blob: da8af4c6f1a8e317c2375c17d509b30decbc5163 [file] [log] [blame]
/* Subroutines used for code generation of Andes NDS32 cpu for GNU compiler
Copyright (C) 2012-2018 Free Software Foundation, Inc.
Contributed by Andes Technology Corporation.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 3, or (at your
option) any later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* ------------------------------------------------------------------------ */
#define IN_TARGET_CODE 1
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "tree-pass.h"
#include "stringpool.h"
#include "attribs.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "optabs.h" /* For GEN_FCN. */
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "diagnostic-core.h"
#include "stor-layout.h"
#include "varasm.h"
#include "calls.h"
#include "output.h"
#include "explow.h"
#include "expr.h"
#include "tm-constrs.h"
#include "builtins.h"
#include "cpplib.h"
#include "context.h"
/* This file should be included last. */
#include "target-def.h"
/* ------------------------------------------------------------------------ */
/* This file is divided into five parts:
PART 1: Auxiliary static variable definitions and
target hook static variable definitions.
PART 2: Auxiliary static function definitions.
PART 3: Implement target hook stuff definitions.
PART 4: Implemet extern function definitions,
the prototype is in nds32-protos.h.
PART 5: Initialize target hook structure and definitions. */
/* ------------------------------------------------------------------------ */
/* PART 1: Auxiliary static variable definitions and
target hook static variable definitions. */
/* Define intrinsic register names.
Please refer to nds32_intrinsic.h file, the index is corresponding to
'enum nds32_intrinsic_registers' data type values.
NOTE that the base value starting from 1024. */
static const char * const nds32_intrinsic_register_names[] =
{
"$CPU_VER",
"$ICM_CFG",
"$DCM_CFG",
"$MMU_CFG",
"$MSC_CFG",
"$MSC_CFG2",
"$CORE_ID",
"$FUCOP_EXIST",
"$PSW",
"$IPSW",
"$P_IPSW",
"$IVB",
"$EVA",
"$P_EVA",
"$ITYPE",
"$P_ITYPE",
"$MERR",
"$IPC",
"$P_IPC",
"$OIPC",
"$P_P0",
"$P_P1",
"$INT_MASK",
"$INT_MASK2",
"$INT_MASK3",
"$INT_PEND",
"$INT_PEND2",
"$INT_PEND3",
"$SP_USR",
"$SP_PRIV",
"$INT_PRI",
"$INT_PRI2",
"$INT_PRI3",
"$INT_PRI4",
"$INT_CTRL",
"$INT_TRIGGER",
"$INT_TRIGGER2",
"$INT_GPR_PUSH_DIS",
"$MMU_CTL",
"$L1_PPTB",
"$TLB_VPN",
"$TLB_DATA",
"$TLB_MISC",
"$VLPT_IDX",
"$ILMB",
"$DLMB",
"$CACHE_CTL",
"$HSMP_SADDR",
"$HSMP_EADDR",
"$SDZ_CTL",
"$N12MISC_CTL",
"$MISC_CTL",
"$ECC_MISC",
"$BPC0",
"$BPC1",
"$BPC2",
"$BPC3",
"$BPC4",
"$BPC5",
"$BPC6",
"$BPC7",
"$BPA0",
"$BPA1",
"$BPA2",
"$BPA3",
"$BPA4",
"$BPA5",
"$BPA6",
"$BPA7",
"$BPAM0",
"$BPAM1",
"$BPAM2",
"$BPAM3",
"$BPAM4",
"$BPAM5",
"$BPAM6",
"$BPAM7",
"$BPV0",
"$BPV1",
"$BPV2",
"$BPV3",
"$BPV4",
"$BPV5",
"$BPV6",
"$BPV7",
"$BPCID0",
"$BPCID1",
"$BPCID2",
"$BPCID3",
"$BPCID4",
"$BPCID5",
"$BPCID6",
"$BPCID7",
"$EDM_CFG",
"$EDMSW",
"$EDM_CTL",
"$EDM_DTR",
"$BPMTC",
"$DIMBR",
"$TECR0",
"$TECR1",
"$PFMC0",
"$PFMC1",
"$PFMC2",
"$PFM_CTL",
"$PFT_CTL",
"$HSP_CTL",
"$SP_BOUND",
"$SP_BOUND_PRIV",
"$SP_BASE",
"$SP_BASE_PRIV",
"$FUCOP_CTL",
"$PRUSR_ACC_CTL",
"$DMA_CFG",
"$DMA_GCSW",
"$DMA_CHNSEL",
"$DMA_ACT",
"$DMA_SETUP",
"$DMA_ISADDR",
"$DMA_ESADDR",
"$DMA_TCNT",
"$DMA_STATUS",
"$DMA_2DSET",
"$DMA_2DSCTL",
"$DMA_RCNT",
"$DMA_HSTATUS",
"$PC",
"$SP_USR1",
"$SP_USR2",
"$SP_USR3",
"$SP_PRIV1",
"$SP_PRIV2",
"$SP_PRIV3",
"$BG_REGION",
"$SFCR",
"$SIGN",
"$ISIGN",
"$P_ISIGN",
"$IFC_LP",
"$ITB"
};
/* Define instrinsic cctl names. */
static const char * const nds32_cctl_names[] =
{
"L1D_VA_FILLCK",
"L1D_VA_ULCK",
"L1I_VA_FILLCK",
"L1I_VA_ULCK",
"L1D_IX_WBINVAL",
"L1D_IX_INVAL",
"L1D_IX_WB",
"L1I_IX_INVAL",
"L1D_VA_INVAL",
"L1D_VA_WB",
"L1D_VA_WBINVAL",
"L1I_VA_INVAL",
"L1D_IX_RTAG",
"L1D_IX_RWD",
"L1I_IX_RTAG",
"L1I_IX_RWD",
"L1D_IX_WTAG",
"L1D_IX_WWD",
"L1I_IX_WTAG",
"L1I_IX_WWD"
};
static const char * const nds32_dpref_names[] =
{
"SRD",
"MRD",
"SWR",
"MWR",
"PTE",
"CLWR"
};
/* Defining register allocation order for performance.
We want to allocate callee-saved registers after others.
It may be used by nds32_adjust_reg_alloc_order(). */
static const int nds32_reg_alloc_order_for_speed[] =
{
0, 1, 2, 3, 4, 5, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15
};
/* Defining target-specific uses of __attribute__. */
static const struct attribute_spec nds32_attribute_table[] =
{
/* Syntax: { name, min_len, max_len, decl_required, type_required,
function_type_required, affects_type_identity, handler,
exclude } */
/* The interrupt vid: [0-63]+ (actual vector number starts from 9 to 72). */
{ "interrupt", 1, 64, false, false, false, false, NULL, NULL },
/* The exception vid: [1-8]+ (actual vector number starts from 1 to 8). */
{ "exception", 1, 8, false, false, false, false, NULL, NULL },
/* Argument is user's interrupt numbers. The vector number is always 0. */
{ "reset", 1, 1, false, false, false, false, NULL, NULL },
/* The attributes describing isr nested type. */
{ "nested", 0, 0, false, false, false, false, NULL, NULL },
{ "not_nested", 0, 0, false, false, false, false, NULL, NULL },
{ "nested_ready", 0, 0, false, false, false, false, NULL, NULL },
/* The attributes describing isr register save scheme. */
{ "save_all", 0, 0, false, false, false, false, NULL, NULL },
{ "partial_save", 0, 0, false, false, false, false, NULL, NULL },
/* The attributes used by reset attribute. */
{ "nmi", 1, 1, false, false, false, false, NULL, NULL },
{ "warm", 1, 1, false, false, false, false, NULL, NULL },
/* The attribute telling no prologue/epilogue. */
{ "naked", 0, 0, false, false, false, false, NULL, NULL },
/* The last attribute spec is set to be NULL. */
{ NULL, 0, 0, false, false, false, false, NULL, NULL }
};
/* ------------------------------------------------------------------------ */
/* PART 2: Auxiliary static function definitions. */
/* Function to save and restore machine-specific function data. */
static struct machine_function *
nds32_init_machine_status (void)
{
struct machine_function *machine;
machine = ggc_cleared_alloc<machine_function> ();
/* Initially assume this function does not use __builtin_eh_return. */
machine->use_eh_return_p = 0;
/* Initially assume this function needs prologue/epilogue. */
machine->naked_p = 0;
/* Initially assume this function does NOT use fp_as_gp optimization. */
machine->fp_as_gp_p = 0;
/* Initially this function is not under strictly aligned situation. */
machine->strict_aligned_p = 0;
return machine;
}
/* Function to compute stack frame size and
store into cfun->machine structure. */
static void
nds32_compute_stack_frame (void)
{
int r;
int block_size;
bool v3pushpop_p;
/* Because nds32_compute_stack_frame() will be called from different place,
everytime we enter this function, we have to assume this function
needs prologue/epilogue. */
cfun->machine->naked_p = 0;
/* If __builtin_eh_return is used, we better have frame pointer needed
so that we can easily locate the stack slot of return address. */
if (crtl->calls_eh_return)
{
frame_pointer_needed = 1;
/* We need to mark eh data registers that need to be saved
in the stack. */
cfun->machine->eh_return_data_first_regno = EH_RETURN_DATA_REGNO (0);
for (r = 0; EH_RETURN_DATA_REGNO (r) != INVALID_REGNUM; r++)
cfun->machine->eh_return_data_last_regno = r;
cfun->machine->eh_return_data_regs_size
= 4 * (cfun->machine->eh_return_data_last_regno
- cfun->machine->eh_return_data_first_regno
+ 1);
cfun->machine->use_eh_return_p = 1;
}
else
{
/* Assigning SP_REGNUM to eh_first_regno and eh_last_regno means we
do not need to handle __builtin_eh_return case in this function. */
cfun->machine->eh_return_data_first_regno = SP_REGNUM;
cfun->machine->eh_return_data_last_regno = SP_REGNUM;
cfun->machine->eh_return_data_regs_size = 0;
cfun->machine->use_eh_return_p = 0;
}
/* Get variadic arguments size to prepare pretend arguments and
we will push them into stack at prologue by ourself. */
cfun->machine->va_args_size = crtl->args.pretend_args_size;
if (cfun->machine->va_args_size != 0)
{
cfun->machine->va_args_first_regno
= NDS32_GPR_ARG_FIRST_REGNUM
+ NDS32_MAX_GPR_REGS_FOR_ARGS
- (crtl->args.pretend_args_size / UNITS_PER_WORD);
cfun->machine->va_args_last_regno
= NDS32_GPR_ARG_FIRST_REGNUM + NDS32_MAX_GPR_REGS_FOR_ARGS - 1;
}
else
{
cfun->machine->va_args_first_regno = SP_REGNUM;
cfun->machine->va_args_last_regno = SP_REGNUM;
}
/* Important: We need to make sure that varargs area is 8-byte alignment. */
block_size = cfun->machine->va_args_size;
if (!NDS32_DOUBLE_WORD_ALIGN_P (block_size))
{
cfun->machine->va_args_area_padding_bytes
= NDS32_ROUND_UP_DOUBLE_WORD (block_size) - block_size;
}
/* Get local variables, incoming variables, and temporary variables size.
Note that we need to make sure it is 8-byte alignment because
there may be no padding bytes if we are using LRA. */
cfun->machine->local_size = NDS32_ROUND_UP_DOUBLE_WORD (get_frame_size ());
/* Get outgoing arguments size. */
cfun->machine->out_args_size = crtl->outgoing_args_size;
/* If $fp value is required to be saved on stack, it needs 4 bytes space.
Check whether $fp is ever live. */
cfun->machine->fp_size = (df_regs_ever_live_p (FP_REGNUM)) ? 4 : 0;
/* If $gp value is required to be saved on stack, it needs 4 bytes space.
Check whether we are using PIC code genration. */
cfun->machine->gp_size = (flag_pic) ? 4 : 0;
/* If $lp value is required to be saved on stack, it needs 4 bytes space.
Check whether $lp is ever live. */
cfun->machine->lp_size
= (flag_always_save_lp || df_regs_ever_live_p (LP_REGNUM)) ? 4 : 0;
/* Initially there is no padding bytes. */
cfun->machine->callee_saved_area_gpr_padding_bytes = 0;
/* Calculate the bytes of saving callee-saved registers on stack. */
cfun->machine->callee_saved_gpr_regs_size = 0;
cfun->machine->callee_saved_first_gpr_regno = SP_REGNUM;
cfun->machine->callee_saved_last_gpr_regno = SP_REGNUM;
cfun->machine->callee_saved_fpr_regs_size = 0;
cfun->machine->callee_saved_first_fpr_regno = SP_REGNUM;
cfun->machine->callee_saved_last_fpr_regno = SP_REGNUM;
/* Currently, there is no need to check $r28~$r31
because we will save them in another way. */
for (r = 0; r < 28; r++)
{
if (NDS32_REQUIRED_CALLEE_SAVED_P (r))
{
/* Mark the first required callee-saved register
(only need to set it once).
If first regno == SP_REGNUM, we can tell that
it is the first time to be here. */
if (cfun->machine->callee_saved_first_gpr_regno == SP_REGNUM)
cfun->machine->callee_saved_first_gpr_regno = r;
/* Mark the last required callee-saved register. */
cfun->machine->callee_saved_last_gpr_regno = r;
}
}
/* Recording fpu callee-saved register. */
if (TARGET_HARD_FLOAT)
{
for (r = NDS32_FIRST_FPR_REGNUM; r < NDS32_LAST_FPR_REGNUM; r++)
{
if (NDS32_REQUIRED_CALLEE_SAVED_P (r))
{
/* Mark the first required callee-saved register. */
if (cfun->machine->callee_saved_first_fpr_regno == SP_REGNUM)
{
/* Make first callee-saved number is even,
bacause we use doubleword access, and this way
promise 8-byte alignemt. */
if (!NDS32_FPR_REGNO_OK_FOR_DOUBLE (r))
cfun->machine->callee_saved_first_fpr_regno = r - 1;
else
cfun->machine->callee_saved_first_fpr_regno = r;
}
cfun->machine->callee_saved_last_fpr_regno = r;
}
}
/* Make last callee-saved register number is odd,
we hope callee-saved register is even. */
int last_fpr = cfun->machine->callee_saved_last_fpr_regno;
if (NDS32_FPR_REGNO_OK_FOR_DOUBLE (last_fpr))
cfun->machine->callee_saved_last_fpr_regno++;
}
/* Check if this function can omit prologue/epilogue code fragment.
If there is 'naked' attribute in this function,
we can set 'naked_p' flag to indicate that
we do not have to generate prologue/epilogue.
Or, if all the following conditions succeed,
we can set this function 'naked_p' as well:
condition 1: first_regno == last_regno == SP_REGNUM,
which means we do not have to save
any callee-saved registers.
condition 2: Both $lp and $fp are NOT live in this function,
which means we do not need to save them and there
is no outgoing size.
condition 3: There is no local_size, which means
we do not need to adjust $sp. */
if (lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl))
|| (cfun->machine->callee_saved_first_gpr_regno == SP_REGNUM
&& cfun->machine->callee_saved_last_gpr_regno == SP_REGNUM
&& cfun->machine->callee_saved_first_fpr_regno == SP_REGNUM
&& cfun->machine->callee_saved_last_fpr_regno == SP_REGNUM
&& !df_regs_ever_live_p (FP_REGNUM)
&& !df_regs_ever_live_p (LP_REGNUM)
&& cfun->machine->local_size == 0))
{
/* Set this function 'naked_p' and other functions can check this flag.
Note that in nds32 port, the 'naked_p = 1' JUST means there is no
callee-saved, local size, and outgoing size.
The varargs space and ret instruction may still present in
the prologue/epilogue expanding. */
cfun->machine->naked_p = 1;
/* No need to save $fp, $gp, and $lp.
We should set these value to be zero
so that nds32_initial_elimination_offset() can work properly. */
cfun->machine->fp_size = 0;
cfun->machine->gp_size = 0;
cfun->machine->lp_size = 0;
/* If stack usage computation is required,
we need to provide the static stack size. */
if (flag_stack_usage_info)
current_function_static_stack_size = 0;
/* No need to do following adjustment, return immediately. */
return;
}
v3pushpop_p = NDS32_V3PUSH_AVAILABLE_P;
/* Adjustment for v3push instructions:
If we are using v3push (push25/pop25) instructions,
we need to make sure Rb is $r6 and Re is
located on $r6, $r8, $r10, or $r14.
Some results above will be discarded and recomputed.
Note that it is only available under V3/V3M ISA and we
DO NOT setup following stuff for isr or variadic function. */
if (v3pushpop_p)
{
/* Recompute:
cfun->machine->fp_size
cfun->machine->gp_size
cfun->machine->lp_size
cfun->machine->callee_saved_first_gpr_regno
cfun->machine->callee_saved_last_gpr_regno */
/* For v3push instructions, $fp, $gp, and $lp are always saved. */
cfun->machine->fp_size = 4;
cfun->machine->gp_size = 4;
cfun->machine->lp_size = 4;
/* Remember to set Rb = $r6. */
cfun->machine->callee_saved_first_gpr_regno = 6;
if (cfun->machine->callee_saved_last_gpr_regno <= 6)
{
/* Re = $r6 */
cfun->machine->callee_saved_last_gpr_regno = 6;
}
else if (cfun->machine->callee_saved_last_gpr_regno <= 8)
{
/* Re = $r8 */
cfun->machine->callee_saved_last_gpr_regno = 8;
}
else if (cfun->machine->callee_saved_last_gpr_regno <= 10)
{
/* Re = $r10 */
cfun->machine->callee_saved_last_gpr_regno = 10;
}
else if (cfun->machine->callee_saved_last_gpr_regno <= 14)
{
/* Re = $r14 */
cfun->machine->callee_saved_last_gpr_regno = 14;
}
else if (cfun->machine->callee_saved_last_gpr_regno == SP_REGNUM)
{
/* If last_regno is SP_REGNUM, which means
it is never changed, so set it to Re = $r6. */
cfun->machine->callee_saved_last_gpr_regno = 6;
}
else
{
/* The program flow should not go here. */
gcc_unreachable ();
}
}
int sp_adjust = cfun->machine->local_size
+ cfun->machine->out_args_size
+ cfun->machine->callee_saved_area_gpr_padding_bytes
+ cfun->machine->callee_saved_fpr_regs_size;
if (!v3pushpop_p
&& sp_adjust == 0
&& !frame_pointer_needed)
{
block_size = cfun->machine->fp_size
+ cfun->machine->gp_size
+ cfun->machine->lp_size;
if (cfun->machine->callee_saved_last_gpr_regno != SP_REGNUM)
block_size += (4 * (cfun->machine->callee_saved_last_gpr_regno
- cfun->machine->callee_saved_first_gpr_regno
+ 1));
if (!NDS32_DOUBLE_WORD_ALIGN_P (block_size))
{
/* $r14 is last callee save register. */
if (cfun->machine->callee_saved_last_gpr_regno
< NDS32_LAST_CALLEE_SAVE_GPR_REGNUM)
{
cfun->machine->callee_saved_last_gpr_regno++;
}
else if (cfun->machine->callee_saved_first_gpr_regno == SP_REGNUM)
{
cfun->machine->callee_saved_first_gpr_regno
= NDS32_FIRST_CALLEE_SAVE_GPR_REGNUM;
cfun->machine->callee_saved_last_gpr_regno
= NDS32_FIRST_CALLEE_SAVE_GPR_REGNUM;
}
}
}
/* We have correctly set callee_saved_first_gpr_regno
and callee_saved_last_gpr_regno.
Initially, the callee_saved_gpr_regs_size is supposed to be 0.
As long as callee_saved_last_gpr_regno is not SP_REGNUM,
we can update callee_saved_gpr_regs_size with new size. */
if (cfun->machine->callee_saved_last_gpr_regno != SP_REGNUM)
{
/* Compute pushed size of callee-saved registers. */
cfun->machine->callee_saved_gpr_regs_size
= 4 * (cfun->machine->callee_saved_last_gpr_regno
- cfun->machine->callee_saved_first_gpr_regno
+ 1);
}
if (TARGET_HARD_FLOAT)
{
/* Compute size of callee svaed floating-point registers. */
if (cfun->machine->callee_saved_last_fpr_regno != SP_REGNUM)
{
cfun->machine->callee_saved_fpr_regs_size
= 4 * (cfun->machine->callee_saved_last_fpr_regno
- cfun->machine->callee_saved_first_fpr_regno
+ 1);
}
}
/* Important: We need to make sure that
(fp_size + gp_size + lp_size + callee_saved_gpr_regs_size)
is 8-byte alignment.
If it is not, calculate the padding bytes. */
block_size = cfun->machine->fp_size
+ cfun->machine->gp_size
+ cfun->machine->lp_size
+ cfun->machine->callee_saved_gpr_regs_size;
if (!NDS32_DOUBLE_WORD_ALIGN_P (block_size))
{
cfun->machine->callee_saved_area_gpr_padding_bytes
= NDS32_ROUND_UP_DOUBLE_WORD (block_size) - block_size;
}
/* If stack usage computation is required,
we need to provide the static stack size. */
if (flag_stack_usage_info)
{
current_function_static_stack_size
= NDS32_ROUND_UP_DOUBLE_WORD (block_size)
+ cfun->machine->local_size
+ cfun->machine->out_args_size;
}
}
/* Function to create a parallel rtx pattern
which presents stack push multiple behavior.
The overall concept are:
"push registers to memory",
"adjust stack pointer". */
static void
nds32_emit_stack_push_multiple (unsigned Rb, unsigned Re,
bool save_fp_p, bool save_gp_p, bool save_lp_p,
bool vaarg_p)
{
unsigned regno;
int extra_count;
int num_use_regs;
int par_index;
int offset;
rtx reg;
rtx mem;
rtx push_rtx;
rtx adjust_sp_rtx;
rtx parallel_insn;
rtx dwarf;
/* We need to provide a customized rtx which contains
necessary information for data analysis,
so we create a parallel rtx like this:
(parallel [(set (mem (plus (reg:SI SP_REGNUM) (const_int -32)))
(reg:SI Rb))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -28)))
(reg:SI Rb+1))
...
(set (mem (plus (reg:SI SP_REGNUM) (const_int -16)))
(reg:SI Re))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -12)))
(reg:SI FP_REGNUM))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -8)))
(reg:SI GP_REGNUM))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -4)))
(reg:SI LP_REGNUM))
(set (reg:SI SP_REGNUM)
(plus (reg:SI SP_REGNUM) (const_int -32)))]) */
/* Calculate the number of registers that will be pushed. */
extra_count = 0;
if (save_fp_p)
extra_count++;
if (save_gp_p)
extra_count++;
if (save_lp_p)
extra_count++;
/* Note that Rb and Re may be SP_REGNUM. DO NOT count it in. */
if (Rb == SP_REGNUM && Re == SP_REGNUM)
num_use_regs = extra_count;
else
num_use_regs = Re - Rb + 1 + extra_count;
/* In addition to used registers,
we need one more space for (set sp sp-x) rtx. */
parallel_insn = gen_rtx_PARALLEL (VOIDmode,
rtvec_alloc (num_use_regs + 1));
par_index = 0;
/* Initialize offset and start to create push behavior. */
offset = -(num_use_regs * 4);
/* Create (set mem regX) from Rb, Rb+1 up to Re. */
for (regno = Rb; regno <= Re; regno++)
{
/* Rb and Re may be SP_REGNUM.
We need to break this loop immediately. */
if (regno == SP_REGNUM)
break;
reg = gen_rtx_REG (SImode, regno);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
push_rtx = gen_rtx_SET (mem, reg);
XVECEXP (parallel_insn, 0, par_index) = push_rtx;
RTX_FRAME_RELATED_P (push_rtx) = 1;
offset = offset + 4;
par_index++;
}
/* Create (set mem fp), (set mem gp), and (set mem lp) if necessary. */
if (save_fp_p)
{
reg = gen_rtx_REG (SImode, FP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
push_rtx = gen_rtx_SET (mem, reg);
XVECEXP (parallel_insn, 0, par_index) = push_rtx;
RTX_FRAME_RELATED_P (push_rtx) = 1;
offset = offset + 4;
par_index++;
}
if (save_gp_p)
{
reg = gen_rtx_REG (SImode, GP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
push_rtx = gen_rtx_SET (mem, reg);
XVECEXP (parallel_insn, 0, par_index) = push_rtx;
RTX_FRAME_RELATED_P (push_rtx) = 1;
offset = offset + 4;
par_index++;
}
if (save_lp_p)
{
reg = gen_rtx_REG (SImode, LP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
push_rtx = gen_rtx_SET (mem, reg);
XVECEXP (parallel_insn, 0, par_index) = push_rtx;
RTX_FRAME_RELATED_P (push_rtx) = 1;
offset = offset + 4;
par_index++;
}
/* Create (set sp sp-x). */
/* We need to re-calculate the offset value again for adjustment. */
offset = -(num_use_regs * 4);
adjust_sp_rtx
= gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode, stack_pointer_rtx, offset));
XVECEXP (parallel_insn, 0, par_index) = adjust_sp_rtx;
RTX_FRAME_RELATED_P (adjust_sp_rtx) = 1;
parallel_insn = emit_insn (parallel_insn);
/* The insn rtx 'parallel_insn' will change frame layout.
We need to use RTX_FRAME_RELATED_P so that GCC is able to
generate CFI (Call Frame Information) stuff. */
RTX_FRAME_RELATED_P (parallel_insn) = 1;
/* Don't use GCC's logic for CFI info if we are generate a push for VAARG
since we will not restore those register at epilogue. */
if (vaarg_p)
{
dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA,
copy_rtx (adjust_sp_rtx), NULL_RTX);
REG_NOTES (parallel_insn) = dwarf;
}
}
/* Function to create a parallel rtx pattern
which presents stack pop multiple behavior.
The overall concept are:
"pop registers from memory",
"adjust stack pointer". */
static void
nds32_emit_stack_pop_multiple (unsigned Rb, unsigned Re,
bool save_fp_p, bool save_gp_p, bool save_lp_p)
{
unsigned regno;
int extra_count;
int num_use_regs;
int par_index;
int offset;
rtx reg;
rtx mem;
rtx pop_rtx;
rtx adjust_sp_rtx;
rtx parallel_insn;
rtx dwarf = NULL_RTX;
/* We need to provide a customized rtx which contains
necessary information for data analysis,
so we create a parallel rtx like this:
(parallel [(set (reg:SI Rb)
(mem (reg:SI SP_REGNUM)))
(set (reg:SI Rb+1)
(mem (plus (reg:SI SP_REGNUM) (const_int 4))))
...
(set (reg:SI Re)
(mem (plus (reg:SI SP_REGNUM) (const_int 16))))
(set (reg:SI FP_REGNUM)
(mem (plus (reg:SI SP_REGNUM) (const_int 20))))
(set (reg:SI GP_REGNUM)
(mem (plus (reg:SI SP_REGNUM) (const_int 24))))
(set (reg:SI LP_REGNUM)
(mem (plus (reg:SI SP_REGNUM) (const_int 28))))
(set (reg:SI SP_REGNUM)
(plus (reg:SI SP_REGNUM) (const_int 32)))]) */
/* Calculate the number of registers that will be poped. */
extra_count = 0;
if (save_fp_p)
extra_count++;
if (save_gp_p)
extra_count++;
if (save_lp_p)
extra_count++;
/* Note that Rb and Re may be SP_REGNUM. DO NOT count it in. */
if (Rb == SP_REGNUM && Re == SP_REGNUM)
num_use_regs = extra_count;
else
num_use_regs = Re - Rb + 1 + extra_count;
/* In addition to used registers,
we need one more space for (set sp sp+x) rtx. */
parallel_insn = gen_rtx_PARALLEL (VOIDmode,
rtvec_alloc (num_use_regs + 1));
par_index = 0;
/* Initialize offset and start to create pop behavior. */
offset = 0;
/* Create (set regX mem) from Rb, Rb+1 up to Re. */
for (regno = Rb; regno <= Re; regno++)
{
/* Rb and Re may be SP_REGNUM.
We need to break this loop immediately. */
if (regno == SP_REGNUM)
break;
reg = gen_rtx_REG (SImode, regno);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
pop_rtx = gen_rtx_SET (reg, mem);
XVECEXP (parallel_insn, 0, par_index) = pop_rtx;
RTX_FRAME_RELATED_P (pop_rtx) = 1;
offset = offset + 4;
par_index++;
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
}
/* Create (set fp mem), (set gp mem), and (set lp mem) if necessary. */
if (save_fp_p)
{
reg = gen_rtx_REG (SImode, FP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
pop_rtx = gen_rtx_SET (reg, mem);
XVECEXP (parallel_insn, 0, par_index) = pop_rtx;
RTX_FRAME_RELATED_P (pop_rtx) = 1;
offset = offset + 4;
par_index++;
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
}
if (save_gp_p)
{
reg = gen_rtx_REG (SImode, GP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
pop_rtx = gen_rtx_SET (reg, mem);
XVECEXP (parallel_insn, 0, par_index) = pop_rtx;
RTX_FRAME_RELATED_P (pop_rtx) = 1;
offset = offset + 4;
par_index++;
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
}
if (save_lp_p)
{
reg = gen_rtx_REG (SImode, LP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
pop_rtx = gen_rtx_SET (reg, mem);
XVECEXP (parallel_insn, 0, par_index) = pop_rtx;
RTX_FRAME_RELATED_P (pop_rtx) = 1;
offset = offset + 4;
par_index++;
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
}
/* Create (set sp sp+x). */
/* The offset value is already in place. No need to re-calculate it. */
adjust_sp_rtx
= gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode, stack_pointer_rtx, offset));
XVECEXP (parallel_insn, 0, par_index) = adjust_sp_rtx;
/* Tell gcc we adjust SP in this insn. */
dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA, copy_rtx (adjust_sp_rtx), dwarf);
parallel_insn = emit_insn (parallel_insn);
/* The insn rtx 'parallel_insn' will change frame layout.
We need to use RTX_FRAME_RELATED_P so that GCC is able to
generate CFI (Call Frame Information) stuff. */
RTX_FRAME_RELATED_P (parallel_insn) = 1;
/* Add CFI info by manual. */
REG_NOTES (parallel_insn) = dwarf;
}
/* Function to create a parallel rtx pattern
which presents stack v3push behavior.
The overall concept are:
"push registers to memory",
"adjust stack pointer". */
static void
nds32_emit_stack_v3push (unsigned Rb,
unsigned Re,
unsigned imm8u)
{
unsigned regno;
int num_use_regs;
int par_index;
int offset;
rtx reg;
rtx mem;
rtx push_rtx;
rtx adjust_sp_rtx;
rtx parallel_insn;
/* We need to provide a customized rtx which contains
necessary information for data analysis,
so we create a parallel rtx like this:
(parallel [(set (mem (plus (reg:SI SP_REGNUM) (const_int -32)))
(reg:SI Rb))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -28)))
(reg:SI Rb+1))
...
(set (mem (plus (reg:SI SP_REGNUM) (const_int -16)))
(reg:SI Re))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -12)))
(reg:SI FP_REGNUM))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -8)))
(reg:SI GP_REGNUM))
(set (mem (plus (reg:SI SP_REGNUM) (const_int -4)))
(reg:SI LP_REGNUM))
(set (reg:SI SP_REGNUM)
(plus (reg:SI SP_REGNUM) (const_int -32-imm8u)))]) */
/* Calculate the number of registers that will be pushed.
Since $fp, $gp, and $lp is always pushed with v3push instruction,
we need to count these three registers.
Under v3push, Rb is $r6, while Re is $r6, $r8, $r10, or $r14.
So there is no need to worry about Rb=Re=SP_REGNUM case. */
num_use_regs = Re - Rb + 1 + 3;
/* In addition to used registers,
we need one more space for (set sp sp-x-imm8u) rtx. */
parallel_insn = gen_rtx_PARALLEL (VOIDmode,
rtvec_alloc (num_use_regs + 1));
par_index = 0;
/* Initialize offset and start to create push behavior. */
offset = -(num_use_regs * 4);
/* Create (set mem regX) from Rb, Rb+1 up to Re.
Under v3push, Rb is $r6, while Re is $r6, $r8, $r10, or $r14.
So there is no need to worry about Rb=Re=SP_REGNUM case. */
for (regno = Rb; regno <= Re; regno++)
{
reg = gen_rtx_REG (SImode, regno);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
push_rtx = gen_rtx_SET (mem, reg);
XVECEXP (parallel_insn, 0, par_index) = push_rtx;
RTX_FRAME_RELATED_P (push_rtx) = 1;
offset = offset + 4;
par_index++;
}
/* Create (set mem fp). */
reg = gen_rtx_REG (SImode, FP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
push_rtx = gen_rtx_SET (mem, reg);
XVECEXP (parallel_insn, 0, par_index) = push_rtx;
RTX_FRAME_RELATED_P (push_rtx) = 1;
offset = offset + 4;
par_index++;
/* Create (set mem gp). */
reg = gen_rtx_REG (SImode, GP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
push_rtx = gen_rtx_SET (mem, reg);
XVECEXP (parallel_insn, 0, par_index) = push_rtx;
RTX_FRAME_RELATED_P (push_rtx) = 1;
offset = offset + 4;
par_index++;
/* Create (set mem lp). */
reg = gen_rtx_REG (SImode, LP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
push_rtx = gen_rtx_SET (mem, reg);
XVECEXP (parallel_insn, 0, par_index) = push_rtx;
RTX_FRAME_RELATED_P (push_rtx) = 1;
offset = offset + 4;
par_index++;
/* Create (set sp sp-x-imm8u). */
/* We need to re-calculate the offset value again for adjustment. */
offset = -(num_use_regs * 4);
adjust_sp_rtx
= gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode,
stack_pointer_rtx,
offset - imm8u));
XVECEXP (parallel_insn, 0, par_index) = adjust_sp_rtx;
RTX_FRAME_RELATED_P (adjust_sp_rtx) = 1;
parallel_insn = emit_insn (parallel_insn);
/* The insn rtx 'parallel_insn' will change frame layout.
We need to use RTX_FRAME_RELATED_P so that GCC is able to
generate CFI (Call Frame Information) stuff. */
RTX_FRAME_RELATED_P (parallel_insn) = 1;
}
/* Function to create a parallel rtx pattern
which presents stack v3pop behavior.
The overall concept are:
"pop registers from memory",
"adjust stack pointer". */
static void
nds32_emit_stack_v3pop (unsigned Rb,
unsigned Re,
unsigned imm8u)
{
unsigned regno;
int num_use_regs;
int par_index;
int offset;
rtx reg;
rtx mem;
rtx pop_rtx;
rtx adjust_sp_rtx;
rtx parallel_insn;
rtx dwarf = NULL_RTX;
/* We need to provide a customized rtx which contains
necessary information for data analysis,
so we create a parallel rtx like this:
(parallel [(set (reg:SI Rb)
(mem (reg:SI SP_REGNUM)))
(set (reg:SI Rb+1)
(mem (plus (reg:SI SP_REGNUM) (const_int 4))))
...
(set (reg:SI Re)
(mem (plus (reg:SI SP_REGNUM) (const_int 16))))
(set (reg:SI FP_REGNUM)
(mem (plus (reg:SI SP_REGNUM) (const_int 20))))
(set (reg:SI GP_REGNUM)
(mem (plus (reg:SI SP_REGNUM) (const_int 24))))
(set (reg:SI LP_REGNUM)
(mem (plus (reg:SI SP_REGNUM) (const_int 28))))
(set (reg:SI SP_REGNUM)
(plus (reg:SI SP_REGNUM) (const_int 32+imm8u)))]) */
/* Calculate the number of registers that will be poped.
Since $fp, $gp, and $lp is always poped with v3pop instruction,
we need to count these three registers.
Under v3push, Rb is $r6, while Re is $r6, $r8, $r10, or $r14.
So there is no need to worry about Rb=Re=SP_REGNUM case. */
num_use_regs = Re - Rb + 1 + 3;
/* In addition to used registers,
we need one more space for (set sp sp+x+imm8u) rtx. */
parallel_insn = gen_rtx_PARALLEL (VOIDmode,
rtvec_alloc (num_use_regs + 1));
par_index = 0;
/* Initialize offset and start to create pop behavior. */
offset = 0;
/* Create (set regX mem) from Rb, Rb+1 up to Re.
Under v3pop, Rb is $r6, while Re is $r6, $r8, $r10, or $r14.
So there is no need to worry about Rb=Re=SP_REGNUM case. */
for (regno = Rb; regno <= Re; regno++)
{
reg = gen_rtx_REG (SImode, regno);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
pop_rtx = gen_rtx_SET (reg, mem);
XVECEXP (parallel_insn, 0, par_index) = pop_rtx;
RTX_FRAME_RELATED_P (pop_rtx) = 1;
offset = offset + 4;
par_index++;
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
}
/* Create (set fp mem). */
reg = gen_rtx_REG (SImode, FP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
pop_rtx = gen_rtx_SET (reg, mem);
XVECEXP (parallel_insn, 0, par_index) = pop_rtx;
RTX_FRAME_RELATED_P (pop_rtx) = 1;
offset = offset + 4;
par_index++;
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
/* Create (set gp mem). */
reg = gen_rtx_REG (SImode, GP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
pop_rtx = gen_rtx_SET (reg, mem);
XVECEXP (parallel_insn, 0, par_index) = pop_rtx;
RTX_FRAME_RELATED_P (pop_rtx) = 1;
offset = offset + 4;
par_index++;
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
/* Create (set lp mem ). */
reg = gen_rtx_REG (SImode, LP_REGNUM);
mem = gen_frame_mem (SImode, plus_constant (Pmode,
stack_pointer_rtx,
offset));
pop_rtx = gen_rtx_SET (reg, mem);
XVECEXP (parallel_insn, 0, par_index) = pop_rtx;
RTX_FRAME_RELATED_P (pop_rtx) = 1;
offset = offset + 4;
par_index++;
dwarf = alloc_reg_note (REG_CFA_RESTORE, reg, dwarf);
/* Create (set sp sp+x+imm8u). */
/* The offset value is already in place. No need to re-calculate it. */
adjust_sp_rtx
= gen_rtx_SET (stack_pointer_rtx,
plus_constant (Pmode,
stack_pointer_rtx,
offset + imm8u));
XVECEXP (parallel_insn, 0, par_index) = adjust_sp_rtx;
if (frame_pointer_needed)
{
/* (expr_list:REG_CFA_DEF_CFA (plus:SI (reg/f:SI $sp)
(const_int 0))
mean reset frame pointer to $sp and reset to offset 0. */
rtx cfa_adjust_rtx = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
const0_rtx);
dwarf = alloc_reg_note (REG_CFA_DEF_CFA, cfa_adjust_rtx, dwarf);
}
else
{
/* Tell gcc we adjust SP in this insn. */
dwarf = alloc_reg_note (REG_CFA_ADJUST_CFA,
copy_rtx (adjust_sp_rtx), dwarf);
}
parallel_insn = emit_insn (parallel_insn);
/* The insn rtx 'parallel_insn' will change frame layout.
We need to use RTX_FRAME_RELATED_P so that GCC is able to
generate CFI (Call Frame Information) stuff. */
RTX_FRAME_RELATED_P (parallel_insn) = 1;
/* Add CFI info by manual. */
REG_NOTES (parallel_insn) = dwarf;
}
/* Function that may creates more instructions
for large value on adjusting stack pointer.
In nds32 target, 'addi' can be used for stack pointer
adjustment in prologue/epilogue stage.
However, sometimes there are too many local variables so that
the adjustment value is not able to be fit in the 'addi' instruction.
One solution is to move value into a register
and then use 'add' instruction.
In practice, we use TA_REGNUM ($r15) to accomplish this purpose. */
static void
nds32_emit_adjust_frame (rtx to_reg, rtx from_reg, int adjust_value)
{
rtx tmp_reg;
rtx frame_adjust_insn;
rtx adjust_value_rtx = GEN_INT (adjust_value);
if (adjust_value == 0)
return;
if (!satisfies_constraint_Is15 (adjust_value_rtx))
{
/* The value is not able to fit in single addi instruction.
Create more instructions of moving value into a register
and then add stack pointer with it. */
/* $r15 is going to be temporary register to hold the value. */
tmp_reg = gen_rtx_REG (SImode, TA_REGNUM);
/* Create one more instruction to move value
into the temporary register. */
emit_move_insn (tmp_reg, adjust_value_rtx);
/* Create new 'add' rtx. */
frame_adjust_insn = gen_addsi3 (to_reg,
from_reg,
tmp_reg);
/* Emit rtx into insn list and receive its transformed insn rtx. */
frame_adjust_insn = emit_insn (frame_adjust_insn);
/* Because (tmp_reg <- full_value) may be split into two
rtl patterns, we can not set its RTX_FRAME_RELATED_P.
We need to construct another (sp <- sp + full_value)
and then insert it into sp_adjust_insn's reg note to
represent a frame related expression.
GCC knows how to refer it and output debug information. */
rtx plus_rtx;
rtx set_rtx;
plus_rtx = plus_constant (Pmode, from_reg, adjust_value);
set_rtx = gen_rtx_SET (to_reg, plus_rtx);
add_reg_note (frame_adjust_insn, REG_FRAME_RELATED_EXPR, set_rtx);
}
else
{
/* Generate sp adjustment instruction if and only if sp_adjust != 0. */
frame_adjust_insn = gen_addsi3 (to_reg,
from_reg,
adjust_value_rtx);
/* Emit rtx into instructions list and receive INSN rtx form. */
frame_adjust_insn = emit_insn (frame_adjust_insn);
}
/* The insn rtx 'sp_adjust_insn' will change frame layout.
We need to use RTX_FRAME_RELATED_P so that GCC is able to
generate CFI (Call Frame Information) stuff. */
RTX_FRAME_RELATED_P (frame_adjust_insn) = 1;
}
/* Return true if MODE/TYPE need double word alignment. */
static bool
nds32_needs_double_word_align (machine_mode mode, const_tree type)
{
unsigned int align;
/* Pick up the alignment according to the mode or type. */
align = NDS32_MODE_TYPE_ALIGN (mode, type);
return (align > PARM_BOUNDARY);
}
/* Return true if FUNC is a naked function. */
static bool
nds32_naked_function_p (tree func)
{
tree t;
if (TREE_CODE (func) != FUNCTION_DECL)
abort ();
t = lookup_attribute ("naked", DECL_ATTRIBUTES (func));
return (t != NULL_TREE);
}
/* Function that determine whether a load postincrement is a good thing to use
for a given mode. */
bool
nds32_use_load_post_increment (machine_mode mode)
{
return (GET_MODE_SIZE (mode) <= GET_MODE_SIZE(E_DImode));
}
/* Function that check if 'X' is a valid address register.
The variable 'STRICT' is very important to
make decision for register number.
STRICT : true
=> We are in reload pass or after reload pass.
The register number should be strictly limited in general registers.
STRICT : false
=> Before reload pass, we are free to use any register number. */
static bool
nds32_address_register_rtx_p (rtx x, bool strict)
{
int regno;
if (GET_CODE (x) != REG)
return false;
regno = REGNO (x);
if (strict)
return REGNO_OK_FOR_BASE_P (regno);
else
return true;
}
/* Function that check if 'INDEX' is valid to be a index rtx for address.
OUTER_MODE : Machine mode of outer address rtx.
INDEX : Check if this rtx is valid to be a index for address.
STRICT : If it is true, we are in reload pass or after reload pass. */
static bool
nds32_legitimate_index_p (machine_mode outer_mode,
rtx index,
bool strict)
{
int regno;
rtx op0;
rtx op1;
switch (GET_CODE (index))
{
case REG:
regno = REGNO (index);
/* If we are in reload pass or after reload pass,
we need to limit it to general register. */
if (strict)
return REGNO_OK_FOR_INDEX_P (regno);
else
return true;
case CONST_INT:
/* The alignment of the integer value is determined by 'outer_mode'. */
switch (GET_MODE_SIZE (outer_mode))
{
case 1:
/* Further check if the value is legal for the 'outer_mode'. */
if (satisfies_constraint_Is15 (index))
return true;
break;
case 2:
/* Further check if the value is legal for the 'outer_mode'. */
if (satisfies_constraint_Is16 (index))
{
/* If it is not under strictly aligned situation,
we can return true without checking alignment. */
if (!cfun->machine->strict_aligned_p)
return true;
/* Make sure address is half word alignment. */
else if (NDS32_HALF_WORD_ALIGN_P (INTVAL (index)))
return true;
}
break;
case 4:
/* Further check if the value is legal for the 'outer_mode'. */
if (satisfies_constraint_Is17 (index))
{
if ((TARGET_FPU_SINGLE || TARGET_FPU_DOUBLE))
{
if (!satisfies_constraint_Is14 (index))
return false;
}
/* If it is not under strictly aligned situation,
we can return true without checking alignment. */
if (!cfun->machine->strict_aligned_p)
return true;
/* Make sure address is word alignment. */
else if (NDS32_SINGLE_WORD_ALIGN_P (INTVAL (index)))
return true;
}
break;
case 8:
if (satisfies_constraint_Is17 (gen_int_mode (INTVAL (index) + 4,
SImode)))
{
if ((TARGET_FPU_SINGLE || TARGET_FPU_DOUBLE))
{
if (!satisfies_constraint_Is14 (index))
return false;
}
/* If it is not under strictly aligned situation,
we can return true without checking alignment. */
if (!cfun->machine->strict_aligned_p)
return true;
/* Make sure address is word alignment.
Currently we do not have 64-bit load/store yet,
so we will use two 32-bit load/store instructions to do
memory access and they are single word alignment. */
else if (NDS32_SINGLE_WORD_ALIGN_P (INTVAL (index)))
return true;
}
break;
default:
return false;
}
return false;
case MULT:
op0 = XEXP (index, 0);
op1 = XEXP (index, 1);
if (REG_P (op0) && CONST_INT_P (op1))
{
int multiplier;
multiplier = INTVAL (op1);
/* We only allow (mult reg const_int_1), (mult reg const_int_2),
(mult reg const_int_4) or (mult reg const_int_8). */
if (multiplier != 1 && multiplier != 2
&& multiplier != 4 && multiplier != 8)
return false;
regno = REGNO (op0);
/* Limit it in general registers if we are
in reload pass or after reload pass. */
if(strict)
return REGNO_OK_FOR_INDEX_P (regno);
else
return true;
}
return false;
case ASHIFT:
op0 = XEXP (index, 0);
op1 = XEXP (index, 1);
if (REG_P (op0) && CONST_INT_P (op1))
{
int sv;
/* op1 is already the sv value for use to do left shift. */
sv = INTVAL (op1);
/* We only allow (ashift reg const_int_0)
or (ashift reg const_int_1) or (ashift reg const_int_2) or
(ashift reg const_int_3). */
if (sv != 0 && sv != 1 && sv !=2 && sv != 3)
return false;
regno = REGNO (op0);
/* Limit it in general registers if we are
in reload pass or after reload pass. */
if(strict)
return REGNO_OK_FOR_INDEX_P (regno);
else
return true;
}
return false;
default:
return false;
}
}
static void
nds32_register_pass (
rtl_opt_pass *(*make_pass_func) (gcc::context *),
enum pass_positioning_ops pass_pos,
const char *ref_pass_name)
{
opt_pass *new_opt_pass = make_pass_func (g);
struct register_pass_info insert_pass =
{
new_opt_pass, /* pass */
ref_pass_name, /* reference_pass_name */
1, /* ref_pass_instance_number */
pass_pos /* po_op */
};
register_pass (&insert_pass);
}
/* This function is called from nds32_option_override ().
All new passes should be registered here. */
static void
nds32_register_passes (void)
{
nds32_register_pass (
make_pass_nds32_relax_opt,
PASS_POS_INSERT_AFTER,
"mach");
}
/* ------------------------------------------------------------------------ */
/* PART 3: Implement target hook stuff definitions. */
/* Computing the Length of an Insn.
Modifies the length assigned to instruction INSN.
LEN is the initially computed length of the insn. */
int
nds32_adjust_insn_length (rtx_insn *insn, int length)
{
int adjust_value = 0;
switch (recog_memoized (insn))
{
case CODE_FOR_call_internal:
case CODE_FOR_call_value_internal:
{
if (NDS32_ALIGN_P ())
{
rtx_insn *next_insn = next_active_insn (insn);
if (next_insn && get_attr_length (next_insn) != 2)
adjust_value += 2;
}
/* We need insert a nop after a noretun function call
to prevent software breakpoint corrupt the next function. */
if (find_reg_note (insn, REG_NORETURN, NULL_RTX))
{
if (TARGET_16_BIT)
adjust_value += 2;
else
adjust_value += 4;
}
}
return length + adjust_value;
default:
return length;
}
}
/* Storage Layout. */
/* This function will be called just before expansion into rtl. */
static void
nds32_expand_to_rtl_hook (void)
{
/* We need to set strictly aligned situation.
After that, the memory address checking in nds32_legitimate_address_p()
will take alignment offset into consideration so that it will not create
unaligned [base + offset] access during the rtl optimization. */
cfun->machine->strict_aligned_p = 1;
}
/* Register Usage. */
static void
nds32_conditional_register_usage (void)
{
int regno;
if (TARGET_HARD_FLOAT)
{
for (regno = NDS32_FIRST_FPR_REGNUM;
regno <= NDS32_LAST_FPR_REGNUM; regno++)
{
fixed_regs[regno] = 0;
if (regno < NDS32_FIRST_FPR_REGNUM + NDS32_MAX_FPR_REGS_FOR_ARGS)
call_used_regs[regno] = 1;
else if (regno >= NDS32_FIRST_FPR_REGNUM + 22
&& regno < NDS32_FIRST_FPR_REGNUM + 48)
call_used_regs[regno] = 1;
else
call_used_regs[regno] = 0;
}
}
else if (TARGET_FPU_SINGLE || TARGET_FPU_DOUBLE)
{
for (regno = NDS32_FIRST_FPR_REGNUM;
regno <= NDS32_LAST_FPR_REGNUM;
regno++)
fixed_regs[regno] = 0;
}
}
/* Register Classes. */
static unsigned char
nds32_class_max_nregs (reg_class_t rclass ATTRIBUTE_UNUSED,
machine_mode mode)
{
/* Return the maximum number of consecutive registers
needed to represent "mode" in a register of "rclass". */
return ((GET_MODE_SIZE (mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD);
}
static int
nds32_register_priority (int hard_regno)
{
/* Encourage to use r0-r7 for LRA when optimize for size. */
if (optimize_size)
{
if (hard_regno < 8)
return 4;
else if (hard_regno < 16)
return 3;
else if (hard_regno < 28)
return 2;
else
return 1;
}
else
{
if (hard_regno > 27)
return 1;
else
return 4;
}
}
static bool
nds32_can_change_mode_class (machine_mode from,
machine_mode to,
reg_class_t rclass)
{
/* Don't spill double-precision register to two singal-precision
registers */
if ((TARGET_FPU_SINGLE || TARGET_FPU_DOUBLE)
&& GET_MODE_SIZE (from) != GET_MODE_SIZE (to))
{
return !reg_classes_intersect_p (rclass, FP_REGS);
}
return true;
}
/* Stack Layout and Calling Conventions. */
/* There are three kinds of pointer concepts using in GCC compiler:
frame pointer: A pointer to the first location of local variables.
stack pointer: A pointer to the top of a stack frame.
argument pointer: A pointer to the incoming arguments.
In nds32 target calling convention, we are using 8-byte alignment.
Besides, we would like to have each stack frame of a function includes:
[Block A]
1. previous hard frame pointer
2. return address
3. callee-saved registers
4. <padding bytes> (we will calculte in nds32_compute_stack_frame()
and save it at
cfun->machine->callee_saved_area_padding_bytes)
[Block B]
1. local variables
2. spilling location
3. <padding bytes> (it will be calculated by GCC itself)
4. incoming arguments
5. <padding bytes> (it will be calculated by GCC itself)
[Block C]
1. <padding bytes> (it will be calculated by GCC itself)
2. outgoing arguments
We 'wrap' these blocks together with
hard frame pointer ($r28) and stack pointer ($r31).
By applying the basic frame/stack/argument pointers concept,
the layout of a stack frame shoule be like this:
| |
old stack pointer -> ----
| | \
| | saved arguments for
| | vararg functions
| | /
hard frame pointer -> --
& argument pointer | | \
| | previous hardware frame pointer
| | return address
| | callee-saved registers
| | /
frame pointer -> --
| | \
| | local variables
| | and incoming arguments
| | /
--
| | \
| | outgoing
| | arguments
| | /
stack pointer -> ----
$SFP and $AP are used to represent frame pointer and arguments pointer,
which will be both eliminated as hard frame pointer. */
/* -- Eliminating Frame Pointer and Arg Pointer. */
static bool
nds32_can_eliminate (const int from_reg, const int to_reg)
{
if (from_reg == ARG_POINTER_REGNUM && to_reg == STACK_POINTER_REGNUM)
return true;
if (from_reg == ARG_POINTER_REGNUM && to_reg == HARD_FRAME_POINTER_REGNUM)
return true;
if (from_reg == FRAME_POINTER_REGNUM && to_reg == STACK_POINTER_REGNUM)
return true;
if (from_reg == FRAME_POINTER_REGNUM && to_reg == HARD_FRAME_POINTER_REGNUM)
return true;
return false;
}
/* -- Passing Arguments in Registers. */
static rtx
nds32_function_arg (cumulative_args_t ca, machine_mode mode,
const_tree type, bool named)
{
unsigned int regno;
CUMULATIVE_ARGS *cum = get_cumulative_args (ca);
/* The last time this hook is called,
it is called with MODE == VOIDmode. */
if (mode == VOIDmode)
return NULL_RTX;
/* For nameless arguments, we need to take care it individually. */
if (!named)
{
/* If we are under hard float abi, we have arguments passed on the
stack and all situation can be handled by GCC itself. */
if (TARGET_HARD_FLOAT)
return NULL_RTX;
if (NDS32_ARG_PARTIAL_IN_GPR_REG_P (cum->gpr_offset, mode, type))
{
/* If we still have enough registers to pass argument, pick up
next available register number. */
regno
= NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum->gpr_offset, mode, type);
return gen_rtx_REG (mode, regno);
}
/* No register available, return NULL_RTX.
The compiler will use stack to pass argument instead. */
return NULL_RTX;
}
/* The following is to handle named argument.
Note that the strategies of TARGET_HARD_FLOAT and !TARGET_HARD_FLOAT
are different. */
if (TARGET_HARD_FLOAT)
{
/* For TARGET_HARD_FLOAT calling convention, we use GPR and FPR
to pass argument. We have to further check TYPE and MODE so
that we can determine which kind of register we shall use. */
/* Note that we need to pass argument entirely in registers under
hard float abi. */
if (GET_MODE_CLASS (mode) == MODE_FLOAT
&& NDS32_ARG_ENTIRE_IN_FPR_REG_P (cum->fpr_offset, mode, type))
{
/* Pick up the next available FPR register number. */
regno
= NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG (cum->fpr_offset, mode, type);
return gen_rtx_REG (mode, regno);
}
else if (GET_MODE_CLASS (mode) != MODE_FLOAT
&& NDS32_ARG_ENTIRE_IN_GPR_REG_P (cum->gpr_offset, mode, type))
{
/* Pick up the next available GPR register number. */
regno
= NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum->gpr_offset, mode, type);
return gen_rtx_REG (mode, regno);
}
}
else
{
/* For !TARGET_HARD_FLOAT calling convention, we always use GPR to pass
argument. Since we allow to pass argument partially in registers,
we can just return it if there are still registers available. */
if (NDS32_ARG_PARTIAL_IN_GPR_REG_P (cum->gpr_offset, mode, type))
{
/* Pick up the next available register number. */
regno
= NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum->gpr_offset, mode, type);
return gen_rtx_REG (mode, regno);
}
}
/* No register available, return NULL_RTX.
The compiler will use stack to pass argument instead. */
return NULL_RTX;
}
static bool
nds32_must_pass_in_stack (machine_mode mode, const_tree type)
{
/* Return true if a type must be passed in memory.
If it is NOT using hard float abi, small aggregates can be
passed in a register even we are calling a variadic function.
So there is no need to take padding into consideration. */
if (TARGET_HARD_FLOAT)
return must_pass_in_stack_var_size_or_pad (mode, type);
else
return must_pass_in_stack_var_size (mode, type);
}
static int
nds32_arg_partial_bytes (cumulative_args_t ca, machine_mode mode,
tree type, bool named ATTRIBUTE_UNUSED)
{
/* Returns the number of bytes at the beginning of an argument that
must be put in registers. The value must be zero for arguments that are
passed entirely in registers or that are entirely pushed on the stack.
Besides, TARGET_FUNCTION_ARG for these arguments should return the
first register to be used by the caller for this argument. */
unsigned int needed_reg_count;
unsigned int remaining_reg_count;
CUMULATIVE_ARGS *cum;
cum = get_cumulative_args (ca);
/* Under hard float abi, we better have argument entirely passed in
registers or pushed on the stack so that we can reduce the complexity
of dealing with cum->gpr_offset and cum->fpr_offset. */
if (TARGET_HARD_FLOAT)
return 0;
/* If we have already runned out of argument registers, return zero
so that the argument will be entirely pushed on the stack. */
if (NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum->gpr_offset, mode, type)
>= NDS32_GPR_ARG_FIRST_REGNUM + NDS32_MAX_GPR_REGS_FOR_ARGS)
return 0;
/* Calculate how many registers do we need for this argument. */
needed_reg_count = NDS32_NEED_N_REGS_FOR_ARG (mode, type);
/* Calculate how many argument registers have left for passing argument.
Note that we should count it from next available register number. */
remaining_reg_count
= NDS32_MAX_GPR_REGS_FOR_ARGS
- (NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum->gpr_offset, mode, type)
- NDS32_GPR_ARG_FIRST_REGNUM);
/* Note that we have to return the nubmer of bytes, not registers count. */
if (needed_reg_count > remaining_reg_count)
return remaining_reg_count * UNITS_PER_WORD;
return 0;
}
static void
nds32_function_arg_advance (cumulative_args_t ca, machine_mode mode,
const_tree type, bool named)
{
CUMULATIVE_ARGS *cum = get_cumulative_args (ca);
if (named)
{
/* We need to further check TYPE and MODE so that we can determine
which kind of register we shall advance. */
/* Under hard float abi, we may advance FPR registers. */
if (TARGET_HARD_FLOAT && GET_MODE_CLASS (mode) == MODE_FLOAT)
{
cum->fpr_offset
= NDS32_AVAILABLE_REGNUM_FOR_FPR_ARG (cum->fpr_offset, mode, type)
- NDS32_FPR_ARG_FIRST_REGNUM
+ NDS32_NEED_N_REGS_FOR_ARG (mode, type);
}
else
{
cum->gpr_offset
= NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum->gpr_offset, mode, type)
- NDS32_GPR_ARG_FIRST_REGNUM
+ NDS32_NEED_N_REGS_FOR_ARG (mode, type);
}
}
else
{
/* If this nameless argument is NOT under TARGET_HARD_FLOAT,
we can advance next register as well so that caller is
able to pass arguments in registers and callee must be
in charge of pushing all of them into stack. */
if (!TARGET_HARD_FLOAT)
{
cum->gpr_offset
= NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum->gpr_offset, mode, type)
- NDS32_GPR_ARG_FIRST_REGNUM
+ NDS32_NEED_N_REGS_FOR_ARG (mode, type);
}
}
}
static unsigned int
nds32_function_arg_boundary (machine_mode mode, const_tree type)
{
return (nds32_needs_double_word_align (mode, type)
? NDS32_DOUBLE_WORD_ALIGNMENT
: PARM_BOUNDARY);
}
/* -- How Scalar Function Values Are Returned. */
static rtx
nds32_function_value (const_tree ret_type,
const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
bool outgoing ATTRIBUTE_UNUSED)
{
machine_mode mode;
int unsignedp;
mode = TYPE_MODE (ret_type);
unsignedp = TYPE_UNSIGNED (ret_type);
if (INTEGRAL_TYPE_P (ret_type))
mode = promote_mode (ret_type, mode, &unsignedp);
if (TARGET_HARD_FLOAT && (mode == SFmode || mode == DFmode))
return gen_rtx_REG (mode, NDS32_FPR_RET_FIRST_REGNUM);
else
return gen_rtx_REG (mode, NDS32_GPR_RET_FIRST_REGNUM);
}
static rtx
nds32_libcall_value (machine_mode mode,
const_rtx fun ATTRIBUTE_UNUSED)
{
if (TARGET_HARD_FLOAT && (mode == SFmode || mode == DFmode))
return gen_rtx_REG (mode, NDS32_FPR_RET_FIRST_REGNUM);
return gen_rtx_REG (mode, NDS32_GPR_RET_FIRST_REGNUM);
}
static bool
nds32_function_value_regno_p (const unsigned int regno)
{
if (regno == NDS32_GPR_RET_FIRST_REGNUM
|| (TARGET_HARD_FLOAT
&& regno == NDS32_FPR_RET_FIRST_REGNUM))
return true;
return false;
}
/* -- How Large Values Are Returned. */
static bool
nds32_return_in_memory (const_tree type,
const_tree fntype ATTRIBUTE_UNUSED)
{
/* Note that int_size_in_bytes can return -1 if the size can vary
or is larger than an integer. */
HOST_WIDE_INT size = int_size_in_bytes (type);
/* For COMPLEX_TYPE, if the total size cannot be hold within two registers,
the return value is supposed to be in memory. We need to be aware of
that the size may be -1. */
if (TREE_CODE (type) == COMPLEX_TYPE)
if (size < 0 || size > 2 * UNITS_PER_WORD)
return true;
/* If it is BLKmode and the total size cannot be hold within two registers,
the return value is supposed to be in memory. We need to be aware of
that the size may be -1. */
if (TYPE_MODE (type) == BLKmode)
if (size < 0 || size > 2 * UNITS_PER_WORD)
return true;
/* For other cases, having result in memory is unnecessary. */
return false;
}
/* -- Function Entry and Exit. */
/* The content produced from this function
will be placed before prologue body. */
static void
nds32_asm_function_prologue (FILE *file)
{
int r;
const char *func_name;
tree attrs;
tree name;
/* All stack frame information is supposed to be
already computed when expanding prologue.
The result is in cfun->machine.
DO NOT call nds32_compute_stack_frame() here
because it may corrupt the essential information. */
fprintf (file, "\t! BEGIN PROLOGUE\n");
fprintf (file, "\t! fp needed: %d\n", frame_pointer_needed);
fprintf (file, "\t! pretend_args: %d\n", cfun->machine->va_args_size);
fprintf (file, "\t! local_size: %d\n", cfun->machine->local_size);
fprintf (file, "\t! out_args_size: %d\n", cfun->machine->out_args_size);
/* Use df_regs_ever_live_p() to detect if the register
is ever used in the current function. */
fprintf (file, "\t! registers ever_live: ");
for (r = 0; r < 65; r++)
{
if (df_regs_ever_live_p (r))
fprintf (file, "%s, ", reg_names[r]);
}
fputc ('\n', file);
/* Display the attributes of this function. */
fprintf (file, "\t! function attributes: ");
/* Get the attributes tree list.
Note that GCC builds attributes list with reverse order. */
attrs = DECL_ATTRIBUTES (current_function_decl);
/* If there is no any attribute, print out "None". */
if (!attrs)
fprintf (file, "None");
/* If there are some attributes, try if we need to
construct isr vector information. */
func_name = IDENTIFIER_POINTER (DECL_NAME (current_function_decl));
nds32_construct_isr_vectors_information (attrs, func_name);
/* Display all attributes of this function. */
while (attrs)
{
name = TREE_PURPOSE (attrs);
fprintf (file, "%s ", IDENTIFIER_POINTER (name));
/* Pick up the next attribute. */
attrs = TREE_CHAIN (attrs);
}
fputc ('\n', file);
}
/* After rtl prologue has been expanded, this function is used. */
static void
nds32_asm_function_end_prologue (FILE *file)
{
fprintf (file, "\t! END PROLOGUE\n");
/* If frame pointer is NOT needed and -mfp-as-gp is issued,
we can generate special directive: ".omit_fp_begin"
to guide linker doing fp-as-gp optimization.
However, for a naked function, which means
it should not have prologue/epilogue,
using fp-as-gp still requires saving $fp by push/pop behavior and
there is no benefit to use fp-as-gp on such small function.
So we need to make sure this function is NOT naked as well. */
if (!frame_pointer_needed
&& !cfun->machine->naked_p
&& cfun->machine->fp_as_gp_p)
{
fprintf (file, "\t! ----------------------------------------\n");
fprintf (file, "\t! Guide linker to do "
"link time optimization: fp-as-gp\n");
fprintf (file, "\t! We add one more instruction to "
"initialize $fp near to $gp location.\n");
fprintf (file, "\t! If linker fails to use fp-as-gp transformation,\n");
fprintf (file, "\t! this extra instruction should be "
"eliminated at link stage.\n");
fprintf (file, "\t.omit_fp_begin\n");
fprintf (file, "\tla\t$fp,_FP_BASE_\n");
fprintf (file, "\t! ----------------------------------------\n");
}
}
/* Before rtl epilogue has been expanded, this function is used. */
static void
nds32_asm_function_begin_epilogue (FILE *file)
{
/* If frame pointer is NOT needed and -mfp-as-gp is issued,
we can generate special directive: ".omit_fp_end"
to claim fp-as-gp optimization range.
However, for a naked function,
which means it should not have prologue/epilogue,
using fp-as-gp still requires saving $fp by push/pop behavior and
there is no benefit to use fp-as-gp on such small function.
So we need to make sure this function is NOT naked as well. */
if (!frame_pointer_needed
&& !cfun->machine->naked_p
&& cfun->machine->fp_as_gp_p)
{
fprintf (file, "\t! ----------------------------------------\n");
fprintf (file, "\t! Claim the range of fp-as-gp "
"link time optimization\n");
fprintf (file, "\t.omit_fp_end\n");
fprintf (file, "\t! ----------------------------------------\n");
}
fprintf (file, "\t! BEGIN EPILOGUE\n");
}
/* The content produced from this function
will be placed after epilogue body. */
static void
nds32_asm_function_epilogue (FILE *file)
{
fprintf (file, "\t! END EPILOGUE\n");
}
static void
nds32_asm_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta,
HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
tree function)
{
int this_regno;
/* Make sure unwind info is emitted for the thunk if needed. */
final_start_function (emit_barrier (), file, 1);
this_regno = (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function)
? 1
: 0);
if (delta != 0)
{
if (satisfies_constraint_Is15 (GEN_INT (delta)))
{
fprintf (file, "\taddi\t$r%d, $r%d, " HOST_WIDE_INT_PRINT_DEC "\n",
this_regno, this_regno, delta);
}
else if (satisfies_constraint_Is20 (GEN_INT (delta)))
{
fprintf (file, "\tmovi\t$ta, " HOST_WIDE_INT_PRINT_DEC "\n", delta);
fprintf (file, "\tadd\t$r%d, $r%d, $ta\n", this_regno, this_regno);
}
else
{
fprintf (file,
"\tsethi\t$ta, hi20(" HOST_WIDE_INT_PRINT_DEC ")\n",
delta);
fprintf (file,
"\tori\t$ta, $ta, lo12(" HOST_WIDE_INT_PRINT_DEC ")\n",
delta);
fprintf (file, "\tadd\t$r%d, $r%d, $ta\n", this_regno, this_regno);
}
}
fprintf (file, "\tb\t");
assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0));
fprintf (file, "\n");
final_end_function ();
}
/* -- Permitting tail calls. */
/* Return true if it is ok to do sibling call optimization. */
static bool
nds32_function_ok_for_sibcall (tree decl,
tree exp ATTRIBUTE_UNUSED)
{
/* The DECL is NULL if it is an indirect call. */
/* 1. Do not apply sibling call if -mv3push is enabled,
because pop25 instruction also represents return behavior.
2. If this function is a variadic function, do not apply sibling call
because the stack layout may be a mess.
3. We don't want to apply sibling call optimization for indirect
sibcall because the pop behavior in epilogue may pollute the
content of caller-saved regsiter when the register is used for
indirect sibcall. */
return (!TARGET_V3PUSH
&& (cfun->machine->va_args_size == 0)
&& decl);
}
/* Determine whether we need to enable warning for function return check. */
static bool
nds32_warn_func_return (tree decl)
{
/* Naked functions are implemented entirely in assembly, including the
return sequence, so suppress warnings about this. */
return !nds32_naked_function_p (decl);
}
/* Implementing the Varargs Macros. */
static void
nds32_setup_incoming_varargs (cumulative_args_t ca,
machine_mode mode,
tree type,
int *pretend_args_size,
int second_time ATTRIBUTE_UNUSED)
{
unsigned int total_args_regs;
unsigned int num_of_used_regs;
unsigned int remaining_reg_count;
CUMULATIVE_ARGS *cum;
/* If we are under hard float abi, we do not need to set *pretend_args_size.
So that all nameless arguments are pushed by caller and all situation
can be handled by GCC itself. */
if (TARGET_HARD_FLOAT)
return;
/* We are using NDS32_MAX_GPR_REGS_FOR_ARGS registers,
counting from NDS32_GPR_ARG_FIRST_REGNUM, for saving incoming arguments.
However, for nameless(anonymous) arguments, we should push them on the
stack so that all the nameless arguments appear to have been passed
consecutively in the memory for accessing. Hence, we need to check and
exclude the registers that are used for named arguments. */
cum = get_cumulative_args (ca);
/* The MODE and TYPE describe the last argument.
We need those information to determine the remaining registers
for varargs. */
total_args_regs
= NDS32_MAX_GPR_REGS_FOR_ARGS + NDS32_GPR_ARG_FIRST_REGNUM;
num_of_used_regs
= NDS32_AVAILABLE_REGNUM_FOR_GPR_ARG (cum->gpr_offset, mode, type)
+ NDS32_NEED_N_REGS_FOR_ARG (mode, type);
remaining_reg_count = total_args_regs - num_of_used_regs;
*pretend_args_size = remaining_reg_count * UNITS_PER_WORD;
return;
}
static bool
nds32_strict_argument_naming (cumulative_args_t ca ATTRIBUTE_UNUSED)
{
/* If this hook returns true, the named argument of FUNCTION_ARG is always
true for named arguments, and false for unnamed arguments. */
return true;
}
/* Trampolines for Nested Functions. */
static void
nds32_asm_trampoline_template (FILE *f)
{
if (TARGET_REDUCED_REGS)
{
/* Trampoline is not supported on reduced-set registers yet. */
sorry ("a nested function is not supported for reduced registers");
}
else
{
asm_fprintf (f, "\t! Trampoline code template\n");
asm_fprintf (f, "\t! This code fragment will be copied "
"into stack on demand\n");
asm_fprintf (f, "\tmfusr\t$r16,$pc\n");
asm_fprintf (f, "\tlwi\t$r15,[$r16 + 20] "
"! load nested function address\n");
asm_fprintf (f, "\tlwi\t$r16,[$r16 + 16] "
"! load chain_value\n");
asm_fprintf (f, "\tjr\t$r15\n");
}
/* Preserve space ($pc + 16) for saving chain_value,
nds32_trampoline_init will fill the value in this slot. */
asm_fprintf (f, "\t! space for saving chain_value\n");
assemble_aligned_integer (UNITS_PER_WORD, const0_rtx);
/* Preserve space ($pc + 20) for saving nested function address,
nds32_trampoline_init will fill the value in this slot. */
asm_fprintf (f, "\t! space for saving nested function address\n");
assemble_aligned_integer (UNITS_PER_WORD, const0_rtx);
}
/* Emit RTL insns to initialize the variable parts of a trampoline. */
static void
nds32_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
{
int i;
/* Nested function address. */
rtx fnaddr;
/* The memory rtx that is going to
be filled with chain_value. */
rtx chain_value_mem;
/* The memory rtx that is going to
be filled with nested function address. */
rtx nested_func_mem;
/* Start address of trampoline code in stack, for doing cache sync. */
rtx sync_cache_addr;
/* Temporary register for sync instruction. */
rtx tmp_reg;
/* Instruction-cache sync instruction,
requesting an argument as starting address. */
rtx isync_insn;
/* For convenience reason of doing comparison. */
int tramp_align_in_bytes;
/* Trampoline is not supported on reduced-set registers yet. */
if (TARGET_REDUCED_REGS)
sorry ("a nested function is not supported for reduced registers");
/* STEP 1: Copy trampoline code template into stack,
fill up essential data into stack. */
/* Extract nested function address rtx. */
fnaddr = XEXP (DECL_RTL (fndecl), 0);
/* m_tramp is memory rtx that is going to be filled with trampoline code.
We have nds32_asm_trampoline_template() to emit template pattern. */
emit_block_move (m_tramp, assemble_trampoline_template (),
GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
/* After copying trampoline code into stack,
fill chain_value into stack. */
chain_value_mem = adjust_address (m_tramp, SImode, 16);
emit_move_insn (chain_value_mem, chain_value);
/* After copying trampoline code int stack,
fill nested function address into stack. */
nested_func_mem = adjust_address (m_tramp, SImode, 20);
emit_move_insn (nested_func_mem, fnaddr);
/* STEP 2: Sync instruction-cache. */
/* We have successfully filled trampoline code into stack.
However, in order to execute code in stack correctly,
we must sync instruction cache. */
sync_cache_addr = XEXP (m_tramp, 0);
tmp_reg = gen_reg_rtx (SImode);
isync_insn = gen_unspec_volatile_isync (tmp_reg);
/* Because nds32_cache_block_size is in bytes,
we get trampoline alignment in bytes for convenient comparison. */
tramp_align_in_bytes = TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT;
if (tramp_align_in_bytes >= nds32_cache_block_size
&& (tramp_align_in_bytes % nds32_cache_block_size) == 0)
{
/* Under this condition, the starting address of trampoline
must be aligned to the starting address of each cache block
and we do not have to worry about cross-boundary issue. */
for (i = 0;
i < (TRAMPOLINE_SIZE + nds32_cache_block_size - 1)
/ nds32_cache_block_size;
i++)
{
emit_move_insn (tmp_reg,
plus_constant (Pmode, sync_cache_addr,
nds32_cache_block_size * i));
emit_insn (isync_insn);
}
}
else if (TRAMPOLINE_SIZE > nds32_cache_block_size)
{
/* The starting address of trampoline code
may not be aligned to the cache block,
so the trampoline code may be across two cache block.
We need to sync the last element, which is 4-byte size,
of trampoline template. */
for (i = 0;
i < (TRAMPOLINE_SIZE + nds32_cache_block_size - 1)
/ nds32_cache_block_size;
i++)
{
emit_move_insn (tmp_reg,
plus_constant (Pmode, sync_cache_addr,
nds32_cache_block_size * i));
emit_insn (isync_insn);
}
/* The last element of trampoline template is 4-byte size. */
emit_move_insn (tmp_reg,
plus_constant (Pmode, sync_cache_addr,
TRAMPOLINE_SIZE - 4));
emit_insn (isync_insn);
}
else
{
/* This is the simplest case.
Because TRAMPOLINE_SIZE is less than or
equal to nds32_cache_block_size,
we can just sync start address and
the last element of trampoline code. */
/* Sync starting address of tampoline code. */
emit_move_insn (tmp_reg, sync_cache_addr);
emit_insn (isync_insn);
/* Sync the last element, which is 4-byte size,
of trampoline template. */
emit_move_insn (tmp_reg,
plus_constant (Pmode, sync_cache_addr,
TRAMPOLINE_SIZE - 4));
emit_insn (isync_insn);
}
/* Set instruction serialization barrier
to guarantee the correct operations. */
emit_insn (gen_unspec_volatile_isb ());
}
/* Addressing Modes. */
static bool
nds32_legitimate_address_p (machine_mode mode, rtx x, bool strict)
{
if (TARGET_FPU_SINGLE || TARGET_FPU_DOUBLE)
{
/* When using floating-point instructions,
we don't allow 'addr' to be [symbol_ref], [CONST] pattern. */
if ((mode == DFmode || mode == SFmode)
&& (GET_CODE (x) == SYMBOL_REF
|| GET_CODE(x) == CONST))
return false;
/* Allow [post_modify] addressing mode, when using FPU instructions. */
if (GET_CODE (x) == POST_MODIFY
&& mode == DFmode)
{
if (GET_CODE (XEXP (x, 0)) == REG
&& GET_CODE (XEXP (x, 1)) == PLUS)
{
rtx plus_op = XEXP (x, 1);
rtx op0 = XEXP (plus_op, 0);
rtx op1 = XEXP (plus_op, 1);
if (nds32_address_register_rtx_p (op0, strict)
&& CONST_INT_P (op1))
{
if (satisfies_constraint_Is14 (op1))
{
/* If it is not under strictly aligned situation,
we can return true without checking alignment. */
if (!cfun->machine->strict_aligned_p)
return true;
/* Make sure address is word alignment.
Currently we do not have 64-bit load/store yet,
so we will use two 32-bit load/store instructions to do
memory access and they are single word alignment. */
else if (NDS32_SINGLE_WORD_ALIGN_P (INTVAL (op1)))
return true;
}
}
}
}
}
/* For (mem:DI addr) or (mem:DF addr) case,
we only allow 'addr' to be [reg], [symbol_ref],
[const], or [reg + const_int] pattern. */
if (mode == DImode || mode == DFmode)
{
/* Allow [Reg + const_int] addressing mode. */
if (GET_CODE (x) == PLUS)
{
if (nds32_address_register_rtx_p (XEXP (x, 0), strict)
&& nds32_legitimate_index_p (mode, XEXP (x, 1), strict)
&& CONST_INT_P (XEXP (x, 1)))
return true;
else if (nds32_address_register_rtx_p (XEXP (x, 1), strict)
&& nds32_legitimate_index_p (mode, XEXP (x, 0), strict)
&& CONST_INT_P (XEXP (x, 0)))
return true;
}
/* Allow [post_inc] and [post_dec] addressing mode. */
if (GET_CODE (x) == POST_INC || GET_CODE (x) == POST_DEC)
{
if (nds32_address_register_rtx_p (XEXP (x, 0), strict))
return true;
}
/* Now check [reg], [symbol_ref], and [const]. */
if (GET_CODE (x) != REG
&& GET_CODE (x) != SYMBOL_REF
&& GET_CODE (x) != CONST)
return false;
}
/* Check if 'x' is a valid address. */
switch (GET_CODE (x))
{
case REG:
/* (mem (reg A)) => [Ra] */
return nds32_address_register_rtx_p (x, strict);
case SYMBOL_REF:
/* (mem (symbol_ref A)) => [symbol_ref] */
/* If -mcmodel=large, the 'symbol_ref' is not a valid address
during or after LRA/reload phase. */
if (TARGET_CMODEL_LARGE
&& (reload_completed
|| reload_in_progress
|| lra_in_progress))
return false;
/* If -mcmodel=medium and the symbol references to rodata section,
the 'symbol_ref' is not a valid address during or after
LRA/reload phase. */
if (TARGET_CMODEL_MEDIUM
&& NDS32_SYMBOL_REF_RODATA_P (x)
&& (reload_completed
|| reload_in_progress
|| lra_in_progress))
return false;
return true;
case CONST:
/* (mem (const (...)))
=> [ + const_addr ], where const_addr = symbol_ref + const_int */
if (GET_CODE (XEXP (x, 0)) == PLUS)
{
rtx plus_op = XEXP (x, 0);
rtx op0 = XEXP (plus_op, 0);
rtx op1 = XEXP (plus_op, 1);
if (GET_CODE (op0) == SYMBOL_REF && CONST_INT_P (op1))
{
/* Now we see the [ + const_addr ] pattern, but we need
some further checking. */
/* If -mcmodel=large, the 'const_addr' is not a valid address
during or after LRA/reload phase. */
if (TARGET_CMODEL_LARGE
&& (reload_completed
|| reload_in_progress
|| lra_in_progress))
return false;
/* If -mcmodel=medium and the symbol references to rodata section,
the 'const_addr' is not a valid address during or after
LRA/reload phase. */
if (TARGET_CMODEL_MEDIUM
&& NDS32_SYMBOL_REF_RODATA_P (op0)
&& (reload_completed
|| reload_in_progress
|| lra_in_progress))
return false;
/* At this point we can make sure 'const_addr' is a
valid address. */
return true;
}
}
return false;
case POST_MODIFY:
/* (mem (post_modify (reg) (plus (reg) (reg))))
=> [Ra], Rb */
/* (mem (post_modify (reg) (plus (reg) (const_int))))
=> [Ra], const_int */
if (GET_CODE (XEXP (x, 0)) == REG
&& GET_CODE (XEXP (x, 1)) == PLUS)
{
rtx plus_op = XEXP (x, 1);
rtx op0 = XEXP (plus_op, 0);
rtx op1 = XEXP (plus_op, 1);
if (nds32_address_register_rtx_p (op0, strict)
&& nds32_legitimate_index_p (mode, op1, strict))
return true;
else
return false;
}
return false;
case POST_INC:
case POST_DEC:
/* (mem (post_inc reg)) => [Ra], 1/2/4 */
/* (mem (post_dec reg)) => [Ra], -1/-2/-4 */
/* The 1/2/4 or -1/-2/-4 have been displayed in nds32.md.
We only need to deal with register Ra. */
if (nds32_address_register_rtx_p (XEXP (x, 0), strict))
return true;
else
return false;
case PLUS:
/* (mem (plus reg const_int))
=> [Ra + imm] */
/* (mem (plus reg reg))
=> [Ra + Rb] */
/* (mem (plus (mult reg const_int) reg))
=> [Ra + Rb << sv] */
if (nds32_address_register_rtx_p (XEXP (x, 0), strict)
&& nds32_legitimate_index_p (mode, XEXP (x, 1), strict))
return true;
else if (nds32_address_register_rtx_p (XEXP (x, 1), strict)
&& nds32_legitimate_index_p (mode, XEXP (x, 0), strict))
return true;
else
return false;
case LO_SUM:
/* (mem (lo_sum (reg) (symbol_ref))) */
/* (mem (lo_sum (reg) (const))) */
gcc_assert (REG_P (XEXP (x, 0)));
if (GET_CODE (XEXP (x, 1)) == SYMBOL_REF
|| GET_CODE (XEXP (x, 1)) == CONST)
return nds32_legitimate_address_p (mode, XEXP (x, 1), strict);
else
return false;
default:
return false;
}
}
/* Condition Code Status. */
/* -- Representation of condition codes using registers. */
static void
nds32_canonicalize_comparison (int *code,
rtx *op0 ATTRIBUTE_UNUSED,
rtx *op1,
bool op0_preserve_value ATTRIBUTE_UNUSED)
{
/* When the instruction combination pass tries to combine a comparison insn
with its previous insns, it also transforms the operator in order to
minimize its constant field. For example, it tries to transform a
comparison insn from
(set (reg:SI 54)
(ltu:SI (reg:SI 52)
(const_int 10 [0xa])))
to
(set (reg:SI 54)
(leu:SI (reg:SI 52)
(const_int 9 [0x9])))
However, the nds32 target only provides instructions supporting the LTU
operation directly, and the implementation of the pattern "cbranchsi4"
only expands the LTU form. In order to handle the non-LTU operations
generated from passes other than the RTL expansion pass, we have to
implement this hook to revert those changes. Since we only expand the LTU
operator in the RTL expansion pass, we might only need to handle the LEU
case, unless we find other optimization passes perform more aggressive
transformations. */
if (*code == LEU && CONST_INT_P (*op1))
{
*op1 = gen_int_mode (INTVAL (*op1) + 1, SImode);
*code = LTU;
}
}
/* Describing Relative Costs of Operations. */
static int
nds32_register_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
reg_class_t from,
reg_class_t to)
{
if ((from == FP_REGS && to != FP_REGS)
|| (from != FP_REGS && to == FP_REGS))
return 9;
else if (from == HIGH_REGS || to == HIGH_REGS)
return optimize_size ? 6 : 2;
else
return 2;
}
static int
nds32_memory_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
reg_class_t rclass ATTRIBUTE_UNUSED,
bool in ATTRIBUTE_UNUSED)
{
return 8;
}
/* This target hook describes the relative costs of RTL expressions.
Return 'true' when all subexpressions of x have been processed.
Return 'false' to sum the costs of sub-rtx, plus cost of this operation.
Refer to gcc/rtlanal.c for more information. */
static bool
nds32_rtx_costs (rtx x,
machine_mode mode,
int outer_code,
int opno,
int *total,
bool speed)
{
return nds32_rtx_costs_impl (x, mode, outer_code, opno, total, speed);
}
static int
nds32_address_cost (rtx address,
machine_mode mode,
addr_space_t as,
bool speed)
{
return nds32_address_cost_impl (address, mode, as, speed);
}
/* Dividing the Output into Sections (Texts, Data, . . . ). */
/* If references to a symbol or a constant must be treated differently
depending on something about the variable or function named by the symbol
(such as what section it is in), we use this hook to store flags
in symbol_ref rtx. */
static void
nds32_encode_section_info (tree decl, rtx rtl, int new_decl_p)
{
default_encode_section_info (decl, rtl, new_decl_p);
/* For the memory rtx, if it references to rodata section, we can store
NDS32_SYMBOL_FLAG_RODATA flag into symbol_ref rtx so that the
nds32_legitimate_address_p() can determine how to treat such symbol_ref
based on -mcmodel=X and this information. */
if (MEM_P (rtl) && MEM_READONLY_P (rtl))
{
rtx addr = XEXP (rtl, 0);
if (GET_CODE (addr) == SYMBOL_REF)
{
/* For (mem (symbol_ref X)) case. */
SYMBOL_REF_FLAGS (addr) |= NDS32_SYMBOL_FLAG_RODATA;
}
else if (GET_CODE (addr) == CONST
&& GET_CODE (XEXP (addr, 0)) == PLUS)
{
/* For (mem (const (plus (symbol_ref X) (const_int N)))) case. */
rtx plus_op = XEXP (addr, 0);
rtx op0 = XEXP (plus_op, 0);
rtx op1 = XEXP (plus_op, 1);
if (GET_CODE (op0) == SYMBOL_REF && CONST_INT_P (op1))
SYMBOL_REF_FLAGS (op0) |= NDS32_SYMBOL_FLAG_RODATA;
}
}
}
/* Defining the Output Assembler Language. */
/* -- The Overall Framework of an Assembler File. */
static void
nds32_asm_file_start (void)
{
default_file_start ();
/* Tell assembler which ABI we are using. */
fprintf (asm_out_file, "\t! ABI version\n");
if (TARGET_HARD_FLOAT)
fprintf (asm_out_file, "\t.abi_2fp_plus\n");
else
fprintf (asm_out_file, "\t.abi_2\n");
/* Tell assembler that this asm code is generated by compiler. */
fprintf (asm_out_file, "\t! This asm file is generated by compiler\n");
fprintf (asm_out_file, "\t.flag\tverbatim\n");
/* Give assembler the size of each vector for interrupt handler. */
fprintf (asm_out_file, "\t! This vector size directive is required "
"for checking inconsistency on interrupt handler\n");
fprintf (asm_out_file, "\t.vec_size\t%d\n", nds32_isr_vector_size);
fprintf (asm_out_file, "\t! ------------------------------------\n");
if (TARGET_ISA_V2)
fprintf (asm_out_file, "\t! ISA family\t\t: %s\n", "V2");
if (TARGET_ISA_V3)
fprintf (asm_out_file, "\t! ISA family\t\t: %s\n", "V3");
if (TARGET_ISA_V3M)
fprintf (asm_out_file, "\t! ISA family\t\t: %s\n", "V3M");
if (TARGET_CMODEL_SMALL)
fprintf (asm_out_file, "\t! Code model\t\t: %s\n", "SMALL");
if (TARGET_CMODEL_MEDIUM)
fprintf (asm_out_file, "\t! Code model\t\t: %s\n", "MEDIUM");
if (TARGET_CMODEL_LARGE)
fprintf (asm_out_file, "\t! Code model\t\t: %s\n", "LARGE");
fprintf (asm_out_file, "\t! Endian setting\t: %s\n",
((TARGET_BIG_ENDIAN) ? "big-endian"
: "little-endian"));
fprintf (asm_out_file, "\t! Use SP floating-point instruction\t: %s\n",
((TARGET_FPU_SINGLE) ? "Yes"
: "No"));
fprintf (asm_out_file, "\t! Use DP floating-point instruction\t: %s\n",
((TARGET_FPU_DOUBLE) ? "Yes"
: "No"));
fprintf (asm_out_file, "\t! ABI version\t\t: %s\n",
((TARGET_HARD_FLOAT) ? "ABI2FP+"
: "ABI2"));
fprintf (asm_out_file, "\t! ------------------------------------\n");
fprintf (asm_out_file, "\t! Use conditional move\t\t: %s\n",
((TARGET_CMOV) ? "Yes"
: "No"));
fprintf (asm_out_file, "\t! Use performance extension\t: %s\n",
((TARGET_EXT_PERF) ? "Yes"
: "No"));
fprintf (asm_out_file, "\t! Use performance extension 2\t: %s\n",
((TARGET_EXT_PERF2) ? "Yes"
: "No"));
fprintf (asm_out_file, "\t! Use string extension\t\t: %s\n",
((TARGET_EXT_STRING) ? "Yes"
: "No"));
fprintf (asm_out_file, "\t! ------------------------------------\n");
fprintf (asm_out_file, "\t! V3PUSH instructions\t: %s\n",
((TARGET_V3PUSH) ? "Yes"
: "No"));
fprintf (asm_out_file, "\t! 16-bit instructions\t: %s\n",
((TARGET_16_BIT) ? "Yes"
: "No"));
fprintf (asm_out_file, "\t! Reduced registers set\t: %s\n",
((TARGET_REDUCED_REGS) ? "Yes"
: "No"));
fprintf (asm_out_file, "\t! Support unaligned access\t\t: %s\n",
(flag_unaligned_access ? "Yes"
: "No"));
fprintf (asm_out_file, "\t! ------------------------------------\n");
if (optimize_size)
fprintf (asm_out_file, "\t! Optimization level\t: -Os\n");
else if (optimize_fast)
fprintf (asm_out_file, "\t! Optimization level\t: -Ofast\n");
else if (optimize_debug)
fprintf (asm_out_file, "\t! Optimization level\t: -Og\n");
else
fprintf (asm_out_file, "\t! Optimization level\t: -O%d\n", optimize);
fprintf (asm_out_file, "\t! ------------------------------------\n");
fprintf (asm_out_file, "\t! Cache block size\t: %d\n",
nds32_cache_block_size);
fprintf (asm_out_file, "\t! ------------------------------------\n");
nds32_asm_file_start_for_isr ();
}
static void
nds32_asm_file_end (void)
{
nds32_asm_file_end_for_isr ();
fprintf (asm_out_file, "\t! ------------------------------------\n");
}
/* -- Output and Generation of Labels. */
static void
nds32_asm_globalize_label (FILE *stream, const char *name)
{
fputs ("\t.global\t", stream);
assemble_name (stream, name);
fputs ("\n", stream);
}
/* -- Output of Assembler Instructions. */
static void
nds32_print_operand (FILE *stream, rtx x, int code)
{
HOST_WIDE_INT op_value = 0;
HOST_WIDE_INT one_position;
HOST_WIDE_INT zero_position;
bool pick_lsb_p = false;
bool pick_msb_p = false;
int regno;
if (CONST_INT_P (x))
op_value = INTVAL (x);
switch (code)
{
case 0 :
/* Do nothing special. */
break;
case 'b':
/* Use exact_log2() to search the 0-bit position. */
gcc_assert (CONST_INT_P (x));
zero_position = exact_log2 (~UINTVAL (x) & GET_MODE_MASK (SImode));
gcc_assert (zero_position != -1);
fprintf (stream, HOST_WIDE_INT_PRINT_DEC, zero_position);
/* No need to handle following process, so return immediately. */
return;
case 'e':
gcc_assert (MEM_P (x)
&& GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT);
fprintf (stream, HOST_WIDE_INT_PRINT_DEC, INTVAL (XEXP (XEXP (x, 0), 1)));
/* No need to handle following process, so return immediately. */
return;
case 'B':
/* Use exact_log2() to search the 1-bit position. */
gcc_assert (CONST_INT_P (x));
one_position = exact_log2 (UINTVAL (x) & GET_MODE_MASK (SImode));
gcc_assert (one_position != -1);
fprintf (stream, HOST_WIDE_INT_PRINT_DEC, one_position);
/* No need to handle following process, so return immediately. */
return;
case 'L':
/* X is supposed to be REG rtx. */
gcc_assert (REG_P (x));
/* Claim that we are going to pick LSB part of X. */
pick_lsb_p = true;
break;
case 'H':
/* X is supposed to be REG rtx. */
gcc_assert (REG_P (x));
/* Claim that we are going to pick MSB part of X. */
pick_msb_p = true;
break;
case 'V':
/* 'x' is supposed to be CONST_INT, get the value. */
gcc_assert (CONST_INT_P (x));
/* According to the Andes architecture,
the system/user register index range is 0 ~ 1023.
In order to avoid conflict between user-specified-integer value
and enum-specified-register value,
the 'enum nds32_intrinsic_registers' value
in nds32_intrinsic.h starts from 1024. */
if (op_value < 1024 && op_value >= 0)
{
/* If user gives integer value directly (0~1023),
we just print out the value. */
fprintf (stream, HOST_WIDE_INT_PRINT_DEC, op_value);
}
else if (op_value < 0
|| op_value >= ((int) ARRAY_SIZE (nds32_intrinsic_register_names)
+ 1024))
{
/* The enum index value for array size is out of range. */
error ("intrinsic register index is out of range");
}
else
{
/* If user applies normal way with __NDS32_REG_XXX__ enum data,
we can print out register name. Remember to substract 1024. */
fprintf (stream, "%s",
nds32_intrinsic_register_names[op_value - 1024]);
}
/* No need to handle following process, so return immediately. */
return;
case 'R': /* cctl valck */
/* Note the cctl divide to 5 group and share the same name table. */
if (op_value < 0 || op_value > 4)
error ("CCTL intrinsic function subtype out of range!");
fprintf (stream, "%s", nds32_cctl_names[op_value]);
return;
case 'T': /* cctl idxwbinv */
/* Note the cctl divide to 5 group and share the same name table. */
if (op_value < 0 || op_value > 4)
error ("CCTL intrinsic function subtype out of range!");
fprintf (stream, "%s", nds32_cctl_names[op_value + 4]);
return;
case 'U': /* cctl vawbinv */
/* Note the cctl divide to 5 group and share the same name table. */
if (op_value < 0 || op_value > 4)
error ("CCTL intrinsic function subtype out of range!");
fprintf (stream, "%s", nds32_cctl_names[op_value + 8]);
return;
case 'X': /* cctl idxread */
/* Note the cctl divide to 5 group and share the same name table. */
if (op_value < 0 || op_value > 4)
error ("CCTL intrinsic function subtype out of range!");
fprintf (stream, "%s", nds32_cctl_names[op_value + 12]);
return;
case 'W': /* cctl idxwitre */
/* Note the cctl divide to 5 group and share the same name table. */
if (op_value < 0 || op_value > 4)
error ("CCTL intrinsic function subtype out of range!");
fprintf (stream, "%s", nds32_cctl_names[op_value + 16]);
return;
case 'Z': /* dpref */
fprintf (stream, "%s", nds32_dpref_names[op_value]);
return;
default :
/* Unknown flag. */
output_operand_lossage ("invalid operand output code");
break;
}
switch (GET_CODE (x))
{
case LABEL_REF:
case SYMBOL_REF:
output_addr_const (stream, x);
break;
case REG:
/* Print a Double-precision register name. */
if ((GET_MODE (x) == DImode || GET_MODE (x) == DFmode)
&& NDS32_IS_FPR_REGNUM (REGNO (x)))
{
regno = REGNO (x);
if (!NDS32_FPR_REGNO_OK_FOR_DOUBLE (regno))
{
output_operand_lossage ("invalid operand for code '%c'", code);
break;
}
fprintf (stream, "$fd%d", (regno - NDS32_FIRST_FPR_REGNUM) >> 1);
break;
}
/* Print LSB or MSB part of register pair if the
constraint modifier 'L' or 'H' is specified. */
if ((GET_MODE (x) == DImode || GET_MODE (x) == DFmode)
&& NDS32_IS_GPR_REGNUM (REGNO (x)))
{
if ((pick_lsb_p && WORDS_BIG_ENDIAN)
|| (pick_msb_p && !WORDS_BIG_ENDIAN))
{
/* If we would like to print out LSB register under big-endian,
or print out MSB register under little-endian, we need to
increase register number. */
regno = REGNO (x);
regno++;
fputs (reg_names[regno], stream);
break;
}
}
/* Forbid using static chain register ($r16)
on reduced-set registers configuration. */
if (TARGET_REDUCED_REGS
&& REGNO (x) == STATIC_CHAIN_REGNUM)
sorry ("a nested function is not supported for reduced registers");
/* Normal cases, print out register name. */
fputs (reg_names[REGNO (x)], stream);
break;
case MEM:
output_address (GET_MODE (x), XEXP (x, 0));
break;
case HIGH:
if (GET_CODE (XEXP (x, 0)) == CONST_DOUBLE)
{
const REAL_VALUE_TYPE *rv;
long val;
gcc_assert (GET_MODE (x) == SFmode);
rv = CONST_DOUBLE_REAL_VALUE (XEXP (x, 0));
REAL_VALUE_TO_TARGET_SINGLE (*rv, val);
fprintf (stream, "hi20(0x%lx)", val);
}
else
gcc_unreachable ();
break;
case CONST_DOUBLE:
const REAL_VALUE_TYPE *rv;
long val;
gcc_assert (GET_MODE (x) == SFmode);
rv = CONST_DOUBLE_REAL_VALUE (x);
REAL_VALUE_TO_TARGET_SINGLE (*rv, val);
fprintf (stream, "0x%lx", val);
break;
case CODE_LABEL:
case CONST_INT:
case CONST:
output_addr_const (stream, x);
break;
default:
/* Generally, output_addr_const () is able to handle most cases.
We want to see what CODE could appear,
so we use gcc_unreachable() to stop it. */
debug_rtx (x);
gcc_unreachable ();
break;
}
}
static void
nds32_print_operand_address (FILE *stream, machine_mode /*mode*/, rtx x)
{
rtx op0, op1;
switch (GET_CODE (x))
{
case SYMBOL_REF:
case CONST:
/* [ + symbol_ref] */
/* [ + const_addr], where const_addr = symbol_ref + const_int */
fputs ("[ + ", stream);
output_addr_const (stream, x);
fputs ("]", stream);
break;
case REG:
/* Forbid using static chain register ($r16)
on reduced-set registers configuration. */
if (TARGET_REDUCED_REGS
&& REGNO (x) == STATIC_CHAIN_REGNUM)
sorry ("a nested function is not supported for reduced registers");
/* [Ra] */
fprintf (stream, "[%s]", reg_names[REGNO (x)]);
break;
case PLUS:
op0 = XEXP (x, 0);
op1 = XEXP (x, 1);
/* Checking op0, forbid using static chain register ($r16)
on reduced-set registers configuration. */
if (TARGET_REDUCED_REGS
&& REG_P (op0)
&& REGNO (op0) == STATIC_CHAIN_REGNUM)
sorry ("a nested function is not supported for reduced registers");
/* Checking op1, forbid using static chain register ($r16)
on reduced-set registers configuration. */
if (TARGET_REDUCED_REGS
&& REG_P (op1)
&& REGNO (op1) == STATIC_CHAIN_REGNUM)
sorry ("a nested function is not supported for reduced registers");
if (REG_P (op0) && CONST_INT_P (op1))
{
/* [Ra + imm] */
fprintf (stream, "[%s + (" HOST_WIDE_INT_PRINT_DEC ")]",
reg_names[REGNO (op0)], INTVAL (op1));
}
else if (REG_P (op0) && REG_P (op1))
{
/* [Ra + Rb] */
fprintf (stream, "[%s + %s]",
reg_names[REGNO (op0)], reg_names[REGNO (op1)]);
}
else if (GET_CODE (op0) == MULT && REG_P (op1))
{
/* [Ra + Rb << sv]
From observation, the pattern looks like:
(plus:SI (mult:SI (reg:SI 58)
(const_int 4 [0x4]))
(reg/f:SI 57)) */
int sv;
/* We need to set sv to output shift value. */
if (INTVAL (XEXP (op0, 1)) == 1)
sv = 0;
else if (INTVAL (XEXP (op0, 1)) == 2)
sv = 1;
else if (INTVAL (XEXP (op0, 1)) == 4)
sv = 2;
else if (INTVAL (XEXP (op0, 1)) == 8)
sv = 3;
else
gcc_unreachable ();
fprintf (stream, "[%s + %s << %d]",
reg_names[REGNO (op1)],
reg_names[REGNO (XEXP (op0, 0))],
sv);
}
else
{
/* The control flow is not supposed to be here. */
debug_rtx (x);
gcc_unreachable ();
}
break;
case POST_MODIFY:
/* (post_modify (regA) (plus (regA) (regB)))
(post_modify (regA) (plus (regA) (const_int)))
We would like to extract
regA and regB (or const_int) from plus rtx. */
op0 = XEXP (XEXP (x, 1), 0);
op1 = XEXP (XEXP (x, 1), 1);
/* Checking op0, forbid using static chain register ($r16)
on reduced-set registers configuration. */
if (TARGET_REDUCED_REGS
&& REG_P (op0)
&& REGNO (op0) == STATIC_CHAIN_REGNUM)
sorry ("a nested function is not supported for reduced registers");
/* Checking op1, forbid using static chain register ($r16)
on reduced-set registers configuration. */
if (TARGET_REDUCED_REGS
&& REG_P (op1)
&& REGNO (op1) == STATIC_CHAIN_REGNUM)
sorry ("a nested function is not supported for reduced registers");
if (REG_P (op0) && REG_P (op1))
{
/* [Ra], Rb */
fprintf (stream, "[%s], %s",
reg_names[REGNO (op0)], reg_names[REGNO (op1)]);
}
else if (REG_P (op0) && CONST_INT_P (op1))
{
/* [Ra], imm */
fprintf (stream, "[%s], " HOST_WIDE_INT_PRINT_DEC,
reg_names[REGNO (op0)], INTVAL (op1));
}
else
{
/* The control flow is not supposed to be here. */
debug_rtx (x);
gcc_unreachable ();
}
break;
case POST_INC:
case POST_DEC:
op0 = XEXP (x, 0);
/* Checking op0, forbid using static chain register ($r16)
on reduced-set registers configuration. */
if (TARGET_REDUCED_REGS
&& REG_P (op0)
&& REGNO (op0) == STATIC_CHAIN_REGNUM)
sorry ("a nested function is not supported for reduced registers");</