
| |
| int edge_dominating = inserted_edge == 0 ? 1 : 0; |
| |
| edge new_dominating_edge = NULL; |
| for (inserted_edge = 0; inserted_edge < 2; inserted_edge++) |
| { |
| edge e = gimple_phi_arg_edge (new_phi, inserted_edge); |
| if (e != new_non_dominating_edge) |
| { |
| new_dominating_edge = e; |
| add_phi_arg (new_phi, new_phi_args[edge_dominating], |
| new_dominating_edge, |
| get_loc (old_phi_args[inserted_edge])); |
| break; |
| } |
| } |
| gcc_assert (new_dominating_edge); |
| } |
| else |
| { |
| /* Classic diamond structure: both edges are non-dominating. We need to |
| find one unique edge then the other can be found be elimination. If |
| any definition (def_pred) dominates both the preds of new_bb then we |
| bail out. Entries of def_pred maybe NULL, in that case we must |
| uniquely find pred with help of only one entry. */ |
| edge new_e[2] = { NULL, NULL }; |
| for (int i = 0; i < 2; i++) |
| { |
| edge e; |
| edge_iterator ei; |
| FOR_EACH_EDGE (e, ei, new_bb->preds) |
| if (def_pred[i] |
| && dominated_by_p (CDI_DOMINATORS, e->src, def_pred[i])) |
| { |
| if (new_e[i]) |
| /* We do not know how to handle the case when def_pred |
| dominates more than a predecessor. */ |
| return false; |
| new_e[i] = e; |
| } |
| } |
| |
| gcc_assert (new_e[0] || new_e[1]); |
| |
| /* Find the other edge by process of elimination. */ |
| if (not_found_bb_index != -1) |
| { |
| gcc_assert (!new_e[not_found_bb_index]); |
| int found_bb_index = not_found_bb_index == 1 ? 0 : 1; |
| edge e; |
| edge_iterator ei; |
| FOR_EACH_EDGE (e, ei, new_bb->preds) |
| { |
| if (new_e[found_bb_index] == e) |
| continue; |
| new_e[not_found_bb_index] = e; |
| } |
| } |
| |
| /* Add edges to phi args. */ |
| for (int i = 0; i < 2; i++) |
| add_phi_arg (new_phi, new_phi_args[i], new_e[i], |
| get_loc (old_phi_args[i])); |
| } |
| |
| return true; |
| } |
| |
| /* Copy the arguments of cond-phi node PHI, to NEW_PHI in the codegenerated |
| region. If postpone is true and it isn't possible to copy any arg of PHI, |
| the PHI is added to the REGION->INCOMPLETE_PHIS to be codegenerated later. |
| Returns false if the copying was unsuccessful. */ |
| |
| bool translate_isl_ast_to_gimple:: |
| copy_cond_phi_args (gphi *phi, gphi *new_phi, vec<tree> iv_map, bool postpone) |
| { |
| if (dump_file) |
| fprintf (dump_file, "[codegen] copying cond phi args.\n"); |
| gcc_assert (2 == gimple_phi_num_args (phi)); |
| |
| basic_block new_bb = gimple_bb (new_phi); |
| loop_p loop = gimple_bb (phi)->loop_father; |
| |
| basic_block old_bb = gimple_bb (phi); |
| edge old_bb_non_dominating_edge = NULL, old_bb_dominating_edge = NULL; |
| |
| edge e; |
| edge_iterator ei; |
| FOR_EACH_EDGE (e, ei, old_bb->preds) |
| if (!dominated_by_p (CDI_DOMINATORS, old_bb, e->src)) |
| old_bb_non_dominating_edge = e; |
| else |
| old_bb_dominating_edge = e; |
| |
| gcc_assert (!dominated_by_p (CDI_DOMINATORS, old_bb, |
| old_bb_non_dominating_edge->src)); |
| |
| tree new_phi_args[2]; |
| tree old_phi_args[2]; |
| |
| for (unsigned i = 0; i < gimple_phi_num_args (phi); i++) |
| { |
| tree old_name = gimple_phi_arg_def (phi, i); |
| tree new_name = get_new_name (new_bb, old_name, old_bb, cond_phi); |
| old_phi_args[i] = old_name; |
| if (new_name) |
| { |
| new_phi_args [i] = new_name; |
| continue; |
| } |
| |
| /* If the phi-arg was a parameter. */ |
| if (vec_find (region->params, old_name) != -1) |
| { |
| new_phi_args [i] = old_name; |
| if (dump_file) |
| { |
| fprintf (dump_file, |
| "[codegen] parameter argument to phi, new_expr: "); |
| print_generic_expr (dump_file, new_phi_args[i], 0); |
| fprintf (dump_file, "\n"); |
| } |
| continue; |
| } |
| |
| gimple *old_def_stmt = SSA_NAME_DEF_STMT (old_name); |
| if (!old_def_stmt || gimple_code (old_def_stmt) == GIMPLE_NOP) |
| /* FIXME: If the phi arg was a function arg, or wasn't defined, just use |
| the old name. */ |
| return false; |
| |
| if (postpone) |
| { |
| /* If the phi-arg is scev-analyzeable but only in the first stage. */ |
| if (is_gimple_reg (old_name) |
| && scev_analyzable_p (old_name, region->region)) |
| { |
| gimple_seq stmts; |
| tree new_expr = get_rename_from_scev (old_name, &stmts, loop, |
| new_bb, old_bb, iv_map); |
| if (codegen_error_p ()) |
| return false; |
| |
| gcc_assert (new_expr); |
| if (dump_file) |
| { |
| fprintf (dump_file, |
| "[codegen] scev analyzeable, new_expr: "); |
| print_generic_expr (dump_file, new_expr, 0); |
| fprintf (dump_file, "\n"); |
| } |
| gsi_insert_earliest (stmts); |
| new_phi_args[i] = new_expr; |
| continue; |
| } |
| |
| /* Postpone code gen for later for back-edges. */ |
| region->incomplete_phis.safe_push (std::make_pair (phi, new_phi)); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] postpone cond phi nodes: "); |
| print_gimple_stmt (dump_file, new_phi, 0, 0); |
| } |
| |
| new_phi_args [i] = NULL_TREE; |
| continue; |
| } |
| else |
| /* Either we should add the arg to phi or, we should postpone. */ |
| return false; |
| } |
| |
| /* If none of the args have been determined in the first stage then wait until |
| later. */ |
| if (postpone && !new_phi_args[0] && !new_phi_args[1]) |
| return true; |
| |
| return add_phi_arg_for_new_expr (old_phi_args, new_phi_args, |
| old_bb_dominating_edge, |
| old_bb_non_dominating_edge, |
| phi, new_phi, new_bb); |
| } |
| |
| /* Copy cond phi nodes from BB to NEW_BB. A cond-phi node is a basic block |
| containing phi nodes coming from two predecessors, and none of them are back |
| edges. */ |
| |
| bool translate_isl_ast_to_gimple:: |
| copy_cond_phi_nodes (basic_block bb, basic_block new_bb, vec<tree> iv_map) |
| { |
| |
| gcc_assert (!bb_contains_loop_close_phi_nodes (bb)); |
| |
| /* TODO: Handle cond phi nodes with more than 2 predecessors. */ |
| if (EDGE_COUNT (bb->preds) != 2) |
| return false; |
| |
| if (dump_file) |
| fprintf (dump_file, "[codegen] copying cond phi nodes in bb_%d.\n", |
| new_bb->index); |
| |
| for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi); |
| gsi_next (&psi)) |
| { |
| gphi *phi = psi.phi (); |
| tree res = gimple_phi_result (phi); |
| if (virtual_operand_p (res)) |
| continue; |
| |
| gphi *new_phi = create_phi_node (NULL_TREE, new_bb); |
| tree new_res = create_new_def_for (res, new_phi, |
| gimple_phi_result_ptr (new_phi)); |
| set_rename (res, new_res); |
| |
| if (!copy_cond_phi_args (phi, new_phi, iv_map, true)) |
| return false; |
| |
| update_stmt (new_phi); |
| } |
| |
| return true; |
| } |
| |
| /* Return true if STMT should be copied from region to the new code-generated |
| region. LABELs, CONDITIONS, induction-variables and region parameters need |
| not be copied. */ |
| |
| static bool |
| should_copy_to_new_region (gimple *stmt, sese_info_p region) |
| { |
| /* Do not copy labels or conditions. */ |
| if (gimple_code (stmt) == GIMPLE_LABEL |
| || gimple_code (stmt) == GIMPLE_COND) |
| return false; |
| |
| tree lhs; |
| /* Do not copy induction variables. */ |
| if (is_gimple_assign (stmt) |
| && (lhs = gimple_assign_lhs (stmt)) |
| && TREE_CODE (lhs) == SSA_NAME |
| && is_gimple_reg (lhs) |
| && scev_analyzable_p (lhs, region->region)) |
| return false; |
| |
| /* Do not copy parameters that have been generated in the header of the |
| scop. */ |
| if (is_gimple_assign (stmt) |
| && (lhs = gimple_assign_lhs (stmt)) |
| && TREE_CODE (lhs) == SSA_NAME |
| && region->parameter_rename_map->get(lhs)) |
| return false; |
| |
| return true; |
| } |
| |
| /* Create new names for all the definitions created by COPY and add replacement |
| mappings for each new name. */ |
| |
| void translate_isl_ast_to_gimple:: |
| set_rename_for_each_def (gimple *stmt) |
| { |
| def_operand_p def_p; |
| ssa_op_iter op_iter; |
| FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_ALL_DEFS) |
| { |
| tree old_name = DEF_FROM_PTR (def_p); |
| tree new_name = create_new_def_for (old_name, stmt, def_p); |
| set_rename (old_name, new_name); |
| } |
| } |
| |
| /* Duplicates the statements of basic block BB into basic block NEW_BB |
| and compute the new induction variables according to the IV_MAP. */ |
| |
| bool translate_isl_ast_to_gimple:: |
| graphite_copy_stmts_from_block (basic_block bb, basic_block new_bb, |
| vec<tree> iv_map) |
| { |
| /* Iterator poining to the place where new statement (s) will be inserted. */ |
| gimple_stmt_iterator gsi_tgt = gsi_last_bb (new_bb); |
| |
| for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi); |
| gsi_next (&gsi)) |
| { |
| gimple *stmt = gsi_stmt (gsi); |
| if (!should_copy_to_new_region (stmt, region)) |
| continue; |
| |
| /* Create a new copy of STMT and duplicate STMT's virtual |
| operands. */ |
| gimple *copy = gimple_copy (stmt); |
| gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] inserting statement: "); |
| print_gimple_stmt (dump_file, copy, 0, 0); |
| } |
| |
| maybe_duplicate_eh_stmt (copy, stmt); |
| gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt); |
| |
| /* Crete new names for each def in the copied stmt. */ |
| set_rename_for_each_def (copy); |
| |
| loop_p loop = bb->loop_father; |
| if (rename_uses (copy, &gsi_tgt, bb, loop, iv_map)) |
| { |
| fold_stmt_inplace (&gsi_tgt); |
| gcc_assert (gsi_stmt (gsi_tgt) == copy); |
| } |
| |
| if (codegen_error_p ()) |
| return false; |
| |
| /* For each SSA_NAME in the parameter_rename_map rename their usage. */ |
| ssa_op_iter iter; |
| use_operand_p use_p; |
| if (!is_gimple_debug (copy)) |
| FOR_EACH_SSA_USE_OPERAND (use_p, copy, iter, SSA_OP_USE) |
| { |
| tree old_name = USE_FROM_PTR (use_p); |
| |
| if (TREE_CODE (old_name) != SSA_NAME |
| || SSA_NAME_IS_DEFAULT_DEF (old_name)) |
| continue; |
| |
| tree *new_expr = region->parameter_rename_map->get (old_name); |
| if (!new_expr) |
| continue; |
| |
| replace_exp (use_p, *new_expr); |
| } |
| |
| update_stmt (copy); |
| } |
| |
| return true; |
| } |
| |
| |
| /* Given a basic block containing close-phi it returns the new basic block where |
| to insert a copy of the close-phi nodes. All the uses in close phis should |
| come from a single loop otherwise it returns NULL. */ |
| |
| edge translate_isl_ast_to_gimple:: |
| edge_for_new_close_phis (basic_block bb) |
| { |
| /* Make sure that NEW_BB is the new_loop->exit->dest. We find the definition |
| of close phi in the original code and then find the mapping of basic block |
| defining that variable. If there are multiple close-phis and they are |
| defined in different loops (in the original or in the new code) because of |
| loop splitting, then we bail out. */ |
| loop_p new_loop = NULL; |
| for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi); |
| gsi_next (&psi)) |
| { |
| gphi *phi = psi.phi (); |
| tree name = gimple_phi_arg_def (phi, 0); |
| basic_block old_loop_bb = gimple_bb (SSA_NAME_DEF_STMT (name)); |
| |
| vec <basic_block> *bbs = region->copied_bb_map->get (old_loop_bb); |
| if (!bbs || bbs->length () != 1) |
| /* This is one of the places which shows preserving original structure |
| is not always possible, as we may need to insert close PHI for a loop |
| where the latch does not have any mapping, or the mapping is |
| ambiguous. */ |
| return NULL; |
| |
| if (!new_loop) |
| new_loop = (*bbs)[0]->loop_father; |
| else if (new_loop != (*bbs)[0]->loop_father) |
| return NULL; |
| } |
| |
| if (!new_loop) |
| return NULL; |
| |
| return single_exit (new_loop); |
| } |
| |
| /* Copies BB and includes in the copied BB all the statements that can |
| be reached following the use-def chains from the memory accesses, |
| and returns the next edge following this new block. */ |
| |
| edge translate_isl_ast_to_gimple:: |
| copy_bb_and_scalar_dependences (basic_block bb, edge next_e, vec<tree> iv_map) |
| { |
| int num_phis = number_of_phi_nodes (bb); |
| |
| if (region->copied_bb_map->get (bb)) |
| { |
| /* FIXME: we should be able to handle phi nodes with args coming from |
| outside the region. */ |
| if (num_phis) |
| { |
| codegen_error = true; |
| return NULL; |
| } |
| } |
| |
| basic_block new_bb = NULL; |
| if (bb_contains_loop_close_phi_nodes (bb)) |
| { |
| if (dump_file) |
| fprintf (dump_file, "[codegen] bb_%d contains close phi nodes.\n", |
| bb->index); |
| |
| edge e = edge_for_new_close_phis (bb); |
| if (!e) |
| { |
| codegen_error = true; |
| return NULL; |
| } |
| |
| basic_block phi_bb = e->dest; |
| |
| if (!bb_contains_loop_close_phi_nodes (phi_bb) || !single_succ_p (phi_bb)) |
| phi_bb = split_edge (e); |
| |
| gcc_assert (single_pred_edge (phi_bb)->src->loop_father |
| != single_pred_edge (phi_bb)->dest->loop_father); |
| |
| if (!copy_loop_close_phi_nodes (bb, phi_bb, iv_map)) |
| { |
| codegen_error = true; |
| return NULL; |
| } |
| |
| if (e == next_e) |
| new_bb = phi_bb; |
| else |
| new_bb = split_edge (next_e); |
| } |
| else |
| { |
| new_bb = split_edge (next_e); |
| if (num_phis > 0 && bb_contains_loop_phi_nodes (bb)) |
| { |
| basic_block phi_bb = next_e->dest->loop_father->header; |
| |
| /* At this point we are unable to codegenerate by still preserving the SSA |
| structure because maybe the loop is completely unrolled and the PHIs |
| and cross-bb scalar dependencies are untrackable w.r.t. the original |
| code. See gfortran.dg/graphite/pr29832.f90. */ |
| if (EDGE_COUNT (bb->preds) != EDGE_COUNT (phi_bb->preds)) |
| { |
| codegen_error = true; |
| return NULL; |
| } |
| |
| /* In case isl did some loop peeling, like this: |
| |
| S_8(0); |
| for (int c1 = 1; c1 <= 5; c1 += 1) { |
| S_8(c1); |
| } |
| S_8(6); |
| |
| there should be no loop-phi nodes in S_8(0). |
| |
| FIXME: We need to reason about dynamic instances of S_8, i.e., the |
| values of all scalar variables: for the moment we instantiate only |
| SCEV analyzable expressions on the iteration domain, and we need to |
| extend that to reductions that cannot be analyzed by SCEV. */ |
| if (!bb_in_sese_p (phi_bb, region->if_region->true_region->region)) |
| { |
| codegen_error = true; |
| return NULL; |
| } |
| |
| if (dump_file) |
| fprintf (dump_file, "[codegen] bb_%d contains loop phi nodes.\n", |
| bb->index); |
| if (!copy_loop_phi_nodes (bb, phi_bb)) |
| { |
| codegen_error = true; |
| return NULL; |
| } |
| } |
| else if (num_phis > 0) |
| { |
| if (dump_file) |
| fprintf (dump_file, "[codegen] bb_%d contains cond phi nodes.\n", |
| bb->index); |
| |
| basic_block phi_bb = single_pred (new_bb); |
| loop_p loop_father = new_bb->loop_father; |
| |
| /* Move back until we find the block with two predecessors. */ |
| while (single_pred_p (phi_bb)) |
| phi_bb = single_pred_edge (phi_bb)->src; |
| |
| /* If a corresponding merge-point was not found, then abort codegen. */ |
| if (phi_bb->loop_father != loop_father |
| || !bb_in_sese_p (phi_bb, region->if_region->true_region->region) |
| || !copy_cond_phi_nodes (bb, phi_bb, iv_map)) |
| { |
| codegen_error = true; |
| return NULL; |
| } |
| } |
| } |
| |
| if (dump_file) |
| fprintf (dump_file, "[codegen] copying from bb_%d to bb_%d.\n", |
| bb->index, new_bb->index); |
| |
| vec <basic_block> *copied_bbs = region->copied_bb_map->get (bb); |
| if (copied_bbs) |
| copied_bbs->safe_push (new_bb); |
| else |
| { |
| vec<basic_block> bbs; |
| bbs.create (2); |
| bbs.safe_push (new_bb); |
| region->copied_bb_map->put (bb, bbs); |
| } |
| |
| if (!graphite_copy_stmts_from_block (bb, new_bb, iv_map)) |
| { |
| codegen_error = true; |
| return NULL; |
| } |
| |
| return single_succ_edge (new_bb); |
| } |
| |
| /* Patch the missing arguments of the phi nodes. */ |
| |
| void translate_isl_ast_to_gimple:: |
| translate_pending_phi_nodes () |
| { |
| int i; |
| phi_rename *rename; |
| FOR_EACH_VEC_ELT (region->incomplete_phis, i, rename) |
| { |
| gphi *old_phi = rename->first; |
| gphi *new_phi = rename->second; |
| basic_block old_bb = gimple_bb (old_phi); |
| basic_block new_bb = gimple_bb (new_phi); |
| |
| /* First edge is the init edge and second is the back edge. */ |
| init_back_edge_pair_t ibp_old_bb = get_edges (old_bb); |
| init_back_edge_pair_t ibp_new_bb = get_edges (new_bb); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] translating pending old-phi: "); |
| print_gimple_stmt (dump_file, old_phi, 0, 0); |
| } |
| |
| auto_vec <tree, 1> iv_map; |
| if (bb_contains_loop_phi_nodes (new_bb)) |
| codegen_error = !copy_loop_phi_args (old_phi, ibp_old_bb, new_phi, |
| ibp_new_bb, false); |
| else if (bb_contains_loop_close_phi_nodes (new_bb)) |
| codegen_error = !copy_loop_close_phi_args (old_bb, new_bb, iv_map, false); |
| else |
| codegen_error = !copy_cond_phi_args (old_phi, new_phi, iv_map, false); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "[codegen] to new-phi: "); |
| print_gimple_stmt (dump_file, new_phi, 0, 0); |
| } |
| if (codegen_error_p ()) |
| return; |
| } |
| } |
| |
| /* Add isl's parameter identifiers and corresponding trees to ivs_params. */ |
| |
| void translate_isl_ast_to_gimple:: |
| add_parameters_to_ivs_params (scop_p scop, ivs_params &ip) |
| { |
| sese_info_p region = scop->scop_info; |
| unsigned nb_parameters = isl_set_dim (scop->param_context, isl_dim_param); |
| gcc_assert (nb_parameters == region->params.length ()); |
| unsigned i; |
| for (i = 0; i < nb_parameters; i++) |
| { |
| isl_id *tmp_id = isl_set_get_dim_id (scop->param_context, |
| isl_dim_param, i); |
| ip[tmp_id] = region->params[i]; |
| } |
| } |
| |
| |
| /* Generates a build, which specifies the constraints on the parameters. */ |
| |
| __isl_give isl_ast_build *translate_isl_ast_to_gimple:: |
| generate_isl_context (scop_p scop) |
| { |
| isl_set *context_isl = isl_set_params (isl_set_copy (scop->param_context)); |
| return isl_ast_build_from_context (context_isl); |
| } |
| |
| /* This method is executed before the construction of a for node. */ |
| __isl_give isl_id * |
| ast_build_before_for (__isl_keep isl_ast_build *build, void *user) |
| { |
| isl_union_map *dependences = (isl_union_map *) user; |
| ast_build_info *for_info = XNEW (struct ast_build_info); |
| isl_union_map *schedule = isl_ast_build_get_schedule (build); |
| isl_space *schedule_space = isl_ast_build_get_schedule_space (build); |
| int dimension = isl_space_dim (schedule_space, isl_dim_out); |
| for_info->is_parallelizable = |
| !carries_deps (schedule, dependences, dimension); |
| isl_union_map_free (schedule); |
| isl_space_free (schedule_space); |
| isl_id *id = isl_id_alloc (isl_ast_build_get_ctx (build), "", for_info); |
| return id; |
| } |
| |
| /* Generate isl AST from schedule of SCOP. */ |
| |
| __isl_give isl_ast_node *translate_isl_ast_to_gimple:: |
| scop_to_isl_ast (scop_p scop) |
| { |
| gcc_assert (scop->transformed_schedule); |
| |
| /* Set the separate option to reduce control flow overhead. */ |
| isl_schedule *schedule = isl_schedule_map_schedule_node_bottom_up |
| (isl_schedule_copy (scop->transformed_schedule), set_separate_option, NULL); |
| isl_ast_build *context_isl = generate_isl_context (scop); |
| |
| if (flag_loop_parallelize_all) |
| { |
| scop_get_dependences (scop); |
| context_isl = |
| isl_ast_build_set_before_each_for (context_isl, ast_build_before_for, |
| scop->dependence); |
| } |
| |
| isl_ast_node *ast_isl = isl_ast_build_node_from_schedule |
| (context_isl, schedule); |
| isl_ast_build_free (context_isl); |
| return ast_isl; |
| } |
| |
| /* Copy def from sese REGION to the newly created TO_REGION. TR is defined by |
| DEF_STMT. GSI points to entry basic block of the TO_REGION. */ |
| |
| static void |
| copy_def (tree tr, gimple *def_stmt, sese_info_p region, sese_info_p to_region, |
| gimple_stmt_iterator *gsi) |
| { |
| if (!defined_in_sese_p (tr, region->region)) |
| return; |
| |
| ssa_op_iter iter; |
| use_operand_p use_p; |
| FOR_EACH_SSA_USE_OPERAND (use_p, def_stmt, iter, SSA_OP_USE) |
| { |
| tree use_tr = USE_FROM_PTR (use_p); |
| |
| /* Do not copy parameters that have been generated in the header of the |
| scop. */ |
| if (region->parameter_rename_map->get(use_tr)) |
| continue; |
| |
| gimple *def_of_use = SSA_NAME_DEF_STMT (use_tr); |
| if (!def_of_use) |
| continue; |
| |
| copy_def (use_tr, def_of_use, region, to_region, gsi); |
| } |
| |
| gimple *copy = gimple_copy (def_stmt); |
| gsi_insert_after (gsi, copy, GSI_NEW_STMT); |
| |
| /* Create new names for all the definitions created by COPY and |
| add replacement mappings for each new name. */ |
| def_operand_p def_p; |
| ssa_op_iter op_iter; |
| FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS) |
| { |
| tree old_name = DEF_FROM_PTR (def_p); |
| tree new_name = create_new_def_for (old_name, copy, def_p); |
| region->parameter_rename_map->put(old_name, new_name); |
| } |
| |
| update_stmt (copy); |
| } |
| |
| static void |
| copy_internal_parameters (sese_info_p region, sese_info_p to_region) |
| { |
| /* For all the parameters which definitino is in the if_region->false_region, |
| insert code on true_region (if_region->true_region->entry). */ |
| |
| int i; |
| tree tr; |
| gimple_stmt_iterator gsi = gsi_start_bb(to_region->region.entry->dest); |
| |
| FOR_EACH_VEC_ELT (region->params, i, tr) |
| { |
| // If def is not in region. |
| gimple *def_stmt = SSA_NAME_DEF_STMT (tr); |
| if (def_stmt) |
| copy_def (tr, def_stmt, region, to_region, &gsi); |
| } |
| } |
| |
| /* GIMPLE Loop Generator: generates loops in GIMPLE form for the given SCOP. |
| Return true if code generation succeeded. */ |
| |
| bool |
| graphite_regenerate_ast_isl (scop_p scop) |
| { |
| sese_info_p region = scop->scop_info; |
| translate_isl_ast_to_gimple t (region); |
| |
| ifsese if_region = NULL; |
| isl_ast_node *root_node; |
| ivs_params ip; |
| |
| timevar_push (TV_GRAPHITE_CODE_GEN); |
| t.add_parameters_to_ivs_params (scop, ip); |
| root_node = t.scop_to_isl_ast (scop); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "[scheduler] original schedule:\n"); |
| print_isl_schedule (dump_file, scop->original_schedule); |
| fprintf (dump_file, "[scheduler] isl transformed schedule:\n"); |
| print_isl_schedule (dump_file, scop->transformed_schedule); |
| |
| fprintf (dump_file, "[scheduler] original ast:\n"); |
| print_schedule_ast (dump_file, scop->original_schedule, scop); |
| fprintf (dump_file, "[scheduler] AST generated by isl:\n"); |
| print_isl_ast (dump_file, root_node); |
| } |
| |
| recompute_all_dominators (); |
| graphite_verify (); |
| |
| if_region = move_sese_in_condition (region); |
| region->if_region = if_region; |
| recompute_all_dominators (); |
| |
| loop_p context_loop = region->region.entry->src->loop_father; |
| |
| /* Copy all the parameters which are defined in the region. */ |
| copy_internal_parameters(if_region->false_region, if_region->true_region); |
| |
| edge e = single_succ_edge (if_region->true_region->region.entry->dest); |
| basic_block bb = split_edge (e); |
| |
| /* Update the true_region exit edge. */ |
| region->if_region->true_region->region.exit = single_succ_edge (bb); |
| |
| t.translate_isl_ast (context_loop, root_node, e, ip); |
| if (t.codegen_error_p ()) |
| { |
| if (dump_file) |
| fprintf (dump_file, "codegen error: " |
| "reverting back to the original code.\n"); |
| set_ifsese_condition (if_region, integer_zero_node); |
| } |
| else |
| { |
| t.translate_pending_phi_nodes (); |
| if (!t.codegen_error_p ()) |
| { |
| sese_insert_phis_for_liveouts (region, |
| if_region->region->region.exit->src, |
| if_region->false_region->region.exit, |
| if_region->true_region->region.exit); |
| mark_virtual_operands_for_renaming (cfun); |
| update_ssa (TODO_update_ssa); |
| |
| |
| graphite_verify (); |
| scev_reset (); |
| recompute_all_dominators (); |
| graphite_verify (); |
| |
| if (dump_file) |
| fprintf (dump_file, "[codegen] isl AST to Gimple succeeded.\n"); |
| } |
| else |
| { |
| if (dump_file) |
| fprintf (dump_file, "[codegen] unsuccessful in translating" |
| " pending phis, reverting back to the original code.\n"); |
| set_ifsese_condition (if_region, integer_zero_node); |
| } |
| } |
| |
| free (if_region->true_region); |
| free (if_region->region); |
| free (if_region); |
| |
| ivs_params_clear (ip); |
| isl_ast_node_free (root_node); |
| timevar_pop (TV_GRAPHITE_CODE_GEN); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| loop_p loop; |
| int num_no_dependency = 0; |
| |
| FOR_EACH_LOOP (loop, 0) |
| if (loop->can_be_parallel) |
| num_no_dependency++; |
| |
| fprintf (dump_file, "%d loops carried no dependency.\n", |
| num_no_dependency); |
| } |
| |
| return !t.codegen_error_p (); |
| } |
| |
| #endif /* HAVE_isl */ |