| /* Medium-level subroutines: convert bit-field store and extract |
| and shifts, multiplies and divides to rtl instructions. |
| Copyright (C) 1987-2018 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "target.h" |
| #include "rtl.h" |
| #include "tree.h" |
| #include "predict.h" |
| #include "memmodel.h" |
| #include "tm_p.h" |
| #include "expmed.h" |
| #include "optabs.h" |
| #include "regs.h" |
| #include "emit-rtl.h" |
| #include "diagnostic-core.h" |
| #include "fold-const.h" |
| #include "stor-layout.h" |
| #include "dojump.h" |
| #include "explow.h" |
| #include "expr.h" |
| #include "langhooks.h" |
| #include "tree-vector-builder.h" |
| |
| struct target_expmed default_target_expmed; |
| #if SWITCHABLE_TARGET |
| struct target_expmed *this_target_expmed = &default_target_expmed; |
| #endif |
| |
| static bool store_integral_bit_field (rtx, opt_scalar_int_mode, |
| unsigned HOST_WIDE_INT, |
| unsigned HOST_WIDE_INT, |
| poly_uint64, poly_uint64, |
| machine_mode, rtx, bool, bool); |
| static void store_fixed_bit_field (rtx, opt_scalar_int_mode, |
| unsigned HOST_WIDE_INT, |
| unsigned HOST_WIDE_INT, |
| poly_uint64, poly_uint64, |
| rtx, scalar_int_mode, bool); |
| static void store_fixed_bit_field_1 (rtx, scalar_int_mode, |
| unsigned HOST_WIDE_INT, |
| unsigned HOST_WIDE_INT, |
| rtx, scalar_int_mode, bool); |
| static void store_split_bit_field (rtx, opt_scalar_int_mode, |
| unsigned HOST_WIDE_INT, |
| unsigned HOST_WIDE_INT, |
| poly_uint64, poly_uint64, |
| rtx, scalar_int_mode, bool); |
| static rtx extract_integral_bit_field (rtx, opt_scalar_int_mode, |
| unsigned HOST_WIDE_INT, |
| unsigned HOST_WIDE_INT, int, rtx, |
| machine_mode, machine_mode, bool, bool); |
| static rtx extract_fixed_bit_field (machine_mode, rtx, opt_scalar_int_mode, |
| unsigned HOST_WIDE_INT, |
| unsigned HOST_WIDE_INT, rtx, int, bool); |
| static rtx extract_fixed_bit_field_1 (machine_mode, rtx, scalar_int_mode, |
| unsigned HOST_WIDE_INT, |
| unsigned HOST_WIDE_INT, rtx, int, bool); |
| static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int); |
| static rtx extract_split_bit_field (rtx, opt_scalar_int_mode, |
| unsigned HOST_WIDE_INT, |
| unsigned HOST_WIDE_INT, int, bool); |
| static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *); |
| static rtx expand_smod_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT); |
| static rtx expand_sdiv_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT); |
| |
| /* Return a constant integer mask value of mode MODE with BITSIZE ones |
| followed by BITPOS zeros, or the complement of that if COMPLEMENT. |
| The mask is truncated if necessary to the width of mode MODE. The |
| mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */ |
| |
| static inline rtx |
| mask_rtx (scalar_int_mode mode, int bitpos, int bitsize, bool complement) |
| { |
| return immed_wide_int_const |
| (wi::shifted_mask (bitpos, bitsize, complement, |
| GET_MODE_PRECISION (mode)), mode); |
| } |
| |
| /* Test whether a value is zero of a power of two. */ |
| #define EXACT_POWER_OF_2_OR_ZERO_P(x) \ |
| (((x) & ((x) - HOST_WIDE_INT_1U)) == 0) |
| |
| struct init_expmed_rtl |
| { |
| rtx reg; |
| rtx plus; |
| rtx neg; |
| rtx mult; |
| rtx sdiv; |
| rtx udiv; |
| rtx sdiv_32; |
| rtx smod_32; |
| rtx wide_mult; |
| rtx wide_lshr; |
| rtx wide_trunc; |
| rtx shift; |
| rtx shift_mult; |
| rtx shift_add; |
| rtx shift_sub0; |
| rtx shift_sub1; |
| rtx zext; |
| rtx trunc; |
| |
| rtx pow2[MAX_BITS_PER_WORD]; |
| rtx cint[MAX_BITS_PER_WORD]; |
| }; |
| |
| static void |
| init_expmed_one_conv (struct init_expmed_rtl *all, scalar_int_mode to_mode, |
| scalar_int_mode from_mode, bool speed) |
| { |
| int to_size, from_size; |
| rtx which; |
| |
| to_size = GET_MODE_PRECISION (to_mode); |
| from_size = GET_MODE_PRECISION (from_mode); |
| |
| /* Most partial integers have a precision less than the "full" |
| integer it requires for storage. In case one doesn't, for |
| comparison purposes here, reduce the bit size by one in that |
| case. */ |
| if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT |
| && pow2p_hwi (to_size)) |
| to_size --; |
| if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT |
| && pow2p_hwi (from_size)) |
| from_size --; |
| |
| /* Assume cost of zero-extend and sign-extend is the same. */ |
| which = (to_size < from_size ? all->trunc : all->zext); |
| |
| PUT_MODE (all->reg, from_mode); |
| set_convert_cost (to_mode, from_mode, speed, |
| set_src_cost (which, to_mode, speed)); |
| } |
| |
| static void |
| init_expmed_one_mode (struct init_expmed_rtl *all, |
| machine_mode mode, int speed) |
| { |
| int m, n, mode_bitsize; |
| machine_mode mode_from; |
| |
| mode_bitsize = GET_MODE_UNIT_BITSIZE (mode); |
| |
| PUT_MODE (all->reg, mode); |
| PUT_MODE (all->plus, mode); |
| PUT_MODE (all->neg, mode); |
| PUT_MODE (all->mult, mode); |
| PUT_MODE (all->sdiv, mode); |
| PUT_MODE (all->udiv, mode); |
| PUT_MODE (all->sdiv_32, mode); |
| PUT_MODE (all->smod_32, mode); |
| PUT_MODE (all->wide_trunc, mode); |
| PUT_MODE (all->shift, mode); |
| PUT_MODE (all->shift_mult, mode); |
| PUT_MODE (all->shift_add, mode); |
| PUT_MODE (all->shift_sub0, mode); |
| PUT_MODE (all->shift_sub1, mode); |
| PUT_MODE (all->zext, mode); |
| PUT_MODE (all->trunc, mode); |
| |
| set_add_cost (speed, mode, set_src_cost (all->plus, mode, speed)); |
| set_neg_cost (speed, mode, set_src_cost (all->neg, mode, speed)); |
| set_mul_cost (speed, mode, set_src_cost (all->mult, mode, speed)); |
| set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, mode, speed)); |
| set_udiv_cost (speed, mode, set_src_cost (all->udiv, mode, speed)); |
| |
| set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, mode, speed) |
| <= 2 * add_cost (speed, mode))); |
| set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, mode, speed) |
| <= 4 * add_cost (speed, mode))); |
| |
| set_shift_cost (speed, mode, 0, 0); |
| { |
| int cost = add_cost (speed, mode); |
| set_shiftadd_cost (speed, mode, 0, cost); |
| set_shiftsub0_cost (speed, mode, 0, cost); |
| set_shiftsub1_cost (speed, mode, 0, cost); |
| } |
| |
| n = MIN (MAX_BITS_PER_WORD, mode_bitsize); |
| for (m = 1; m < n; m++) |
| { |
| XEXP (all->shift, 1) = all->cint[m]; |
| XEXP (all->shift_mult, 1) = all->pow2[m]; |
| |
| set_shift_cost (speed, mode, m, set_src_cost (all->shift, mode, speed)); |
| set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, mode, |
| speed)); |
| set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, mode, |
| speed)); |
| set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, mode, |
| speed)); |
| } |
| |
| scalar_int_mode int_mode_to; |
| if (is_a <scalar_int_mode> (mode, &int_mode_to)) |
| { |
| for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT; |
| mode_from = (machine_mode)(mode_from + 1)) |
| init_expmed_one_conv (all, int_mode_to, |
| as_a <scalar_int_mode> (mode_from), speed); |
| |
| scalar_int_mode wider_mode; |
| if (GET_MODE_CLASS (int_mode_to) == MODE_INT |
| && GET_MODE_WIDER_MODE (int_mode_to).exists (&wider_mode)) |
| { |
| PUT_MODE (all->zext, wider_mode); |
| PUT_MODE (all->wide_mult, wider_mode); |
| PUT_MODE (all->wide_lshr, wider_mode); |
| XEXP (all->wide_lshr, 1) |
| = gen_int_shift_amount (wider_mode, mode_bitsize); |
| |
| set_mul_widen_cost (speed, wider_mode, |
| set_src_cost (all->wide_mult, wider_mode, speed)); |
| set_mul_highpart_cost (speed, int_mode_to, |
| set_src_cost (all->wide_trunc, |
| int_mode_to, speed)); |
| } |
| } |
| } |
| |
| void |
| init_expmed (void) |
| { |
| struct init_expmed_rtl all; |
| machine_mode mode = QImode; |
| int m, speed; |
| |
| memset (&all, 0, sizeof all); |
| for (m = 1; m < MAX_BITS_PER_WORD; m++) |
| { |
| all.pow2[m] = GEN_INT (HOST_WIDE_INT_1 << m); |
| all.cint[m] = GEN_INT (m); |
| } |
| |
| /* Avoid using hard regs in ways which may be unsupported. */ |
| all.reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1); |
| all.plus = gen_rtx_PLUS (mode, all.reg, all.reg); |
| all.neg = gen_rtx_NEG (mode, all.reg); |
| all.mult = gen_rtx_MULT (mode, all.reg, all.reg); |
| all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg); |
| all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg); |
| all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]); |
| all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]); |
| all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg); |
| all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext); |
| all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg); |
| all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr); |
| all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg); |
| all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg); |
| all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg); |
| all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg); |
| all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult); |
| all.trunc = gen_rtx_TRUNCATE (mode, all.reg); |
| |
| for (speed = 0; speed < 2; speed++) |
| { |
| crtl->maybe_hot_insn_p = speed; |
| set_zero_cost (speed, set_src_cost (const0_rtx, mode, speed)); |
| |
| for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT; |
| mode = (machine_mode)(mode + 1)) |
| init_expmed_one_mode (&all, mode, speed); |
| |
| if (MIN_MODE_PARTIAL_INT != VOIDmode) |
| for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT; |
| mode = (machine_mode)(mode + 1)) |
| init_expmed_one_mode (&all, mode, speed); |
| |
| if (MIN_MODE_VECTOR_INT != VOIDmode) |
| for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT; |
| mode = (machine_mode)(mode + 1)) |
| init_expmed_one_mode (&all, mode, speed); |
| } |
| |
| if (alg_hash_used_p ()) |
| { |
| struct alg_hash_entry *p = alg_hash_entry_ptr (0); |
| memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES); |
| } |
| else |
| set_alg_hash_used_p (true); |
| default_rtl_profile (); |
| |
| ggc_free (all.trunc); |
| ggc_free (all.shift_sub1); |
| ggc_free (all.shift_sub0); |
| ggc_free (all.shift_add); |
| ggc_free (all.shift_mult); |
| ggc_free (all.shift); |
| ggc_free (all.wide_trunc); |
| ggc_free (all.wide_lshr); |
| ggc_free (all.wide_mult); |
| ggc_free (all.zext); |
| ggc_free (all.smod_32); |
| ggc_free (all.sdiv_32); |
| ggc_free (all.udiv); |
| ggc_free (all.sdiv); |
| ggc_free (all.mult); |
| ggc_free (all.neg); |
| ggc_free (all.plus); |
| ggc_free (all.reg); |
| } |
| |
| /* Return an rtx representing minus the value of X. |
| MODE is the intended mode of the result, |
| useful if X is a CONST_INT. */ |
| |
| rtx |
| negate_rtx (machine_mode mode, rtx x) |
| { |
| rtx result = simplify_unary_operation (NEG, mode, x, mode); |
| |
| if (result == 0) |
| result = expand_unop (mode, neg_optab, x, NULL_RTX, 0); |
| |
| return result; |
| } |
| |
| /* Whether reverse storage order is supported on the target. */ |
| static int reverse_storage_order_supported = -1; |
| |
| /* Check whether reverse storage order is supported on the target. */ |
| |
| static void |
| check_reverse_storage_order_support (void) |
| { |
| if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN) |
| { |
| reverse_storage_order_supported = 0; |
| sorry ("reverse scalar storage order"); |
| } |
| else |
| reverse_storage_order_supported = 1; |
| } |
| |
| /* Whether reverse FP storage order is supported on the target. */ |
| static int reverse_float_storage_order_supported = -1; |
| |
| /* Check whether reverse FP storage order is supported on the target. */ |
| |
| static void |
| check_reverse_float_storage_order_support (void) |
| { |
| if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN) |
| { |
| reverse_float_storage_order_supported = 0; |
| sorry ("reverse floating-point scalar storage order"); |
| } |
| else |
| reverse_float_storage_order_supported = 1; |
| } |
| |
| /* Return an rtx representing value of X with reverse storage order. |
| MODE is the intended mode of the result, |
| useful if X is a CONST_INT. */ |
| |
| rtx |
| flip_storage_order (machine_mode mode, rtx x) |
| { |
| scalar_int_mode int_mode; |
| rtx result; |
| |
| if (mode == QImode) |
| return x; |
| |
| if (COMPLEX_MODE_P (mode)) |
| { |
| rtx real = read_complex_part (x, false); |
| rtx imag = read_complex_part (x, true); |
| |
| real = flip_storage_order (GET_MODE_INNER (mode), real); |
| imag = flip_storage_order (GET_MODE_INNER (mode), imag); |
| |
| return gen_rtx_CONCAT (mode, real, imag); |
| } |
| |
| if (__builtin_expect (reverse_storage_order_supported < 0, 0)) |
| check_reverse_storage_order_support (); |
| |
| if (!is_a <scalar_int_mode> (mode, &int_mode)) |
| { |
| if (FLOAT_MODE_P (mode) |
| && __builtin_expect (reverse_float_storage_order_supported < 0, 0)) |
| check_reverse_float_storage_order_support (); |
| |
| if (!int_mode_for_size (GET_MODE_PRECISION (mode), 0).exists (&int_mode)) |
| { |
| sorry ("reverse storage order for %smode", GET_MODE_NAME (mode)); |
| return x; |
| } |
| x = gen_lowpart (int_mode, x); |
| } |
| |
| result = simplify_unary_operation (BSWAP, int_mode, x, int_mode); |
| if (result == 0) |
| result = expand_unop (int_mode, bswap_optab, x, NULL_RTX, 1); |
| |
| if (int_mode != mode) |
| result = gen_lowpart (mode, result); |
| |
| return result; |
| } |
| |
| /* If MODE is set, adjust bitfield memory MEM so that it points to the |
| first unit of mode MODE that contains a bitfield of size BITSIZE at |
| bit position BITNUM. If MODE is not set, return a BLKmode reference |
| to every byte in the bitfield. Set *NEW_BITNUM to the bit position |
| of the field within the new memory. */ |
| |
| static rtx |
| narrow_bit_field_mem (rtx mem, opt_scalar_int_mode mode, |
| unsigned HOST_WIDE_INT bitsize, |
| unsigned HOST_WIDE_INT bitnum, |
| unsigned HOST_WIDE_INT *new_bitnum) |
| { |
| scalar_int_mode imode; |
| if (mode.exists (&imode)) |
| { |
| unsigned int unit = GET_MODE_BITSIZE (imode); |
| *new_bitnum = bitnum % unit; |
| HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT; |
| return adjust_bitfield_address (mem, imode, offset); |
| } |
| else |
| { |
| *new_bitnum = bitnum % BITS_PER_UNIT; |
| HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT; |
| HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1) |
| / BITS_PER_UNIT); |
| return adjust_bitfield_address_size (mem, BLKmode, offset, size); |
| } |
| } |
| |
| /* The caller wants to perform insertion or extraction PATTERN on a |
| bitfield of size BITSIZE at BITNUM bits into memory operand OP0. |
| BITREGION_START and BITREGION_END are as for store_bit_field |
| and FIELDMODE is the natural mode of the field. |
| |
| Search for a mode that is compatible with the memory access |
| restrictions and (where applicable) with a register insertion or |
| extraction. Return the new memory on success, storing the adjusted |
| bit position in *NEW_BITNUM. Return null otherwise. */ |
| |
| static rtx |
| adjust_bit_field_mem_for_reg (enum extraction_pattern pattern, |
| rtx op0, HOST_WIDE_INT bitsize, |
| HOST_WIDE_INT bitnum, |
| poly_uint64 bitregion_start, |
| poly_uint64 bitregion_end, |
| machine_mode fieldmode, |
| unsigned HOST_WIDE_INT *new_bitnum) |
| { |
| bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start, |
| bitregion_end, MEM_ALIGN (op0), |
| MEM_VOLATILE_P (op0)); |
| scalar_int_mode best_mode; |
| if (iter.next_mode (&best_mode)) |
| { |
| /* We can use a memory in BEST_MODE. See whether this is true for |
| any wider modes. All other things being equal, we prefer to |
| use the widest mode possible because it tends to expose more |
| CSE opportunities. */ |
| if (!iter.prefer_smaller_modes ()) |
| { |
| /* Limit the search to the mode required by the corresponding |
| register insertion or extraction instruction, if any. */ |
| scalar_int_mode limit_mode = word_mode; |
| extraction_insn insn; |
| if (get_best_reg_extraction_insn (&insn, pattern, |
| GET_MODE_BITSIZE (best_mode), |
| fieldmode)) |
| limit_mode = insn.field_mode; |
| |
| scalar_int_mode wider_mode; |
| while (iter.next_mode (&wider_mode) |
| && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode)) |
| best_mode = wider_mode; |
| } |
| return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum, |
| new_bitnum); |
| } |
| return NULL_RTX; |
| } |
| |
| /* Return true if a bitfield of size BITSIZE at bit number BITNUM within |
| a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg |
| offset is then BITNUM / BITS_PER_UNIT. */ |
| |
| static bool |
| lowpart_bit_field_p (poly_uint64 bitnum, poly_uint64 bitsize, |
| machine_mode struct_mode) |
| { |
| poly_uint64 regsize = REGMODE_NATURAL_SIZE (struct_mode); |
| if (BYTES_BIG_ENDIAN) |
| return (multiple_p (bitnum, BITS_PER_UNIT) |
| && (known_eq (bitnum + bitsize, GET_MODE_BITSIZE (struct_mode)) |
| || multiple_p (bitnum + bitsize, |
| regsize * BITS_PER_UNIT))); |
| else |
| return multiple_p (bitnum, regsize * BITS_PER_UNIT); |
| } |
| |
| /* Return true if -fstrict-volatile-bitfields applies to an access of OP0 |
| containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE. |
| Return false if the access would touch memory outside the range |
| BITREGION_START to BITREGION_END for conformance to the C++ memory |
| model. */ |
| |
| static bool |
| strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize, |
| unsigned HOST_WIDE_INT bitnum, |
| scalar_int_mode fieldmode, |
| poly_uint64 bitregion_start, |
| poly_uint64 bitregion_end) |
| { |
| unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode); |
| |
| /* -fstrict-volatile-bitfields must be enabled and we must have a |
| volatile MEM. */ |
| if (!MEM_P (op0) |
| || !MEM_VOLATILE_P (op0) |
| || flag_strict_volatile_bitfields <= 0) |
| return false; |
| |
| /* The bit size must not be larger than the field mode, and |
| the field mode must not be larger than a word. */ |
| if (bitsize > modesize || modesize > BITS_PER_WORD) |
| return false; |
| |
| /* Check for cases of unaligned fields that must be split. */ |
| if (bitnum % modesize + bitsize > modesize) |
| return false; |
| |
| /* The memory must be sufficiently aligned for a MODESIZE access. |
| This condition guarantees, that the memory access will not |
| touch anything after the end of the structure. */ |
| if (MEM_ALIGN (op0) < modesize) |
| return false; |
| |
| /* Check for cases where the C++ memory model applies. */ |
| if (maybe_ne (bitregion_end, 0U) |
| && (maybe_lt (bitnum - bitnum % modesize, bitregion_start) |
| || maybe_gt (bitnum - bitnum % modesize + modesize - 1, |
| bitregion_end))) |
| return false; |
| |
| return true; |
| } |
| |
| /* Return true if OP is a memory and if a bitfield of size BITSIZE at |
| bit number BITNUM can be treated as a simple value of mode MODE. |
| Store the byte offset in *BYTENUM if so. */ |
| |
| static bool |
| simple_mem_bitfield_p (rtx op0, poly_uint64 bitsize, poly_uint64 bitnum, |
| machine_mode mode, poly_uint64 *bytenum) |
| { |
| return (MEM_P (op0) |
| && multiple_p (bitnum, BITS_PER_UNIT, bytenum) |
| && known_eq (bitsize, GET_MODE_BITSIZE (mode)) |
| && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (op0)) |
| || (multiple_p (bitnum, GET_MODE_ALIGNMENT (mode)) |
| && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode)))); |
| } |
| |
| /* Try to use instruction INSV to store VALUE into a field of OP0. |
| If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is a |
| BLKmode MEM. VALUE_MODE is the mode of VALUE. BITSIZE and BITNUM |
| are as for store_bit_field. */ |
| |
| static bool |
| store_bit_field_using_insv (const extraction_insn *insv, rtx op0, |
| opt_scalar_int_mode op0_mode, |
| unsigned HOST_WIDE_INT bitsize, |
| unsigned HOST_WIDE_INT bitnum, |
| rtx value, scalar_int_mode value_mode) |
| { |
| struct expand_operand ops[4]; |
| rtx value1; |
| rtx xop0 = op0; |
| rtx_insn *last = get_last_insn (); |
| bool copy_back = false; |
| |
| scalar_int_mode op_mode = insv->field_mode; |
| unsigned int unit = GET_MODE_BITSIZE (op_mode); |
| if (bitsize == 0 || bitsize > unit) |
| return false; |
| |
| if (MEM_P (xop0)) |
| /* Get a reference to the first byte of the field. */ |
| xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum, |
| &bitnum); |
| else |
| { |
| /* Convert from counting within OP0 to counting in OP_MODE. */ |
| if (BYTES_BIG_ENDIAN) |
| bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ()); |
| |
| /* If xop0 is a register, we need it in OP_MODE |
| to make it acceptable to the format of insv. */ |
| if (GET_CODE (xop0) == SUBREG) |
| /* We can't just change the mode, because this might clobber op0, |
| and we will need the original value of op0 if insv fails. */ |
| xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0), SUBREG_BYTE (xop0)); |
| if (REG_P (xop0) && GET_MODE (xop0) != op_mode) |
| xop0 = gen_lowpart_SUBREG (op_mode, xop0); |
| } |
| |
| /* If the destination is a paradoxical subreg such that we need a |
| truncate to the inner mode, perform the insertion on a temporary and |
| truncate the result to the original destination. Note that we can't |
| just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N |
| X) 0)) is (reg:N X). */ |
| if (GET_CODE (xop0) == SUBREG |
| && REG_P (SUBREG_REG (xop0)) |
| && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)), |
| op_mode)) |
| { |
| rtx tem = gen_reg_rtx (op_mode); |
| emit_move_insn (tem, xop0); |
| xop0 = tem; |
| copy_back = true; |
| } |
| |
| /* There are similar overflow check at the start of store_bit_field_1, |
| but that only check the situation where the field lies completely |
| outside the register, while there do have situation where the field |
| lies partialy in the register, we need to adjust bitsize for this |
| partial overflow situation. Without this fix, pr48335-2.c on big-endian |
| will broken on those arch support bit insert instruction, like arm, aarch64 |
| etc. */ |
| if (bitsize + bitnum > unit && bitnum < unit) |
| { |
| warning (OPT_Wextra, "write of %wu-bit data outside the bound of " |
| "destination object, data truncated into %wu-bit", |
| bitsize, unit - bitnum); |
| bitsize = unit - bitnum; |
| } |
| |
| /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count |
| "backwards" from the size of the unit we are inserting into. |
| Otherwise, we count bits from the most significant on a |
| BYTES/BITS_BIG_ENDIAN machine. */ |
| |
| if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN) |
| bitnum = unit - bitsize - bitnum; |
| |
| /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */ |
| value1 = value; |
| if (value_mode != op_mode) |
| { |
| if (GET_MODE_BITSIZE (value_mode) >= bitsize) |
| { |
| rtx tmp; |
| /* Optimization: Don't bother really extending VALUE |
| if it has all the bits we will actually use. However, |
| if we must narrow it, be sure we do it correctly. */ |
| |
| if (GET_MODE_SIZE (value_mode) < GET_MODE_SIZE (op_mode)) |
| { |
| tmp = simplify_subreg (op_mode, value1, value_mode, 0); |
| if (! tmp) |
| tmp = simplify_gen_subreg (op_mode, |
| force_reg (value_mode, value1), |
| value_mode, 0); |
| } |
| else |
| { |
| tmp = gen_lowpart_if_possible (op_mode, value1); |
| if (! tmp) |
| tmp = gen_lowpart (op_mode, force_reg (value_mode, value1)); |
| } |
| value1 = tmp; |
| } |
| else if (CONST_INT_P (value)) |
| value1 = gen_int_mode (INTVAL (value), op_mode); |
| else |
| /* Parse phase is supposed to make VALUE's data type |
| match that of the component reference, which is a type |
| at least as wide as the field; so VALUE should have |
| a mode that corresponds to that type. */ |
| gcc_assert (CONSTANT_P (value)); |
| } |
| |
| create_fixed_operand (&ops[0], xop0); |
| create_integer_operand (&ops[1], bitsize); |
| create_integer_operand (&ops[2], bitnum); |
| create_input_operand (&ops[3], value1, op_mode); |
| if (maybe_expand_insn (insv->icode, 4, ops)) |
| { |
| if (copy_back) |
| convert_move (op0, xop0, true); |
| return true; |
| } |
| delete_insns_since (last); |
| return false; |
| } |
| |
| /* A subroutine of store_bit_field, with the same arguments. Return true |
| if the operation could be implemented. |
| |
| If FALLBACK_P is true, fall back to store_fixed_bit_field if we have |
| no other way of implementing the operation. If FALLBACK_P is false, |
| return false instead. */ |
| |
| static bool |
| store_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum, |
| poly_uint64 bitregion_start, poly_uint64 bitregion_end, |
| machine_mode fieldmode, |
| rtx value, bool reverse, bool fallback_p) |
| { |
| rtx op0 = str_rtx; |
| |
| while (GET_CODE (op0) == SUBREG) |
| { |
| bitnum += subreg_memory_offset (op0) * BITS_PER_UNIT; |
| op0 = SUBREG_REG (op0); |
| } |
| |
| /* No action is needed if the target is a register and if the field |
| lies completely outside that register. This can occur if the source |
| code contains an out-of-bounds access to a small array. */ |
| if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0)))) |
| return true; |
| |
| /* Use vec_set patterns for inserting parts of vectors whenever |
| available. */ |
| machine_mode outermode = GET_MODE (op0); |
| scalar_mode innermode = GET_MODE_INNER (outermode); |
| poly_uint64 pos; |
| if (VECTOR_MODE_P (outermode) |
| && !MEM_P (op0) |
| && optab_handler (vec_set_optab, outermode) != CODE_FOR_nothing |
| && fieldmode == innermode |
| && known_eq (bitsize, GET_MODE_BITSIZE (innermode)) |
| && multiple_p (bitnum, GET_MODE_BITSIZE (innermode), &pos)) |
| { |
| struct expand_operand ops[3]; |
| enum insn_code icode = optab_handler (vec_set_optab, outermode); |
| |
| create_fixed_operand (&ops[0], op0); |
| create_input_operand (&ops[1], value, innermode); |
| create_integer_operand (&ops[2], pos); |
| if (maybe_expand_insn (icode, 3, ops)) |
| return true; |
| } |
| |
| /* If the target is a register, overwriting the entire object, or storing |
| a full-word or multi-word field can be done with just a SUBREG. */ |
| if (!MEM_P (op0) |
| && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode))) |
| { |
| /* Use the subreg machinery either to narrow OP0 to the required |
| words or to cope with mode punning between equal-sized modes. |
| In the latter case, use subreg on the rhs side, not lhs. */ |
| rtx sub; |
| HOST_WIDE_INT regnum; |
| poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (op0)); |
| if (known_eq (bitnum, 0U) |
| && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))) |
| { |
| sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0); |
| if (sub) |
| { |
| if (reverse) |
| sub = flip_storage_order (GET_MODE (op0), sub); |
| emit_move_insn (op0, sub); |
| return true; |
| } |
| } |
| else if (constant_multiple_p (bitnum, regsize * BITS_PER_UNIT, ®num) |
| && multiple_p (bitsize, regsize * BITS_PER_UNIT)) |
| { |
| sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0), |
| regnum * regsize); |
| if (sub) |
| { |
| if (reverse) |
| value = flip_storage_order (fieldmode, value); |
| emit_move_insn (sub, value); |
| return true; |
| } |
| } |
| } |
| |
| /* If the target is memory, storing any naturally aligned field can be |
| done with a simple store. For targets that support fast unaligned |
| memory, any naturally sized, unit aligned field can be done directly. */ |
| poly_uint64 bytenum; |
| if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode, &bytenum)) |
| { |
| op0 = adjust_bitfield_address (op0, fieldmode, bytenum); |
| if (reverse) |
| value = flip_storage_order (fieldmode, value); |
| emit_move_insn (op0, value); |
| return true; |
| } |
| |
| /* It's possible we'll need to handle other cases here for |
| polynomial bitnum and bitsize. */ |
| |
| /* From here on we need to be looking at a fixed-size insertion. */ |
| unsigned HOST_WIDE_INT ibitsize = bitsize.to_constant (); |
| unsigned HOST_WIDE_INT ibitnum = bitnum.to_constant (); |
| |
| /* Make sure we are playing with integral modes. Pun with subregs |
| if we aren't. This must come after the entire register case above, |
| since that case is valid for any mode. The following cases are only |
| valid for integral modes. */ |
| opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0)); |
| scalar_int_mode imode; |
| if (!op0_mode.exists (&imode) || imode != GET_MODE (op0)) |
| { |
| if (MEM_P (op0)) |
| op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (), |
| 0, MEM_SIZE (op0)); |
| else |
| op0 = gen_lowpart (op0_mode.require (), op0); |
| } |
| |
| return store_integral_bit_field (op0, op0_mode, ibitsize, ibitnum, |
| bitregion_start, bitregion_end, |
| fieldmode, value, reverse, fallback_p); |
| } |
| |
| /* Subroutine of store_bit_field_1, with the same arguments, except |
| that BITSIZE and BITNUM are constant. Handle cases specific to |
| integral modes. If OP0_MODE is defined, it is the mode of OP0, |
| otherwise OP0 is a BLKmode MEM. */ |
| |
| static bool |
| store_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode, |
| unsigned HOST_WIDE_INT bitsize, |
| unsigned HOST_WIDE_INT bitnum, |
| poly_uint64 bitregion_start, |
| poly_uint64 bitregion_end, |
| machine_mode fieldmode, |
| rtx value, bool reverse, bool fallback_p) |
| { |
| /* Storing an lsb-aligned field in a register |
| can be done with a movstrict instruction. */ |
| |
| if (!MEM_P (op0) |
| && !reverse |
| && lowpart_bit_field_p (bitnum, bitsize, op0_mode.require ()) |
| && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode)) |
| && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing) |
| { |
| struct expand_operand ops[2]; |
| enum insn_code icode = optab_handler (movstrict_optab, fieldmode); |
| rtx arg0 = op0; |
| unsigned HOST_WIDE_INT subreg_off; |
| |
| if (GET_CODE (arg0) == SUBREG) |
| { |
| /* Else we've got some float mode source being extracted into |
| a different float mode destination -- this combination of |
| subregs results in Severe Tire Damage. */ |
| gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode |
| || GET_MODE_CLASS (fieldmode) == MODE_INT |
| || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT); |
| arg0 = SUBREG_REG (arg0); |
| } |
| |
| subreg_off = bitnum / BITS_PER_UNIT; |
| if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off)) |
| { |
| arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off); |
| |
| create_fixed_operand (&ops[0], arg0); |
| /* Shrink the source operand to FIELDMODE. */ |
| create_convert_operand_to (&ops[1], value, fieldmode, false); |
| if (maybe_expand_insn (icode, 2, ops)) |
| return true; |
| } |
| } |
| |
| /* Handle fields bigger than a word. */ |
| |
| if (bitsize > BITS_PER_WORD) |
| { |
| /* Here we transfer the words of the field |
| in the order least significant first. |
| This is because the most significant word is the one which may |
| be less than full. |
| However, only do that if the value is not BLKmode. */ |
| |
| const bool backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode; |
| unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD; |
| unsigned int i; |
| rtx_insn *last; |
| |
| /* This is the mode we must force value to, so that there will be enough |
| subwords to extract. Note that fieldmode will often (always?) be |
| VOIDmode, because that is what store_field uses to indicate that this |
| is a bit field, but passing VOIDmode to operand_subword_force |
| is not allowed. |
| |
| The mode must be fixed-size, since insertions into variable-sized |
| objects are meant to be handled before calling this function. */ |
| fixed_size_mode value_mode = as_a <fixed_size_mode> (GET_MODE (value)); |
| if (value_mode == VOIDmode) |
| value_mode = smallest_int_mode_for_size (nwords * BITS_PER_WORD); |
| |
| last = get_last_insn (); |
| for (i = 0; i < nwords; i++) |
| { |
| /* If I is 0, use the low-order word in both field and target; |
| if I is 1, use the next to lowest word; and so on. */ |
| unsigned int wordnum = (backwards |
| ? GET_MODE_SIZE (value_mode) / UNITS_PER_WORD |
| - i - 1 |
| : i); |
| unsigned int bit_offset = (backwards ^ reverse |
| ? MAX ((int) bitsize - ((int) i + 1) |
| * BITS_PER_WORD, |
| 0) |
| : (int) i * BITS_PER_WORD); |
| rtx value_word = operand_subword_force (value, wordnum, value_mode); |
| unsigned HOST_WIDE_INT new_bitsize = |
| MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD); |
| |
| /* If the remaining chunk doesn't have full wordsize we have |
| to make sure that for big-endian machines the higher order |
| bits are used. */ |
| if (new_bitsize < BITS_PER_WORD && BYTES_BIG_ENDIAN && !backwards) |
| { |
| int shift = BITS_PER_WORD - new_bitsize; |
| rtx shift_rtx = gen_int_shift_amount (word_mode, shift); |
| value_word = simplify_expand_binop (word_mode, lshr_optab, |
| value_word, shift_rtx, |
| NULL_RTX, true, |
| OPTAB_LIB_WIDEN); |
| } |
| |
| if (!store_bit_field_1 (op0, new_bitsize, |
| bitnum + bit_offset, |
| bitregion_start, bitregion_end, |
| word_mode, |
| value_word, reverse, fallback_p)) |
| { |
| delete_insns_since (last); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* If VALUE has a floating-point or complex mode, access it as an |
| integer of the corresponding size. This can occur on a machine |
| with 64 bit registers that uses SFmode for float. It can also |
| occur for unaligned float or complex fields. */ |
| rtx orig_value = value; |
| scalar_int_mode value_mode; |
| if (GET_MODE (value) == VOIDmode) |
| /* By this point we've dealt with values that are bigger than a word, |
| so word_mode is a conservatively correct choice. */ |
| value_mode = word_mode; |
| else if (!is_a <scalar_int_mode> (GET_MODE (value), &value_mode)) |
| { |
| value_mode = int_mode_for_mode (GET_MODE (value)).require (); |
| value = gen_reg_rtx (value_mode); |
| emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value); |
| } |
| |
| /* If OP0 is a multi-word register, narrow it to the affected word. |
| If the region spans two words, defer to store_split_bit_field. |
| Don't do this if op0 is a single hard register wider than word |
| such as a float or vector register. */ |
| if (!MEM_P (op0) |
| && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD |
| && (!REG_P (op0) |
| || !HARD_REGISTER_P (op0) |
| || hard_regno_nregs (REGNO (op0), op0_mode.require ()) != 1)) |
| { |
| if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD) |
| { |
| if (!fallback_p) |
| return false; |
| |
| store_split_bit_field (op0, op0_mode, bitsize, bitnum, |
| bitregion_start, bitregion_end, |
| value, value_mode, reverse); |
| return true; |
| } |
| op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (), |
| bitnum / BITS_PER_WORD * UNITS_PER_WORD); |
| gcc_assert (op0); |
| op0_mode = word_mode; |
| bitnum %= BITS_PER_WORD; |
| } |
| |
| /* From here on we can assume that the field to be stored in fits |
| within a word. If the destination is a register, it too fits |
| in a word. */ |
| |
| extraction_insn insv; |
| if (!MEM_P (op0) |
| && !reverse |
| && get_best_reg_extraction_insn (&insv, EP_insv, |
| GET_MODE_BITSIZE (op0_mode.require ()), |
| fieldmode) |
| && store_bit_field_using_insv (&insv, op0, op0_mode, |
| bitsize, bitnum, value, value_mode)) |
| return true; |
| |
| /* If OP0 is a memory, try copying it to a register and seeing if a |
| cheap register alternative is available. */ |
| if (MEM_P (op0) && !reverse) |
| { |
| if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum, |
| fieldmode) |
| && store_bit_field_using_insv (&insv, op0, op0_mode, |
| bitsize, bitnum, value, value_mode)) |
| return true; |
| |
| rtx_insn *last = get_last_insn (); |
| |
| /* Try loading part of OP0 into a register, inserting the bitfield |
| into that, and then copying the result back to OP0. */ |
| unsigned HOST_WIDE_INT bitpos; |
| rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum, |
| bitregion_start, bitregion_end, |
| fieldmode, &bitpos); |
| if (xop0) |
| { |
| rtx tempreg = copy_to_reg (xop0); |
| if (store_bit_field_1 (tempreg, bitsize, bitpos, |
| bitregion_start, bitregion_end, |
| fieldmode, orig_value, reverse, false)) |
| { |
| emit_move_insn (xop0, tempreg); |
| return true; |
| } |
| delete_insns_since (last); |
| } |
| } |
| |
| if (!fallback_p) |
| return false; |
| |
| store_fixed_bit_field (op0, op0_mode, bitsize, bitnum, bitregion_start, |
| bitregion_end, value, value_mode, reverse); |
| return true; |
| } |
| |
| /* Generate code to store value from rtx VALUE |
| into a bit-field within structure STR_RTX |
| containing BITSIZE bits starting at bit BITNUM. |
| |
| BITREGION_START is bitpos of the first bitfield in this region. |
| BITREGION_END is the bitpos of the ending bitfield in this region. |
| These two fields are 0, if the C++ memory model does not apply, |
| or we are not interested in keeping track of bitfield regions. |
| |
| FIELDMODE is the machine-mode of the FIELD_DECL node for this field. |
| |
| If REVERSE is true, the store is to be done in reverse order. */ |
| |
| void |
| store_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum, |
| poly_uint64 bitregion_start, poly_uint64 bitregion_end, |
| machine_mode fieldmode, |
| rtx value, bool reverse) |
| { |
| /* Handle -fstrict-volatile-bitfields in the cases where it applies. */ |
| unsigned HOST_WIDE_INT ibitsize = 0, ibitnum = 0; |
| scalar_int_mode int_mode; |
| if (bitsize.is_constant (&ibitsize) |
| && bitnum.is_constant (&ibitnum) |
| && is_a <scalar_int_mode> (fieldmode, &int_mode) |
| && strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum, int_mode, |
| bitregion_start, bitregion_end)) |
| { |
| /* Storing of a full word can be done with a simple store. |
| We know here that the field can be accessed with one single |
| instruction. For targets that support unaligned memory, |
| an unaligned access may be necessary. */ |
| if (ibitsize == GET_MODE_BITSIZE (int_mode)) |
| { |
| str_rtx = adjust_bitfield_address (str_rtx, int_mode, |
| ibitnum / BITS_PER_UNIT); |
| if (reverse) |
| value = flip_storage_order (int_mode, value); |
| gcc_assert (ibitnum % BITS_PER_UNIT == 0); |
| emit_move_insn (str_rtx, value); |
| } |
| else |
| { |
| rtx temp; |
| |
| str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize, |
| ibitnum, &ibitnum); |
| gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode)); |
| temp = copy_to_reg (str_rtx); |
| if (!store_bit_field_1 (temp, ibitsize, ibitnum, 0, 0, |
| int_mode, value, reverse, true)) |
| gcc_unreachable (); |
| |
| emit_move_insn (str_rtx, temp); |
| } |
| |
| return; |
| } |
| |
| /* Under the C++0x memory model, we must not touch bits outside the |
| bit region. Adjust the address to start at the beginning of the |
| bit region. */ |
| if (MEM_P (str_rtx) && maybe_ne (bitregion_start, 0U)) |
| { |
| scalar_int_mode best_mode; |
| machine_mode addr_mode = VOIDmode; |
| |
| poly_uint64 offset = exact_div (bitregion_start, BITS_PER_UNIT); |
| bitnum -= bitregion_start; |
| poly_int64 size = bits_to_bytes_round_up (bitnum + bitsize); |
| bitregion_end -= bitregion_start; |
| bitregion_start = 0; |
| if (bitsize.is_constant (&ibitsize) |
| && bitnum.is_constant (&ibitnum) |
| && get_best_mode (ibitsize, ibitnum, |
| bitregion_start, bitregion_end, |
| MEM_ALIGN (str_rtx), INT_MAX, |
| MEM_VOLATILE_P (str_rtx), &best_mode)) |
| addr_mode = best_mode; |
| str_rtx = adjust_bitfield_address_size (str_rtx, addr_mode, |
| offset, size); |
| } |
| |
| if (!store_bit_field_1 (str_rtx, bitsize, bitnum, |
| bitregion_start, bitregion_end, |
| fieldmode, value, reverse, true)) |
| gcc_unreachable (); |
| } |
| |
| /* Use shifts and boolean operations to store VALUE into a bit field of |
| width BITSIZE in OP0, starting at bit BITNUM. If OP0_MODE is defined, |
| it is the mode of OP0, otherwise OP0 is a BLKmode MEM. VALUE_MODE is |
| the mode of VALUE. |
| |
| If REVERSE is true, the store is to be done in reverse order. */ |
| |
| static void |
| store_fixed_bit_field (rtx op0, opt_scalar_int_mode op0_mode, |
| unsigned HOST_WIDE_INT bitsize, |
| unsigned HOST_WIDE_INT bitnum, |
| poly_uint64 bitregion_start, poly_uint64 bitregion_end, |
| rtx value, scalar_int_mode value_mode, bool reverse) |
| { |
| /* There is a case not handled here: |
| a structure with a known alignment of just a halfword |
| and a field split across two aligned halfwords within the structure. |
| Or likewise a structure with a known alignment of just a byte |
| and a field split across two bytes. |
| Such cases are not supposed to be able to occur. */ |
| |
| scalar_int_mode best_mode; |
| if (MEM_P (op0)) |
| { |
| unsigned int max_bitsize = BITS_PER_WORD; |
| scalar_int_mode imode; |
| if (op0_mode.exists (&imode) && GET_MODE_BITSIZE (imode) < max_bitsize) |
| max_bitsize = GET_MODE_BITSIZE (imode); |
| |
| if (!get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end, |
| MEM_ALIGN (op0), max_bitsize, MEM_VOLATILE_P (op0), |
| &best_mode)) |
| { |
| /* The only way this should occur is if the field spans word |
| boundaries. */ |
| store_split_bit_field (op0, op0_mode, bitsize, bitnum, |
| bitregion_start, bitregion_end, |
| value, value_mode, reverse); |
| return; |
| } |
| |
| op0 = narrow_bit_field_mem (op0, best_mode, bitsize, bitnum, &bitnum); |
| } |
| else |
| best_mode = op0_mode.require (); |
| |
| store_fixed_bit_field_1 (op0, best_mode, bitsize, bitnum, |
| value, value_mode, reverse); |
| } |
| |
| /* Helper function for store_fixed_bit_field, stores |
| the bit field always using MODE, which is the mode of OP0. The other |
| arguments are as for store_fixed_bit_field. */ |
| |
| static void |
| store_fixed_bit_field_1 (rtx op0, scalar_int_mode mode, |
| unsigned HOST_WIDE_INT bitsize, |
| unsigned HOST_WIDE_INT bitnum, |
| rtx value, scalar_int_mode value_mode, bool reverse) |
| { |
| rtx temp; |
| int all_zero = 0; |
| int all_one = 0; |
| |
| /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode) |
| for invalid input, such as f5 from gcc.dg/pr48335-2.c. */ |
| |
| if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) |
| /* BITNUM is the distance between our msb |
| and that of the containing datum. |
| Convert it to the distance from the lsb. */ |
| bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum; |
| |
| /* Now BITNUM is always the distance between our lsb |
| and that of OP0. */ |
| |
| /* Shift VALUE left by BITNUM bits. If VALUE is not constant, |
| we must first convert its mode to MODE. */ |
| |
| if (CONST_INT_P (value)) |
| { |
| unsigned HOST_WIDE_INT v = UINTVAL (value); |
| |
| if (bitsize < HOST_BITS_PER_WIDE_INT) |
| v &= (HOST_WIDE_INT_1U << bitsize) - 1; |
| |
| if (v == 0) |
| all_zero = 1; |
| else if ((bitsize < HOST_BITS_PER_WIDE_INT |
| && v == (HOST_WIDE_INT_1U << bitsize) - 1) |
| || (bitsize == HOST_BITS_PER_WIDE_INT |
| && v == HOST_WIDE_INT_M1U)) |
| all_one = 1; |
| |
| value = lshift_value (mode, v, bitnum); |
| } |
| else |
| { |
| int must_and = (GET_MODE_BITSIZE (value_mode) != bitsize |
| && bitnum + bitsize != GET_MODE_BITSIZE (mode)); |
| |
| if (value_mode != mode) |
| value = convert_to_mode (mode, value, 1); |
| |
| if (must_and) |
| value = expand_binop (mode, and_optab, value, |
| mask_rtx (mode, 0, bitsize, 0), |
| NULL_RTX, 1, OPTAB_LIB_WIDEN); |
| if (bitnum > 0) |
| value = expand_shift (LSHIFT_EXPR, mode, value, |
| bitnum, NULL_RTX, 1); |
| } |
| |
| if (reverse) |
| value = flip_storage_order (mode, value); |
| |
| /* Now clear the chosen bits in OP0, |
| except that if VALUE is -1 we need not bother. */ |
| /* We keep the intermediates in registers to allow CSE to combine |
| consecutive bitfield assignments. */ |
| |
| temp = force_reg (mode, op0); |
| |
| if (! all_one) |
| { |
| rtx mask = mask_rtx (mode, bitnum, bitsize, 1); |
| if (reverse) |
| mask = flip_storage_order (mode, mask); |
| temp = expand_binop (mode, and_optab, temp, mask, |
| NULL_RTX, 1, OPTAB_LIB_WIDEN); |
| temp = force_reg (mode, temp); |
| } |
| |
| /* Now logical-or VALUE into OP0, unless it is zero. */ |
| |
| if (! all_zero) |
| { |
| temp = expand_binop (mode, ior_optab, temp, value, |
| NULL_RTX, 1, OPTAB_LIB_WIDEN); |
| temp = force_reg (mode, temp); |
| } |
| |
| if (op0 != temp) |
| { |
| op0 = copy_rtx (op0); |
| emit_move_insn (op0, temp); |
| } |
| } |
| |
| /* Store a bit field that is split across multiple accessible memory objects. |
| |
| OP0 is the REG, SUBREG or MEM rtx for the first of the objects. |
| BITSIZE is the field width; BITPOS the position of its first bit |
| (within the word). |
| VALUE is the value to store, which has mode VALUE_MODE. |
| If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is |
| a BLKmode MEM. |
| |
| If REVERSE is true, the store is to be done in reverse order. |
| |
| This does not yet handle fields wider than BITS_PER_WORD. */ |
| |
| static void |
| store_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode, |
| unsigned HOST_WIDE_INT bitsize, |
| unsigned HOST_WIDE_INT bitpos, |
| poly_uint64 bitregion_start, poly_uint64 bitregion_end, |
| rtx value, scalar_int_mode value_mode, bool reverse) |
| { |
| unsigned int unit, total_bits, bitsdone = 0; |
| |
| /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that |
| much at a time. */ |
| if (REG_P (op0) || GET_CODE (op0) == SUBREG) |
| unit = BITS_PER_WORD; |
| else |
| unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD); |
| |
| /* If OP0 is a memory with a mode, then UNIT must not be larger than |
| OP0's mode as well. Otherwise, store_fixed_bit_field will call us |
| again, and we will mutually recurse forever. */ |
| if (MEM_P (op0) && op0_mode.exists ()) |
| unit = MIN (unit, GET_MODE_BITSIZE (op0_mode.require ())); |
| |
| /* If VALUE is a constant other than a CONST_INT, get it into a register in |
| WORD_MODE. If we can do this using gen_lowpart_common, do so. Note |
| that VALUE might be a floating-point constant. */ |
| if (CONSTANT_P (value) && !CONST_INT_P (value)) |
| { |
| rtx word = gen_lowpart_common (word_mode, value); |
| |
| if (word && (value != word)) |
| value = word; |
| else |
| value = gen_lowpart_common (word_mode, force_reg (value_mode, value)); |
| value_mode = word_mode; |
| } |
| |
| total_bits = GET_MODE_BITSIZE (value_mode); |
| |
| while (bitsdone < bitsize) |
| { |
| unsigned HOST_WIDE_INT thissize; |
| unsigned HOST_WIDE_INT thispos; |
| unsigned HOST_WIDE_INT offset; |
| rtx part; |
| |
| offset = (bitpos + bitsdone) / unit; |
| thispos = (bitpos + bitsdone) % unit; |
| |
| /* When region of bytes we can touch is restricted, decrease |
| UNIT close to the end of the region as needed. If op0 is a REG |
| or SUBREG of REG, don't do this, as there can't be data races |
| on a register and we can expand shorter code in some cases. */ |
| if (maybe_ne (bitregion_end, 0U) |
| && unit > BITS_PER_UNIT |
| && maybe_gt (bitpos + bitsdone - thispos + unit, bitregion_end + 1) |
| && !REG_P (op0) |
| && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0)))) |
| { |
| unit = unit / 2; |
| continue; |
| } |
| |
| /* THISSIZE must not overrun a word boundary. Otherwise, |
| store_fixed_bit_field will call us again, and we will mutually |
| recurse forever. */ |
| thissize = MIN (bitsize - bitsdone, BITS_PER_WORD); |
| thissize = MIN (thissize, unit - thispos); |
| |
| if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) |
| { |
| /* Fetch successively less significant portions. */ |
| if (CONST_INT_P (value)) |
| part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value)) |
| >> (bitsize - bitsdone - thissize)) |
| & ((HOST_WIDE_INT_1 << thissize) - 1)); |
| /* Likewise, but the source is little-endian. */ |
| else if (reverse) |
| part = extract_fixed_bit_field (word_mode, value, value_mode, |
| thissize, |
| bitsize - bitsdone - thissize, |
| NULL_RTX, 1, false); |
| else |
| /* The args are chosen so that the last part includes the |
| lsb. Give extract_bit_field the value it needs (with |
| endianness compensation) to fetch the piece we want. */ |
| part = extract_fixed_bit_field (word_mode, value, value_mode, |
| thissize, |
| total_bits - bitsize + bitsdone, |
| NULL_RTX, 1, false); |
| } |
| else |
| { |
| /* Fetch successively more significant portions. */ |
| if (CONST_INT_P (value)) |
| part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value)) |
| >> bitsdone) |
| & ((HOST_WIDE_INT_1 << thissize) - 1)); |
| /* Likewise, but the source is big-endian. */ |
| else if (reverse) |
| part = extract_fixed_bit_field (word_mode, value, value_mode, |
| thissize, |
| total_bits - bitsdone - thissize, |
| NULL_RTX, 1, false); |
| else |
| part = extract_fixed_bit_field (word_mode, value, value_mode, |
| thissize, bitsdone, NULL_RTX, |
| 1, false); |
| } |
| |
| /* If OP0 is a register, then handle OFFSET here. */ |
| rtx op0_piece = op0; |
| opt_scalar_int_mode op0_piece_mode = op0_mode; |
| if (SUBREG_P (op0) || REG_P (op0)) |
| { |
| scalar_int_mode imode; |
| if (op0_mode.exists (&imode) |
| && GET_MODE_SIZE (imode) < UNITS_PER_WORD) |
| { |
| if (offset) |
| op0_piece = const0_rtx; |
| } |
| else |
| { |
| op0_piece = operand_subword_force (op0, |
| offset * unit / BITS_PER_WORD, |
| GET_MODE (op0)); |
| op0_piece_mode = word_mode; |
| } |
| offset &= BITS_PER_WORD / unit - 1; |
| } |
| |
| /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx, |
| it is just an out-of-bounds access. Ignore it. */ |
| if (op0_piece != const0_rtx) |
| store_fixed_bit_field (op0_piece, op0_piece_mode, thissize, |
| offset * unit + thispos, bitregion_start, |
| bitregion_end, part, word_mode, reverse); |
| bitsdone += thissize; |
| } |
| } |
| |
| /* A subroutine of extract_bit_field_1 that converts return value X |
| to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments |
| to extract_bit_field. */ |
| |
| static rtx |
| convert_extracted_bit_field (rtx x, machine_mode mode, |
| machine_mode tmode, bool unsignedp) |
| { |
| if (GET_MODE (x) == tmode || GET_MODE (x) == mode) |
| return x; |
| |
| /* If the x mode is not a scalar integral, first convert to the |
| integer mode of that size and then access it as a floating-point |
| value via a SUBREG. */ |
| if (!SCALAR_INT_MODE_P (tmode)) |
| { |
| scalar_int_mode int_mode = int_mode_for_mode (tmode).require (); |
| x = convert_to_mode (int_mode, x, unsignedp); |
| x = force_reg (int_mode, x); |
| return gen_lowpart (tmode, x); |
| } |
| |
| return convert_to_mode (tmode, x, unsignedp); |
| } |
| |
| /* Try to use an ext(z)v pattern to extract a field from OP0. |
| Return the extracted value on success, otherwise return null. |
| EXTV describes the extraction instruction to use. If OP0_MODE |
| is defined, it is the mode of OP0, otherwise OP0 is a BLKmode MEM. |
| The other arguments are as for extract_bit_field. */ |
| |
| static rtx |
| extract_bit_field_using_extv (const extraction_insn *extv, rtx op0, |
| opt_scalar_int_mode op0_mode, |
| unsigned HOST_WIDE_INT bitsize, |
| unsigned HOST_WIDE_INT bitnum, |
| int unsignedp, rtx target, |
| machine_mode mode, machine_mode tmode) |
| { |
| struct expand_operand ops[4]; |
| rtx spec_target = target; |
| rtx spec_target_subreg = 0; |
| scalar_int_mode ext_mode = extv->field_mode; |
| unsigned unit = GET_MODE_BITSIZE (ext_mode); |
| |
| if (bitsize == 0 || unit < bitsize) |
| return NULL_RTX; |
| |
| if (MEM_P (op0)) |
| /* Get a reference to the first byte of the field. */ |
| op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum, |
| &bitnum); |
| else |
| { |
| /* Convert from counting within OP0 to counting in EXT_MODE. */ |
| if (BYTES_BIG_ENDIAN) |
| bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ()); |
| |
| /* If op0 is a register, we need it in EXT_MODE to make it |
| acceptable to the format of ext(z)v. */ |
| if (GET_CODE (op0) == SUBREG && op0_mode.require () != ext_mode) |
| return NULL_RTX; |
| if (REG_P (op0) && op0_mode.require () != ext_mode) |
| op0 = gen_lowpart_SUBREG (ext_mode, op0); |
| } |
| |
| /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count |
| "backwards" from the size of the unit we are extracting from. |
| Otherwise, we count bits from the most significant on a |
| BYTES/BITS_BIG_ENDIAN machine. */ |
| |
| if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN) |
| bitnum = unit - bitsize - bitnum; |
| |
| if (target == 0) |
| target = spec_target = gen_reg_rtx (tmode); |
| |
| if (GET_MODE (target) != ext_mode) |
| { |
| /* Don't use LHS paradoxical subreg if explicit truncation is needed |
| between the mode of the extraction (word_mode) and the target |
| mode. Instead, create a temporary and use convert_move to set |
| the target. */ |
| if (REG_P (target) |
| && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode)) |
| { |
| target = gen_lowpart (ext_mode, target); |
| if (partial_subreg_p (GET_MODE (spec_target), ext_mode)) |
| spec_target_subreg = target; |
| } |
| else |
| target = gen_reg_rtx (ext_mode); |
| } |
| |
| create_output_operand (&ops[0], target, ext_mode); |
| create_fixed_operand (&ops[1], op0); |
| create_integer_operand (&ops[2], bitsize); |
| create_integer_operand (&ops[3], bitnum); |
| if (maybe_expand_insn (extv->icode, 4, ops)) |
| { |
| target = ops[0].value; |
| if (target == spec_target) |
| return target; |
| if (target == spec_target_subreg) |
| return spec_target; |
| return convert_extracted_bit_field (target, mode, tmode, unsignedp); |
| } |
| return NULL_RTX; |
| } |
| |
| /* See whether it would be valid to extract the part of OP0 described |
| by BITNUM and BITSIZE into a value of mode MODE using a subreg |
| operation. Return the subreg if so, otherwise return null. */ |
| |
| static rtx |
| extract_bit_field_as_subreg (machine_mode mode, rtx op0, |
| poly_uint64 bitsize, poly_uint64 bitnum) |
| { |
| poly_uint64 bytenum; |
| if (multiple_p (bitnum, BITS_PER_UNIT, &bytenum) |
| && known_eq (bitsize, GET_MODE_BITSIZE (mode)) |
| && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0)) |
| && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op0))) |
| return simplify_gen_subreg (mode, op0, GET_MODE (op0), bytenum); |
| return NULL_RTX; |
| } |
| |
| /* A subroutine of extract_bit_field, with the same arguments. |
| If FALLBACK_P is true, fall back to extract_fixed_bit_field |
| if we can find no other means of implementing the operation. |
| if FALLBACK_P is false, return NULL instead. */ |
| |
| static rtx |
| extract_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum, |
| int unsignedp, rtx target, machine_mode mode, |
| machine_mode tmode, bool reverse, bool fallback_p, |
| rtx *alt_rtl) |
| { |
| rtx op0 = str_rtx; |
| machine_mode mode1; |
| |
| if (tmode == VOIDmode) |
| tmode = mode; |
| |
| while (GET_CODE (op0) == SUBREG) |
| { |
| bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT; |
| op0 = SUBREG_REG (op0); |
| } |
| |
| /* If we have an out-of-bounds access to a register, just return an |
| uninitialized register of the required mode. This can occur if the |
| source code contains an out-of-bounds access to a small array. */ |
| if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0)))) |
| return gen_reg_rtx (tmode); |
| |
| if (REG_P (op0) |
| && mode == GET_MODE (op0) |
| && known_eq (bitnum, 0U) |
| && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))) |
| { |
| if (reverse) |
| op0 = flip_storage_order (mode, op0); |
| /* We're trying to extract a full register from itself. */ |
| return op0; |
| } |
| |
| /* First try to check for vector from vector extractions. */ |
| if (VECTOR_MODE_P (GET_MODE (op0)) |
| && !MEM_P (op0) |
| && VECTOR_MODE_P (tmode) |
| && known_eq (bitsize, GET_MODE_BITSIZE (tmode)) |
| && maybe_gt (GET_MODE_SIZE (GET_MODE (op0)), GET_MODE_SIZE (tmode))) |
| { |
| machine_mode new_mode = GET_MODE (op0); |
| if (GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode)) |
| { |
| scalar_mode inner_mode = GET_MODE_INNER (tmode); |
| poly_uint64 nunits; |
| if (!multiple_p (GET_MODE_BITSIZE (GET_MODE (op0)), |
| GET_MODE_UNIT_BITSIZE (tmode), &nunits) |
| || !mode_for_vector (inner_mode, nunits).exists (&new_mode) |
| || !VECTOR_MODE_P (new_mode) |
| || maybe_ne (GET_MODE_SIZE (new_mode), |
| GET_MODE_SIZE (GET_MODE (op0))) |
| || GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode) |
| || !targetm.vector_mode_supported_p (new_mode)) |
| new_mode = VOIDmode; |
| } |
| poly_uint64 pos; |
| if (new_mode != VOIDmode |
| && (convert_optab_handler (vec_extract_optab, new_mode, tmode) |
| != CODE_FOR_nothing) |
| && multiple_p (bitnum, GET_MODE_BITSIZE (tmode), &pos)) |
| { |
| struct expand_operand ops[3]; |
| machine_mode outermode = new_mode; |
| machine_mode innermode = tmode; |
| enum insn_code icode |
| = convert_optab_handler (vec_extract_optab, outermode, innermode); |
| |
| if (new_mode != GET_MODE (op0)) |
| op0 = gen_lowpart (new_mode, op0); |
| create_output_operand (&ops[0], target, innermode); |
| ops[0].target = 1; |
| create_input_operand (&ops[1], op0, outermode); |
| create_integer_operand (&ops[2], pos); |
| if (maybe_expand_insn (icode, 3, ops)) |
| { |
| if (alt_rtl && ops[0].target) |
| *alt_rtl = target; |
| target = ops[0].value; |
| if (GET_MODE (target) != mode) |
| return gen_lowpart (tmode, target); |
| return target; |
| } |
| } |
| } |
| |
| /* See if we can get a better vector mode before extracting. */ |
| if (VECTOR_MODE_P (GET_MODE (op0)) |
| && !MEM_P (op0) |
| && GET_MODE_INNER (GET_MODE (op0)) != tmode) |
| { |
| machine_mode new_mode; |
| |
| if (GET_MODE_CLASS (tmode) == MODE_FLOAT) |
| new_mode = MIN_MODE_VECTOR_FLOAT; |
| else if (GET_MODE_CLASS (tmode) == MODE_FRACT) |
| new_mode = MIN_MODE_VECTOR_FRACT; |
| else if (GET_MODE_CLASS (tmode) == MODE_UFRACT) |
| new_mode = MIN_MODE_VECTOR_UFRACT; |
| else if (GET_MODE_CLASS (tmode) == MODE_ACCUM) |
| new_mode = MIN_MODE_VECTOR_ACCUM; |
| else if (GET_MODE_CLASS (tmode) == MODE_UACCUM) |
| new_mode = MIN_MODE_VECTOR_UACCUM; |
| else |
| new_mode = MIN_MODE_VECTOR_INT; |
| |
| FOR_EACH_MODE_FROM (new_mode, new_mode) |
| if (known_eq (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (GET_MODE (op0))) |
| && known_eq (GET_MODE_UNIT_SIZE (new_mode), GET_MODE_SIZE (tmode)) |
| && targetm.vector_mode_supported_p (new_mode)) |
| break; |
| if (new_mode != VOIDmode) |
| op0 = gen_lowpart (new_mode, op0); |
| } |
| |
| /* Use vec_extract patterns for extracting parts of vectors whenever |
| available. If that fails, see whether the current modes and bitregion |
| give a natural subreg. */ |
| machine_mode outermode = GET_MODE (op0); |
| if (VECTOR_MODE_P (outermode) && !MEM_P (op0)) |
| { |
| scalar_mode innermode = GET_MODE_INNER (outermode); |
| enum insn_code icode |
| = convert_optab_handler (vec_extract_optab, outermode, innermode); |
| poly_uint64 pos; |
| if (icode != CODE_FOR_nothing |
| && known_eq (bitsize, GET_MODE_BITSIZE (innermode)) |
| && multiple_p (bitnum, GET_MODE_BITSIZE (innermode), &pos)) |
| { |
| struct expand_operand ops[3]; |
| |
| create_output_operand (&ops[0], target, innermode); |
| ops[0].target = 1; |
| create_input_operand (&ops[1], op0, outermode); |
| create_integer_operand (&ops[2], pos); |
| if (maybe_expand_insn (icode, 3, ops)) |
| { |
| if (alt_rtl && ops[0].target) |
| *alt_rtl = target; |
| target = ops[0].value; |
| if (GET_MODE (target) != mode) |
| return gen_lowpart (tmode, target); |
| return target; |
| } |
| } |
| /* Using subregs is useful if we're extracting one register vector |
| from a multi-register vector. extract_bit_field_as_subreg checks |
| for valid bitsize and bitnum, so we don't need to do that here. */ |
| if (VECTOR_MODE_P (mode)) |
| { |
| rtx sub = extract_bit_field_as_subreg (mode, op0, bitsize, bitnum); |
| if (sub) |
| return sub; |
| } |
| } |
| |
| /* Make sure we are playing with integral modes. Pun with subregs |
| if we aren't. */ |
| opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0)); |
| scalar_int_mode imode; |
| if (!op0_mode.exists (&imode) || imode != GET_MODE (op0)) |
| { |
| if (MEM_P (op0)) |
| op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (), |
| 0, MEM_SIZE (op0)); |
| else if (op0_mode.exists (&imode)) |
| { |
| op0 = gen_lowpart (imode, op0); |
| |
| /* If we got a SUBREG, force it into a register since we |
| aren't going to be able to do another SUBREG on it. */ |
| if (GET_CODE (op0) == SUBREG) |
| op0 = force_reg (imode, op0); |
| } |
| else |
| { |
| poly_int64 size = GET_MODE_SIZE (GET_MODE (op0)); |
| rtx mem = assign_stack_temp (GET_MODE (op0), size); |
| emit_move_insn (mem, op0); |
| op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size); |
| } |
| } |
| |
| /* ??? We currently assume TARGET is at least as big as BITSIZE. |
| If that's wrong, the solution is to test for it and set TARGET to 0 |
| if needed. */ |
| |
| /* Get the mode of the field to use for atomic access or subreg |
| conversion. */ |
| if (!SCALAR_INT_MODE_P (tmode) |
| || !mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0).exists (&mode1)) |
| mode1 = mode; |
| gcc_assert (mode1 != BLKmode); |
| |
| /* Extraction of a full MODE1 value can be done with a subreg as long |
| as the least significant bit of the value is the least significant |
| bit of either OP0 or a word of OP0. */ |
| if (!MEM_P (op0) && !reverse) |
| { |
| rtx sub = extract_bit_field_as_subreg (mode1, op0, bitsize, bitnum); |
| if (sub) |
| return convert_extracted_bit_field (sub, mode, tmode, unsignedp); |
| } |
| |
| /* Extraction of a full MODE1 value can be done with a load as long as |
| the field is on a byte boundary and is sufficiently aligned. */ |
| poly_uint64 bytenum; |
| if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1, &bytenum)) |
| { |
| op0 = adjust_bitfield_address (op0, mode1, bytenum); |
| if (reverse) |
| op0 = flip_storage_order (mode1, op0); |
| return convert_extracted_bit_field (op0, mode, tmode, unsignedp); |
| } |
| |
| /* If we have a memory source and a non-constant bit offset, restrict |
| the memory to the referenced bytes. This is a worst-case fallback |
| but is useful for things like vector booleans. */ |
| if (MEM_P (op0) && !bitnum.is_constant ()) |
| { |
| bytenum = bits_to_bytes_round_down (bitnum); |
| bitnum = num_trailing_bits (bitnum); |
| poly_uint64 bytesize = bits_to_bytes_round_up (bitnum + bitsize); |
| op0 = adjust_bitfield_address_size (op0, BLKmode, bytenum, bytesize); |
| op0_mode = opt_scalar_int_mode (); |
| } |
| |
| /* It's possible we'll need to handle other cases here for |
| polynomial bitnum and bitsize. */ |
| |
| /* From here on we need to be looking at a fixed-size insertion. */ |
| return extract_integral_bit_field (op0, op0_mode, bitsize.to_constant (), |
| bitnum.to_constant (), unsignedp, |
| target, mode, tmode, reverse, fallback_p); |
| } |
| |
| /* Subroutine of extract_bit_field_1, with the same arguments, except |
| that BITSIZE and BITNUM are constant. Handle cases specific to |
| integral modes. If OP0_MODE is defined, it is the mode of OP0, |
| otherwise OP0 is a BLKmode MEM. */ |
| |
| static rtx |
| extract_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode, |
| unsigned HOST_WIDE_INT bitsize, |
| unsigned HOST_WIDE_INT bitnum, int unsignedp, |
| rtx target, machine_mode mode, machine_mode tmode, |
| bool reverse, bool fallback_p) |
| { |
| /* Handle fields bigger than a word. */ |
| |
| if (bitsize > BITS_PER_WORD) |
| { |
| /* Here we transfer the words of the field |
| in the order least significant first. |
| This is because the most significant word is the one which may |
| be less than full. */ |
| |
| const bool backwards = WORDS_BIG_ENDIAN; |
| unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD; |
| unsigned int i; |
| rtx_insn *last; |
| |
| if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target)) |
| target = gen_reg_rtx (mode); |
| |
| /* In case we're about to clobber a base register or something |
| (see gcc.c-torture/execute/20040625-1.c). */ |
| if (reg_mentioned_p (target, op0)) |
| target = gen_reg_rtx (mode); |
| |
| /* Indicate for flow that the entire target reg is being set. */ |
| emit_clobber (target); |
| |
| /* The mode must be fixed-size, since extract_bit_field_1 handles |
| extractions from variable-sized objects before calling this |
| function. */ |
| unsigned int target_size |
| = GET_MODE_SIZE (GET_MODE (target)).to_constant (); |
| last = get_last_insn (); |
| for (i = 0; i < nwords; i++) |
| { |
| /* If I is 0, use the low-order word in both field and target; |
| if I is 1, use the next to lowest word; and so on. */ |
| /* Word number in TARGET to use. */ |
| unsigned int wordnum |
| = (backwards ? target_size / UNITS_PER_WORD - i - 1 : i); |
| /* Offset from start of field in OP0. */ |
| unsigned int bit_offset = (backwards ^ reverse |
| ? MAX ((int) bitsize - ((int) i + 1) |
| * BITS_PER_WORD, |
| 0) |
| : (int) i * BITS_PER_WORD); |
| rtx target_part = operand_subword (target, wordnum, 1, VOIDmode); |
| rtx result_part |
| = extract_bit_field_1 (op0, MIN (BITS_PER_WORD, |
| bitsize - i * BITS_PER_WORD), |
| bitnum + bit_offset, 1, target_part, |
| mode, word_mode, reverse, fallback_p, NULL); |
| |
| gcc_assert (target_part); |
| if (!result_part) |
| { |
| delete_insns_since (last); |
| return NULL; |
| } |
| |
| if (result_part != target_part) |
| emit_move_insn (target_part, result_part); |
| } |
| |
| if (unsignedp) |
| { |
| /* Unless we've filled TARGET, the upper regs in a multi-reg value |
| need to be zero'd out. */ |
| if (target_size > nwords * UNITS_PER_WORD) |
| { |
| unsigned int i, total_words; |
| |
| total_words = target_size / UNITS_PER_WORD; |
| for (i = nwords; i < total_words; i++) |
| emit_move_insn |
| (operand_subword (target, |
| backwards ? total_words - i - 1 : i, |
| 1, VOIDmode), |
| const0_rtx); |
| } |
| return target; |
| } |
| |
| /* Signed bit field: sign-extend with two arithmetic shifts. */ |
| target = expand_shift (LSHIFT_EXPR, mode, target, |
| GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0); |
| return expand_shift (RSHIFT_EXPR, mode, target, |
| GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0); |
| } |
| |
| /* If OP0 is a multi-word register, narrow it to the affected word. |
| If the region spans two words, defer to extract_split_bit_field. */ |
| if (!MEM_P (op0) && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD) |
| { |
| if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD) |
| { |
| if (!fallback_p) |
| return NULL_RTX; |
| target = extract_split_bit_field (op0, op0_mode, bitsize, bitnum, |
| unsignedp, reverse); |
| return convert_extracted_bit_field (target, mode, tmode, unsignedp); |
| } |
| op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (), |
| bitnum / BITS_PER_WORD * UNITS_PER_WORD); |
| op0_mode = word_mode; |
| bitnum %= BITS_PER_WORD; |
| } |
| |
| /* From here on we know the desired field is smaller than a word. |
| If OP0 is a register, it too fits within a word. */ |
| enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv; |
| extraction_insn extv; |
| if (!MEM_P (op0) |
| && !reverse |
| /* ??? We could limit the structure size to the part of OP0 that |
| contains the field, with appropriate checks for endianness |
| and TARGET_TRULY_NOOP_TRUNCATION. */ |
| && get_best_reg_extraction_insn (&extv, pattern, |
| GET_MODE_BITSIZE (op0_mode.require ()), |
| tmode)) |
| { |
| rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode, |
| bitsize, bitnum, |
| unsignedp, target, mode, |
| tmode); |
| if (result) |
| return result; |
| } |
| |
| /* If OP0 is a memory, try copying it to a register and seeing if a |
| cheap register alternative is available. */ |
| if (MEM_P (op0) & !reverse) |
| { |
| if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum, |
| tmode)) |
| { |
| rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode, |
| bitsize, bitnum, |
| unsignedp, target, mode, |
| tmode); |
| if (result) |
| return result; |
| } |
| |
| rtx_insn *last = get_last_insn (); |
| |
| /* Try loading part of OP0 into a register and extracting the |
| bitfield from that. */ |
| unsigned HOST_WIDE_INT bitpos; |
| rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum, |
| 0, 0, tmode, &bitpos); |
| if (xop0) |
| { |
| xop0 = copy_to_reg (xop0); |
| rtx result = extract_bit_field_1 (xop0, bitsize, bitpos, |
| unsignedp, target, |
| mode, tmode, reverse, false, NULL); |
| if (result) |
| return result; |
| delete_insns_since (last); |
| } |
| } |
| |
| if (!fallback_p) |
| return NULL; |
| |
| /* Find a correspondingly-sized integer field, so we can apply |
| shifts and masks to it. */ |
| scalar_int_mode int_mode; |
| if (!int_mode_for_mode (tmode).exists (&int_mode)) |
| /* If this fails, we should probably push op0 out to memory and then |
| do a load. */ |
| int_mode = int_mode_for_mode (mode).require (); |
| |
| target = extract_fixed_bit_field (int_mode, op0, op0_mode, bitsize, |
| bitnum, target, unsignedp, reverse); |
| |
| /* Complex values must be reversed piecewise, so we need to undo the global |
| reversal, convert to the complex mode and reverse again. */ |
| if (reverse && COMPLEX_MODE_P (tmode)) |
| { |
| target = flip_storage_order (int_mode, target); |
| target = convert_extracted_bit_field (target, mode, tmode, unsignedp); |
| target = flip_storage_order (tmode, target); |
| } |
| else |
| target = convert_extracted_bit_field (target, mode, tmode, unsignedp); |
| |
| return target; |
| } |
| |
| /* Generate code to extract a byte-field from STR_RTX |
| containing BITSIZE bits, starting at BITNUM, |
| and put it in TARGET if possible (if TARGET is nonzero). |
| Regardless of TARGET, we return the rtx for where the value is placed. |
| |
| STR_RTX is the structure containing the byte (a REG or MEM). |
| UNSIGNEDP is nonzero if this is an unsigned bit field. |
| MODE is the natural mode of the field value once extracted. |
| TMODE is the mode the caller would like the value to have; |
| but the value may be returned with type MODE instead. |
| |
| If REVERSE is true, the extraction is to be done in reverse order. |
| |
| If a TARGET is specified and we can store in it at no extra cost, |
| we do so, and return TARGET. |
| Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred |
| if they are equally easy. */ |
| |
| rtx |
| extract_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum, |
| int unsignedp, rtx target, machine_mode mode, |
| machine_mode tmode, bool reverse, rtx *alt_rtl) |
| { |
| machine_mode mode1; |
| |
| /* Handle -fstrict-volatile-bitfields in the cases where it applies. */ |
| if (maybe_ne (GET_MODE_BITSIZE (GET_MODE (str_rtx)), 0)) |
| mode1 = GET_MODE (str_rtx); |
| else if (target && maybe_ne (GET_MODE_BITSIZE (GET_MODE (target)), 0)) |
| mode1 = GET_MODE (target); |
| else |
| mode1 = tmode; |
| |
| unsigned HOST_WIDE_INT ibitsize, ibitnum; |
| scalar_int_mode int_mode; |
| if (bitsize.is_constant (&ibitsize) |
| && bitnum.is_constant (&ibitnum) |
| && is_a <scalar_int_mode> (mode1, &int_mode) |
| && strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum, |
| int_mode, 0, 0)) |
| { |
| /* Extraction of a full INT_MODE value can be done with a simple load. |
| We know here that the field can be accessed with one single |
| instruction. For targets that support unaligned memory, |
| an unaligned access may be necessary. */ |
| if (ibitsize == GET_MODE_BITSIZE (int_mode)) |
| { |
| rtx result = adjust_bitfield_address (str_rtx, int_mode, |
| ibitnum / BITS_PER_UNIT); |
| if (reverse) |
| result = flip_storage_order (int_mode, result); |
| gcc_assert (ibitnum % BITS_PER_UNIT == 0); |
| return convert_extracted_bit_field (result, mode, tmode, unsignedp); |
| } |
| |
| str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize, ibitnum, |
| &ibitnum); |
| gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode)); |
| str_rtx = copy_to_reg (str_rtx); |
| return extract_bit_field_1 (str_rtx, ibitsize, ibitnum, unsignedp, |
| target, mode, tmode, reverse, true, alt_rtl); |
| } |
| |
| return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp, |
| target, mode, tmode, reverse, true, alt_rtl); |
| } |
| |
| /* Use shifts and boolean operations to extract a field of BITSIZE bits |
| from bit BITNUM of OP0. If OP0_MODE is defined, it is the mode of OP0, |
| otherwise OP0 is a BLKmode MEM. |
| |
| UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value). |
| If REVERSE is true, the extraction is to be done in reverse order. |
| |
| If TARGET is nonzero, attempts to store the value there |
| and return TARGET, but this is not guaranteed. |
| If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */ |
| |
| static rtx |
| extract_fixed_bit_field (machine_mode tmode, rtx op0, |
| opt_scalar_int_mode op0_mode, |
| unsigned HOST_WIDE_INT bitsize, |
| unsigned HOST_WIDE_INT bitnum, rtx target, |
| int unsignedp, bool reverse) |
| { |
| scalar_int_mode mode; |
| if (MEM_P (op0)) |
| { |
| if (!get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0), |
| BITS_PER_WORD, MEM_VOLATILE_P (op0), &mode)) |
| /* The only way this should occur is if the field spans word |
| boundaries. */ |
| return extract_split_bit_field (op0, op0_mode, bitsize, bitnum, |
| unsignedp, reverse); |
| |
| op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum); |
| } |
| else |
| mode = op0_mode.require (); |
| |
| return extract_fixed_bit_field_1 (tmode, op0, mode, bitsize, bitnum, |
| target, unsignedp, reverse); |
| } |
| |
| /* Helper function for extract_fixed_bit_field, extracts |
| the bit field always using MODE, which is the mode of OP0. |
| The other arguments are as for extract_fixed_bit_field. */ |
| |
| static rtx |
| extract_fixed_bit_field_1 (machine_mode tmode, rtx op0, scalar_int_mode mode, |
| unsigned HOST_WIDE_INT bitsize, |
| unsigned HOST_WIDE_INT bitnum, rtx target, |
| int unsignedp, bool reverse) |
| { |
| /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode) |
| for invalid input, such as extract equivalent of f5 from |
| gcc.dg/pr48335-2.c. */ |
| |
| if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) |
| /* BITNUM is the distance between our msb and that of OP0. |
| Convert it to the distance from the lsb. */ |
| bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum; |
| |
| /* Now BITNUM is always the distance between the field's lsb and that of OP0. |
| We have reduced the big-endian case to the little-endian case. */ |
| if (reverse) |
| op0 = flip_storage_order (mode, op0); |
| |
| if (unsignedp) |
| { |
| if (bitnum) |
| { |
| /* If the field does not already start at the lsb, |
| shift it so it does. */ |
| /* Maybe propagate the target for the shift. */ |
| rtx subtarget = (target != 0 && REG_P (target) ? target : 0); |
| if (tmode != mode) |
| subtarget = 0; |
| op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1); |
| } |
| /* Convert the value to the desired mode. TMODE must also be a |
| scalar integer for this conversion to make sense, since we |
| shouldn't reinterpret the bits. */ |
| scalar_int_mode new_mode = as_a <scalar_int_mode> (tmode); |
| if (mode != new_mode) |
| op0 = convert_to_mode (new_mode, op0, 1); |
| |
| /* Unless the msb of the field used to be the msb when we shifted, |
| mask out the upper bits. */ |
| |
| if (GET_MODE_BITSIZE (mode) != bitnum + bitsize) |
| return expand_binop (new_mode, and_optab, op0, |
| mask_rtx (new_mode, 0, bitsize, 0), |
| target, 1, OPTAB_LIB_WIDEN); |
| return op0; |
| } |
| |
| /* To extract a signed bit-field, first shift its msb to the msb of the word, |
| then arithmetic-shift its lsb to the lsb of the word. */ |
| op0 = force_reg (mode, op0); |
| |
| /* Find the narrowest integer mode that contains the field. */ |
| |
| opt_scalar_int_mode mode_iter; |
| FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT) |
| if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize + bitnum) |
| break; |
| |
| mode = mode_iter.require (); |
| op0 = convert_to_mode (mode, op0, 0); |
| |
| if (mode != tmode) |
| target = 0; |
| |
| if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum)) |
| { |
| int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum); |
| /* Maybe propagate the target for the shift. */ |
| rtx subtarget = (target != 0 && REG_P (target) ? target : 0); |
| op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1); |
| } |
| |
| return expand_shift (RSHIFT_EXPR, mode, op0, |
| GET_MODE_BITSIZE (mode) - bitsize, target, 0); |
| } |
| |
| /* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value |
| VALUE << BITPOS. */ |
| |
| static rtx |
| lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value, |
| int bitpos) |
| { |
| return immed_wide_int_const (wi::lshift (value, bitpos), mode); |
| } |
| |
| /* Extract a bit field that is split across two words |
| and return an RTX for the result. |
| |
| OP0 is the REG, SUBREG or MEM rtx for the first of the two words. |
| BITSIZE is the field width; BITPOS, position of its first bit, in the word. |
| UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend. |
| If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is |
| a BLKmode MEM. |
| |
| If REVERSE is true, the extraction is to be done in reverse order. */ |
| |
| static rtx |
| extract_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode, |
| unsigned HOST_WIDE_INT bitsize, |
| unsigned HOST_WIDE_INT bitpos, int unsignedp, |
| bool reverse) |
| { |
| unsigned int unit; |
| unsigned int bitsdone = 0; |
| rtx result = NULL_RTX; |
| int first = 1; |
| |
| /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that |
| much at a time. */ |
| if (REG_P (op0) || GET_CODE (op0) == SUBREG) |
| unit = BITS_PER_WORD; |
| else |
| unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD); |
| |
| while (bitsdone < bitsize) |
| { |
| unsigned HOST_WIDE_INT thissize; |
| rtx part; |
| unsigned HOST_WIDE_INT thispos; |
| unsigned HOST_WIDE_INT offset; |
| |
| offset = (bitpos + bitsdone) / unit; |
| thispos = (bitpos + bitsdone) % unit; |
| |
| /* THISSIZE must not overrun a word boundary. Otherwise, |
| extract_fixed_bit_field will call us again, and we will mutually |
| recurse forever. */ |
| thissize = MIN (bitsize - bitsdone, BITS_PER_WORD); |
| thissize = MIN (thissize, unit - thispos); |
| |
| /* If OP0 is a register, then handle OFFSET here. */ |
| rtx op0_piece = op0; |
| opt_scalar_int_mode op0_piece_mode = op0_mode; |
| if (SUBREG_P (op0) || REG_P (op0)) |
| { |
| op0_piece = operand_subword_force (op0, offset, op0_mode.require ()); |
| op0_piece_mode = word_mode; |
| offset = 0; |
| } |
| |
| /* Extract the parts in bit-counting order, |
| whose meaning is determined by BYTES_PER_UNIT. |
| OFFSET is in UNITs, and UNIT is in bits. */ |
| part = extract_fixed_bit_field (word_mode, op0_piece, op0_piece_mode, |
| thissize, offset * unit + thispos, |
| 0, 1, reverse); |
| bitsdone += thissize; |
| |
| /* Shift this part into place for the result. */ |
| if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) |
| { |
| if (bitsize != bitsdone) |
| part = expand_shift (LSHIFT_EXPR, word_mode, part, |
| bitsize - bitsdone, 0, 1); |
| } |
| else |
| { |
| if (bitsdone != thissize) |
| part = expand_shift (LSHIFT_EXPR, word_mode, part, |
| bitsdone - thissize, 0, 1); |
| } |
| |
| if (first) |
| result = part; |
| else |
| /* Combine the parts with bitwise or. This works |
| because we extracted each part as an unsigned bit field. */ |
| result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1, |
| OPTAB_LIB_WIDEN); |
| |
| first = 0; |
| } |
| |
| /* Unsigned bit field: we are done. */ |
| if (unsignedp) |
| return result; |
| /* Signed bit field: sign-extend with two arithmetic shifts. */ |
| result = expand_shift (LSHIFT_EXPR, word_mode, result, |
| BITS_PER_WORD - bitsize, NULL_RTX, 0); |
| return expand_shift (RSHIFT_EXPR, word_mode, result, |
| BITS_PER_WORD - bitsize, NULL_RTX, 0); |
| } |
| |
| /* Try to read the low bits of SRC as an rvalue of mode MODE, preserving |
| the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than |
| MODE, fill the upper bits with zeros. Fail if the layout of either |
| mode is unknown (as for CC modes) or if the extraction would involve |
| unprofitable mode punning. Return the value on success, otherwise |
| return null. |
| |
| This is different from gen_lowpart* in these respects: |
| |
| - the returned value must always be considered an rvalue |
| |
| - when MODE is wider than SRC_MODE, the extraction involves |
| a zero extension |
| |
| - when MODE is smaller than SRC_MODE, the extraction involves |
| a truncation (and is thus subject to TARGET_TRULY_NOOP_TRUNCATION). |
| |
| In other words, this routine performs a computation, whereas the |
| gen_lowpart* routines are conceptually lvalue or rvalue subreg |
| operations. */ |
| |
| rtx |
| extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src) |
| { |
| scalar_int_mode int_mode, src_int_mode; |
| |
| if (mode == src_mode) |
| return src; |
| |
| if (CONSTANT_P (src)) |
| { |
| /* simplify_gen_subreg can't be used here, as if simplify_subreg |
| fails, it will happily create (subreg (symbol_ref)) or similar |
| invalid SUBREGs. */ |
| poly_uint64 byte = subreg_lowpart_offset (mode, src_mode); |
| rtx ret = simplify_subreg (mode, src, src_mode, byte); |
| if (ret) |
| return ret; |
| |
| if (GET_MODE (src) == VOIDmode |
| || !validate_subreg (mode, src_mode, src, byte)) |
| return NULL_RTX; |
| |
| src = force_reg (GET_MODE (src), src); |
| return gen_rtx_SUBREG (mode, src, byte); |
| } |
| |
| if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC) |
| return NULL_RTX; |
| |
| if (known_eq (GET_MODE_BITSIZE (mode), GET_MODE_BITSIZE (src_mode)) |
| && targetm.modes_tieable_p (mode, src_mode)) |
| { |
| rtx x = gen_lowpart_common (mode, src); |
| if (x) |
| return x; |
| } |
| |
| if (!int_mode_for_mode (src_mode).exists (&src_int_mode) |
| || !int_mode_for_mode (mode).exists (&int_mode)) |
| return NULL_RTX; |
| |
| if (!targetm.modes_tieable_p (src_int_mode, src_mode)) |
| return NULL_RTX; |
| if (!targetm.modes_tieable_p (int_mode, mode)) |
| return NULL_RTX; |
| |
| src = gen_lowpart (src_int_mode, src); |
| src = convert_modes (int_mode, src_int_mode, src, true); |
| src = gen_lowpart (mode, src); |
| return src; |
| } |
| |
| /* Add INC into TARGET. */ |
| |
| void |
| expand_inc (rtx target, rtx inc) |
| { |
| rtx value = expand_binop (GET_MODE (target), add_optab, |
| target, inc, |
| target, 0, OPTAB_LIB_WIDEN); |
| if (value != target) |
| emit_move_insn (target, value); |
| } |
| |
| /* Subtract DEC from TARGET. */ |
| |
| void |
| expand_dec (rtx target, rtx dec) |
| { |
| rtx value = expand_binop (GET_MODE (target), sub_optab, |
| target, dec, |
| target, 0, OPTAB_LIB_WIDEN); |
| if (value != target) |
| emit_move_insn (target, value); |
| } |
| |
| /* Output a shift instruction for expression code CODE, |
| with SHIFTED being the rtx for the value to shift, |
| and AMOUNT the rtx for the amount to shift by. |
| Store the result in the rtx TARGET, if that is convenient. |
| If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic. |
| Return the rtx for where the value is. |
| If that cannot be done, abort the compilation unless MAY_FAIL is true, |
| in which case 0 is returned. */ |
| |
| static rtx |
| expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted, |
| rtx amount, rtx target, int unsignedp, bool may_fail = false) |
| { |
| rtx op1, temp = 0; |
| int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR); |
| int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR); |
| optab lshift_optab = ashl_optab; |
| optab rshift_arith_optab = ashr_optab; |
| optab rshift_uns_optab = lshr_optab; |
| optab lrotate_optab = rotl_optab; |
| optab rrotate_optab = rotr_optab; |
| machine_mode op1_mode; |
| scalar_mode scalar_mode = GET_MODE_INNER (mode); |
| int attempt; |
| bool speed = optimize_insn_for_speed_p (); |
| |
| op1 = amount; |
| op1_mode = GET_MODE (op1); |
| |
| /* Determine whether the shift/rotate amount is a vector, or scalar. If the |
| shift amount is a vector, use the vector/vector shift patterns. */ |
| if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode)) |
| { |
| lshift_optab = vashl_optab; |
| rshift_arith_optab = vashr_optab; |
| rshift_uns_optab = vlshr_optab; |
| lrotate_optab = vrotl_optab; |
| rrotate_optab = vrotr_optab; |
| } |
| |
| /* Previously detected shift-counts computed by NEGATE_EXPR |
| and shifted in the other direction; but that does not work |
| on all machines. */ |
| |
| if (SHIFT_COUNT_TRUNCATED) |
| { |
| if (CONST_INT_P (op1) |
| && ((unsigned HOST_WIDE_INT) INTVAL (op1) >= |
| (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode))) |
| op1 = gen_int_shift_amount (mode, |
| (unsigned HOST_WIDE_INT) INTVAL (op1) |
| % GET_MODE_BITSIZE (scalar_mode)); |
| else if (GET_CODE (op1) == SUBREG |
| && subreg_lowpart_p (op1) |
| && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1))) |
| && SCALAR_INT_MODE_P (GET_MODE (op1))) |
| op1 = SUBREG_REG (op1); |
| } |
| |
| /* Canonicalize rotates by constant amount. If op1 is bitsize / 2, |
| prefer left rotation, if op1 is from bitsize / 2 + 1 to |
| bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1 |
| amount instead. */ |
| if (rotate |
| && CONST_INT_P (op1) |
| && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left, |
| GET_MODE_BITSIZE (scalar_mode) - 1)) |
| { |
| op1 = gen_int_shift_amount (mode, (GET_MODE_BITSIZE (scalar_mode) |
| - INTVAL (op1))); |
| left = !left; |
| code = left ? LROTATE_EXPR : RROTATE_EXPR; |
| } |
| |
| /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi. |
| Note that this is not the case for bigger values. For instance a rotation |
| of 0x01020304 by 16 bits gives 0x03040102 which is different from |
| 0x04030201 (bswapsi). */ |
| if (rotate |
| && CONST_INT_P (op1) |
| && INTVAL (op1) == BITS_PER_UNIT |
| && GET_MODE_SIZE (scalar_mode) == 2 |
| && optab_handler (bswap_optab, mode) != CODE_FOR_nothing) |
| return expand_unop (mode, bswap_optab, shifted, NULL_RTX, unsignedp); |
| |
| if (op1 == const0_rtx) |
| return shifted; |
| |
| /* Check whether its cheaper to implement a left shift by a constant |
| bit count by a sequence of additions. */ |
| if (code == LSHIFT_EXPR |
| && CONST_INT_P (op1) |
| && INTVAL (op1) > 0 |
| && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode) |
| && INTVAL (op1) < MAX_BITS_PER_WORD |
| && (shift_cost (speed, mode, INTVAL (op1)) |
| > INTVAL (op1) * add_cost (speed, mode)) |
| && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST) |
| { |
| int i; |
| for (i = 0; i < INTVAL (op1); i++) |
| { |
| temp = force_reg (mode, shifted); |
| shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX, |
| unsignedp, OPTAB_LIB_WIDEN); |
| } |
| return shifted; |
| } |
| |
| for (attempt = 0; temp == 0 && attempt < 3; attempt++) |
| { |
| enum optab_methods methods; |
| |
| if (attempt == 0) |
| methods = OPTAB_DIRECT; |
| else if (attempt == 1) |
| methods = OPTAB_WIDEN; |
| else |
| methods = OPTAB_LIB_WIDEN; |
| |
| if (rotate) |
| { |
| /* Widening does not work for rotation. */ |
| if (methods == OPTAB_WIDEN) |
| continue; |
| else if (methods == OPTAB_LIB_WIDEN) |
| { |
| /* If we have been unable to open-code this by a rotation, |
| do it as the IOR of two shifts. I.e., to rotate A |
| by N bits, compute |
| (A << N) | ((unsigned) A >> ((-N) & (C - 1))) |
| where C is the bitsize of A. |
| |
| It is theoretically possible that the target machine might |
| not be able to perform either shift and hence we would |
| be making two libcalls rather than just the one for the |
| shift (similarly if IOR could not be done). We will allow |
| this extremely unlikely lossage to avoid complicating the |
| code below. */ |
| |
| rtx subtarget = target == shifted ? 0 : target; |
| rtx new_amount, other_amount; |
| rtx temp1; |
| |
| new_amount = op1; |
| if (op1 == const0_rtx) |
| return shifted; |
| else if (CONST_INT_P (op1)) |
| other_amount = gen_int_shift_amount |
| (mode, GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1)); |
| else |
| { |
| other_amount |
| = simplify_gen_unary (NEG, GET_MODE (op1), |
| op1, GET_MODE (op1)); |
| HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1; |
| other_amount |
| = simplify_gen_binary (AND, GET_MODE (op1), other_amount, |
| gen_int_mode (mask, GET_MODE (op1))); |
| } |
| |
| shifted = force_reg (mode, shifted); |
| |
| temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR, |
| mode, shifted, new_amount, 0, 1); |
| temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR, |
| mode, shifted, other_amount, |
| subtarget, 1); |
| return expand_binop (mode, ior_optab, temp, temp1, target, |
| unsignedp, methods); |
| } |
| |
| temp = expand_binop (mode, |
| left ? lrotate_optab : rrotate_optab, |
| shifted, op1, target, unsignedp, methods); |
| } |
| else if (unsignedp) |
| temp = expand_binop (mode, |
| left ? lshift_optab : rshift_uns_optab, |
| shifted, op1, target, unsignedp, methods); |
| |
| /* Do arithmetic shifts. |
| Also, if we are going to widen the operand, we can just as well |
| use an arithmetic right-shift instead of a logical one. */ |
| if (temp == 0 && ! rotate |
| && (! unsignedp || (! left && methods == OPTAB_WIDEN))) |
| { |
| enum optab_methods methods1 = methods; |
| |
| /* If trying to widen a log shift to an arithmetic shift, |
| don't accept an arithmetic shift of the same size. */ |
| if (unsignedp) |
| methods1 = OPTAB_MUST_WIDEN; |
| |
| /* Arithmetic shift */ |
| |
| temp = expand_binop (mode, |
| left ? lshift_optab : rshift_arith_optab, |
| shifted, op1, target, unsignedp, methods1); |
| } |
| |
| /* We used to try extzv here for logical right shifts, but that was |
| only useful for one machine, the VAX, and caused poor code |
| generation there for lshrdi3, so the code was deleted and a |
| define_expand for lshrsi3 was added to vax.md. */ |
| } |
| |
| gcc_assert (temp != NULL_RTX || may_fail); |
| return temp; |
| } |
| |
| /* Output a shift instruction for expression code CODE, |
| with SHIFTED being the rtx for the value to shift, |
| and AMOUNT the amount to shift by. |
| Store the result in the rtx TARGET, if that is convenient. |
| If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic. |
| Return the rtx for where the value is. */ |
| |
| rtx |
| expand_shift (enum tree_code code, machine_mode mode, rtx shifted, |
| poly_int64 amount, rtx target, int unsignedp) |
| { |
| return expand_shift_1 (code, mode, shifted, |
| gen_int_shift_amount (mode, amount), |
| target, unsignedp); |
| } |
| |
| /* Likewise, but return 0 if that cannot be done. */ |
| |
| static rtx |
| maybe_expand_shift (enum tree_code code, machine_mode mode, rtx shifted, |
| int amount, rtx target, int unsignedp) |
| { |
| return expand_shift_1 (code, mode, |
| shifted, GEN_INT (amount), target, unsignedp, true); |
| } |
| |
| /* Output a shift instruction for expression code CODE, |
| with SHIFTED being the rtx for the value to shift, |
| and AMOUNT the tree for the amount to shift by. |
| Store the result in the rtx TARGET, if that is convenient. |
| If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic. |
| Return the rtx for where the value is. */ |
| |
| rtx |
| expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted, |
| tree amount, rtx target, int unsignedp) |
| { |
| return expand_shift_1 (code, mode, |
| shifted, expand_normal (amount), target, unsignedp); |
| } |
| |
| |
| static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT, |
| const struct mult_cost *, machine_mode mode); |
| static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx, |
| const struct algorithm *, enum mult_variant); |
| static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int); |
| static rtx extract_high_half (scalar_int_mode, rtx); |
| static rtx expmed_mult_highpart (scalar_int_mode, rtx, rtx, rtx, int, int); |
| static rtx expmed_mult_highpart_optab (scalar_int_mode, rtx, rtx, rtx, |
| int, int); |
| /* Compute and return the best algorithm for multiplying by T. |
| The algorithm must cost less than cost_limit |
| If retval.cost >= COST_LIMIT, no algorithm was found and all |
| other field of the returned struct are undefined. |
| MODE is the machine mode of the multiplication. */ |
| |
| static void |
| synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t, |
| const struct mult_cost *cost_limit, machine_mode mode) |
| { |
| int m; |
| struct algorithm *alg_in, *best_alg; |
| struct mult_cost best_cost; |
| struct mult_cost new_limit; |
| int op_cost, op_latency; |
| unsigned HOST_WIDE_INT orig_t = t; |
| unsigned HOST_WIDE_INT q; |
| int maxm, hash_index; |
| bool cache_hit = false; |
| enum alg_code cache_alg = alg_zero; |
| bool speed = optimize_insn_for_speed_p (); |
| scalar_int_mode imode; |
| struct alg_hash_entry *entry_ptr; |
| |
| /* Indicate that no algorithm is yet found. If no algorithm |
| is found, this value will be returned and indicate failure. */ |
| alg_out->cost.cost = cost_limit->cost + 1; |
| alg_out->cost.latency = cost_limit->latency + 1; |
| |
| if (cost_limit->cost < 0 |
| || (cost_limit->cost == 0 && cost_limit->latency <= 0)) |
| return; |
| |
| /* Be prepared for vector modes. */ |
| imode = as_a <scalar_int_mode> (GET_MODE_INNER (mode)); |
| |
| maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode)); |
| |
| /* Restrict the bits of "t" to the multiplication's mode. */ |
| t &= GET_MODE_MASK (imode); |
| |
| /* t == 1 can be done in zero cost. */ |
| if (t == 1) |
| { |
| alg_out->ops = 1; |
| alg_out->cost.cost = 0; |
| alg_out->cost.latency = 0; |
| alg_out->op[0] = alg_m; |
| return; |
| } |
| |
| /* t == 0 sometimes has a cost. If it does and it exceeds our limit, |
| fail now. */ |
| if (t == 0) |
| { |
| if (MULT_COST_LESS (cost_limit, zero_cost (speed))) |
| return; |
| else |
| { |
| alg_out->ops = 1; |
| alg_out->cost.cost = zero_cost (speed); |
| alg_out->cost.latency = zero_cost (speed); |
| alg_out->op[0] = alg_zero; |
| return; |
| } |
| } |
| |
| /* We'll be needing a couple extra algorithm structures now. */ |
| |
| alg_in = XALLOCA (struct algorithm); |
| best_alg = XALLOCA (struct algorithm); |
| best_cost = *cost_limit; |
| |
| /* Compute the hash index. */ |
| hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES; |
| |
| /* See if we already know what to do for T. */ |
| entry_ptr = alg_hash_entry_ptr (hash_index); |
| if (entry_ptr->t == t |
| && entry_ptr->mode == mode |
| && entry_ptr->speed == speed |
| && entry_ptr->alg != alg_unknown) |
| { |
| cache_alg = entry_ptr->alg; |
| |
| if (cache_alg == alg_impossible) |
| { |
| /* The cache tells us that it's impossible to synthesize |
| multiplication by T within entry_ptr->cost. */ |
| if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit)) |
| /* COST_LIMIT is at least as restrictive as the one |
| recorded in the hash table, in which case we have no |
| hope of synthesizing a multiplication. Just |
| return. */ |
| return; |
| |
| /* If we get here, COST_LIMIT is less restrictive than the |
| one recorded in the hash table, so we may be able to |
| synthesize a multiplication. Proceed as if we didn't |
| have the cache entry. */ |
| } |
| else |
| { |
| if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost)) |
| /* The cached algorithm shows that this multiplication |
| requires more cost than COST_LIMIT. Just return. This |
| way, we don't clobber this cache entry with |
| alg_impossible but retain useful information. */ |
| return; |
| |
| cache_hit = true; |
| |
| switch (cache_alg) |
| { |
| case alg_shift: |
| goto do_alg_shift; |
| |
| case alg_add_t_m2: |
| case alg_sub_t_m2: |
| goto do_alg_addsub_t_m2; |
| |
| case alg_add_factor: |
| case alg_sub_factor: |
| goto do_alg_addsub_factor; |
| |
| case alg_add_t2_m: |
| goto do_alg_add_t2_m; |
| |
| case alg_sub_t2_m: |
| goto do_alg_sub_t2_m; |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| } |
| |
| /* If we have a group of zero bits at the low-order part of T, try |
| multiplying by the remaining bits and then doing a shift. */ |
| |
| if ((t & 1) == 0) |
| { |
| do_alg_shift: |
| m = ctz_or_zero (t); /* m = number of low zero bits */ |
| if (m < maxm) |
| { |
| q = t >> m; |
| /* The function expand_shift will choose between a shift and |
| a sequence of additions, so the observed cost is given as |
| MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */ |
| op_cost = m * add_cost (speed, mode); |
| if (shift_cost (speed, mode, m) < op_cost) |
| op_cost = shift_cost (speed, mode, m); |
| new_limit.cost = best_cost.cost - op_cost; |
| new_limit.latency = best_cost.latency - op_cost; |
| synth_mult (alg_in, q, &new_limit, mode); |
| |
| alg_in->cost.cost += op_cost; |
| alg_in->cost.latency += op_cost; |
| if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost)) |
| { |
| best_cost = alg_in->cost; |
| std::swap (alg_in, best_alg); |
| best_alg->log[best_alg->ops] = m; |
| best_alg->op[best_alg->ops] = alg_shift; |
| } |
| |
| /* See if treating ORIG_T as a signed number yields a better |
| sequence. Try this sequence only for a negative ORIG_T |
| as it would be useless for a non-negative ORIG_T. */ |
| if ((HOST_WIDE_INT) orig_t < 0) |
| { |
| /* Shift ORIG_T as follows because a right shift of a |
| negative-valued signed type is implementation |
| defined. */ |
| q = ~(~orig_t >> m); |
| /* The function expand_shift will choose between a shift |
| and a sequence of additions, so the observed cost is |
| given as MIN (m * add_cost(speed, mode), |
| shift_cost(speed, mode, m)). */ |
| op_cost = m * add_cost (speed, mode); |
| if (shift_cost (speed, mode, m) < op_cost) |
| op_cost = shift_cost (speed, mode, m); |
| new_limit.cost = best_cost.cost - op_cost; |
| new_limit.latency = best_cost.latency - op_cost; |
| synth_mult (alg_in, q, &new_limit, mode); |
| |
| alg_in->cost.cost += op_cost; |
| alg_in->cost.latency += op_cost; |
| if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost)) |
| { |
| best_cost = alg_in->cost; |
| std::swap (alg_in, best_alg); |
| best_alg->log[best_alg->ops] = m; |
| best_alg->op[best_alg->ops] = alg_shift; |
| } |
| } |
| } |
| if (cache_hit) |
| goto done; |
| } |
| |
| /* If we have an odd number, add or subtract one. */ |
| if ((t & 1) != 0) |
| { |
| unsigned HOST_WIDE_INT w; |
| |
| do_alg_addsub_t_m2: |
| for (w = 1; (w & t) != 0; w <<= 1) |
| ; |
| /* If T was -1, then W will be zero after the loop. This is another |
| case where T ends with ...111. Handling this with (T + 1) and |
| subtract 1 produces slightly better code and results in algorithm |
| selection much faster than treating it like the ...0111 case |
| below. */ |
| if (w == 0 |
| || (w > 2 |
| /* Reject the case where t is 3. |
| Thus we prefer addition in that case. */ |
| && t != 3)) |
| { |
| /* T ends with ...111. Multiply by (T + 1) and subtract T. */ |
| |
| op_cost = add_cost (speed, mode); |
| new_limit.cost = best_cost.cost - op_cost; |
| new_limit.latency = best_cost.latency - op_cost; |
| synth_mult (alg_in, t + 1, &new_limit, mode); |
| |
| alg_in->cost.cost += op_cost; |
| alg_in->cost.latency += op_cost; |
| if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost)) |
| { |
| best_cost = alg_in->cost; |
| std::swap (alg_in, best_alg); |
| best_alg->log[best_alg->ops] = 0; |
| best_alg->op[best_alg->ops] = alg_sub_t_m2; |
| } |
| } |
| else |
| { |
| /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */ |
| |
| op_cost = add_cost (speed, mode); |
| new_limit.cost = best_cost.cost - op_cost; |
| new_limit.latency = best_cost.latency - op_cost; |
| synth_mult (alg_in, t - 1, &new_limit, mode); |
| |
| alg_in->cost.cost += op_cost; |
| alg_in->cost.latency += op_cost; |
| if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost)) |
| { |
| best_cost = alg_in->cost; |
| std::swap (alg_in, best_alg); |
| best_alg->log[best_alg->ops] = 0; |
| best_alg->op[best_alg->ops] = alg_add_t_m2; |
| } |
| } |
| |
| /* We may be able to calculate a * -7, a * -15, a * -31, etc |
| quickly with a - a * n for some appropriate constant n. */ |
| m = exact_log2 (-orig_t + 1); |
| if (m >= 0 && m < maxm) |
| { |
| op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m); |
| /* If the target has a cheap shift-and-subtract insn use |
| that in preference to a shift insn followed by a sub insn. |
| Assume that the shift-and-sub is "atomic" with a latency |
| equal to it's cost, otherwise assume that on superscalar |
| hardware the shift may be executed concurrently with the |
| earlier steps in the algorithm. */ |
| if (shiftsub1_cost (speed, mode, m) <= op_cost) |
| { |
| op_cost = shiftsub1_cost (speed, mode, m); |
| op_latency = op_cost; |
| } |
| else |
| op_latency = add_cost (speed, mode); |
| |
| new_limit.cost = best_cost.cost - op_cost; |
| new_limit.latency = best_cost.latency - op_latency; |
| synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m, |
| &new_limit, mode); |
| |
| alg_in->cost.cost += op_cost; |
| alg_in->cost.latency += op_latency; |
| if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost)) |
| { |
| best_cost = alg_in->cost; |
| std::swap (alg_in, best_alg); |
| best_alg->log[best_alg->ops] = m; |
| best_alg->op[best_alg->ops] = alg_sub_t_m2; |
| } |
| } |
| |
| if (cache_hit) |
| goto done; |
| } |
| |
| /* Look for factors of t of the form |
| t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)). |
| If we find such a factor, we can multiply by t using an algorithm that |
| multiplies by q, shift the result by m and add/subtract it to itself. |
| |
| We search for large factors first and loop down, even if large factors |
| are less probable than small; if we find a large factor we will find a |
| good sequence quickly, and therefore be able to prune (by decreasing |
| COST_LIMIT) the search. */ |
| |
| do_alg_addsub_factor: |
| for (m = floor_log2 (t - 1); m >= 2; m--) |
| { |
| unsigned HOST_WIDE_INT d; |
| |
| d = (HOST_WIDE_INT_1U << m) + 1; |
| if (t % d == 0 && t > d && m < maxm |
| && (!cache_hit || cache_alg == alg_add_factor)) |
| { |
| op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m); |
| if (shiftadd_cost (speed, mode, m) <= op_cost) |
| op_cost = shiftadd_cost (speed, mode, m); |
| |
| op_latency = op_cost; |
| |
| |
| new_limit.cost = best_cost.cost - op_cost; |
| new_limit.latency = best_cost.latency - op_latency; |
| synth_mult (alg_in, t / d, &new_limit, mode); |
| |
| alg_in->cost.cost += op_cost; |
| alg_in->cost.latency += op_latency; |
| if (alg_in->cost.latency < op_cost) |
| alg_in->cost.latency = op_cost; |
| if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost)) |
| { |
| best_cost = alg_in->cost; |
| std::swap (alg_in, best_alg); |
| best_alg->log[best_alg->ops] = m; |
| best_alg->op[best_alg->ops] = alg_add_factor; |
| } |
| /* Other factors will have been taken care of in the recursion. */ |
| break; |
| } |
| |
| d = (HOST_WIDE_INT_1U << m) - 1; |
| if (t % d == 0 && t > d && m < maxm |
| && (!cache_hit || cache_alg == alg_sub_factor)) |
| { |
| op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m); |
| if (shiftsub0_cost (speed, mode, m) <= op_cost) |
| op_cost = shiftsub0_cost (speed, mode, m); |
| |
| op_latency = op_cost; |
| |
| new_limit.cost = best_cost.cost - op_cost; |
| new_limit.latency = best_cost.latency - op_latency; |
| synth_mult (alg_in, t / d, &new_limit, mode); |
| |
| alg_in->cost.cost += op_cost; |
| alg_in->cost.latency += op_latency; |
| if (alg_in->cost.latency < op_cost) |
| alg_in->cost.latency = op_cost; |
| if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost)) |
| { |
| best_cost = alg_in->cost; |
| std::swap (alg_in, best_alg); |
| best_alg->log[ |