| /* HSAIL IL Register allocation and out-of-SSA. |
| Copyright (C) 2013-2018 Free Software Foundation, Inc. |
| Contributed by Michael Matz <matz@suse.de> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "tm.h" |
| #include "is-a.h" |
| #include "vec.h" |
| #include "tree.h" |
| #include "dominance.h" |
| #include "basic-block.h" |
| #include "cfg.h" |
| #include "cfganal.h" |
| #include "function.h" |
| #include "bitmap.h" |
| #include "dumpfile.h" |
| #include "cgraph.h" |
| #include "print-tree.h" |
| #include "cfghooks.h" |
| #include "symbol-summary.h" |
| #include "hsa-common.h" |
| |
| |
| /* Process a PHI node PHI of basic block BB as a part of naive out-f-ssa. */ |
| |
| static void |
| naive_process_phi (hsa_insn_phi *phi, const vec<edge> &predecessors) |
| { |
| unsigned count = phi->operand_count (); |
| for (unsigned i = 0; i < count; i++) |
| { |
| gcc_checking_assert (phi->get_op (i)); |
| hsa_op_base *op = phi->get_op (i); |
| hsa_bb *hbb; |
| edge e; |
| |
| if (!op) |
| break; |
| |
| e = predecessors[i]; |
| if (single_succ_p (e->src)) |
| hbb = hsa_bb_for_bb (e->src); |
| else |
| { |
| basic_block old_dest = e->dest; |
| hbb = hsa_init_new_bb (split_edge (e)); |
| |
| /* If switch insn used this edge, fix jump table. */ |
| hsa_bb *source = hsa_bb_for_bb (e->src); |
| hsa_insn_sbr *sbr; |
| if (source->m_last_insn |
| && (sbr = dyn_cast <hsa_insn_sbr *> (source->m_last_insn))) |
| sbr->replace_all_labels (old_dest, hbb->m_bb); |
| } |
| |
| hsa_build_append_simple_mov (phi->m_dest, op, hbb); |
| } |
| } |
| |
| /* Naive out-of SSA. */ |
| |
| static void |
| naive_outof_ssa (void) |
| { |
| basic_block bb; |
| |
| hsa_cfun->m_in_ssa = false; |
| |
| FOR_ALL_BB_FN (bb, cfun) |
| { |
| hsa_bb *hbb = hsa_bb_for_bb (bb); |
| hsa_insn_phi *phi; |
| |
| /* naive_process_phi can call split_edge on an incoming edge which order if |
| the incoming edges to the basic block and thus make it inconsistent with |
| the ordering of PHI arguments, so we collect them in advance. */ |
| auto_vec<edge, 8> predecessors; |
| unsigned pred_count = EDGE_COUNT (bb->preds); |
| for (unsigned i = 0; i < pred_count; i++) |
| predecessors.safe_push (EDGE_PRED (bb, i)); |
| |
| for (phi = hbb->m_first_phi; |
| phi; |
| phi = phi->m_next ? as_a <hsa_insn_phi *> (phi->m_next) : NULL) |
| naive_process_phi (phi, predecessors); |
| |
| /* Zap PHI nodes, they will be deallocated when everything else will. */ |
| hbb->m_first_phi = NULL; |
| hbb->m_last_phi = NULL; |
| } |
| } |
| |
| /* Return register class number for the given HSA TYPE. 0 means the 'c' one |
| bit register class, 1 means 's' 32 bit class, 2 stands for 'd' 64 bit class |
| and 3 for 'q' 128 bit class. */ |
| |
| static int |
| m_reg_class_for_type (BrigType16_t type) |
| { |
| switch (type) |
| { |
| case BRIG_TYPE_B1: |
| return 0; |
| |
| case BRIG_TYPE_U8: |
| case BRIG_TYPE_U16: |
| case BRIG_TYPE_U32: |
| case BRIG_TYPE_S8: |
| case BRIG_TYPE_S16: |
| case BRIG_TYPE_S32: |
| case BRIG_TYPE_F16: |
| case BRIG_TYPE_F32: |
| case BRIG_TYPE_B8: |
| case BRIG_TYPE_B16: |
| case BRIG_TYPE_B32: |
| case BRIG_TYPE_U8X4: |
| case BRIG_TYPE_S8X4: |
| case BRIG_TYPE_U16X2: |
| case BRIG_TYPE_S16X2: |
| case BRIG_TYPE_F16X2: |
| return 1; |
| |
| case BRIG_TYPE_U64: |
| case BRIG_TYPE_S64: |
| case BRIG_TYPE_F64: |
| case BRIG_TYPE_B64: |
| case BRIG_TYPE_U8X8: |
| case BRIG_TYPE_S8X8: |
| case BRIG_TYPE_U16X4: |
| case BRIG_TYPE_S16X4: |
| case BRIG_TYPE_F16X4: |
| case BRIG_TYPE_U32X2: |
| case BRIG_TYPE_S32X2: |
| case BRIG_TYPE_F32X2: |
| return 2; |
| |
| case BRIG_TYPE_B128: |
| case BRIG_TYPE_U8X16: |
| case BRIG_TYPE_S8X16: |
| case BRIG_TYPE_U16X8: |
| case BRIG_TYPE_S16X8: |
| case BRIG_TYPE_F16X8: |
| case BRIG_TYPE_U32X4: |
| case BRIG_TYPE_U64X2: |
| case BRIG_TYPE_S32X4: |
| case BRIG_TYPE_S64X2: |
| case BRIG_TYPE_F32X4: |
| case BRIG_TYPE_F64X2: |
| return 3; |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* If the Ith operands of INSN is or contains a register (in an address), |
| return the address of that register operand. If not return NULL. */ |
| |
| static hsa_op_reg ** |
| insn_reg_addr (hsa_insn_basic *insn, int i) |
| { |
| hsa_op_base *op = insn->get_op (i); |
| if (!op) |
| return NULL; |
| hsa_op_reg *reg = dyn_cast <hsa_op_reg *> (op); |
| if (reg) |
| return (hsa_op_reg **) insn->get_op_addr (i); |
| hsa_op_address *addr = dyn_cast <hsa_op_address *> (op); |
| if (addr && addr->m_reg) |
| return &addr->m_reg; |
| return NULL; |
| } |
| |
| struct m_reg_class_desc |
| { |
| unsigned next_avail, max_num; |
| unsigned used_num, max_used; |
| uint64_t used[2]; |
| char cl_char; |
| }; |
| |
| /* Rewrite the instructions in BB to observe spilled live ranges. |
| CLASSES is the global register class state. */ |
| |
| static void |
| rewrite_code_bb (basic_block bb, struct m_reg_class_desc *classes) |
| { |
| hsa_bb *hbb = hsa_bb_for_bb (bb); |
| hsa_insn_basic *insn, *next_insn; |
| |
| for (insn = hbb->m_first_insn; insn; insn = next_insn) |
| { |
| next_insn = insn->m_next; |
| unsigned count = insn->operand_count (); |
| for (unsigned i = 0; i < count; i++) |
| { |
| gcc_checking_assert (insn->get_op (i)); |
| hsa_op_reg **regaddr = insn_reg_addr (insn, i); |
| |
| if (regaddr) |
| { |
| hsa_op_reg *reg = *regaddr; |
| if (reg->m_reg_class) |
| continue; |
| gcc_assert (reg->m_spill_sym); |
| |
| int cl = m_reg_class_for_type (reg->m_type); |
| hsa_op_reg *tmp, *tmp2; |
| if (insn->op_output_p (i)) |
| tmp = hsa_spill_out (insn, reg, &tmp2); |
| else |
| tmp = hsa_spill_in (insn, reg, &tmp2); |
| |
| *regaddr = tmp; |
| |
| tmp->m_reg_class = classes[cl].cl_char; |
| tmp->m_hard_num = (char) (classes[cl].max_num + i); |
| if (tmp2) |
| { |
| gcc_assert (cl == 0); |
| tmp2->m_reg_class = classes[1].cl_char; |
| tmp2->m_hard_num = (char) (classes[1].max_num + i); |
| } |
| } |
| } |
| } |
| } |
| |
| /* Dump current function to dump file F, with info specific |
| to register allocation. */ |
| |
| void |
| dump_hsa_cfun_regalloc (FILE *f) |
| { |
| basic_block bb; |
| |
| fprintf (f, "\nHSAIL IL for %s\n", hsa_cfun->m_name); |
| |
| FOR_ALL_BB_FN (bb, cfun) |
| { |
| hsa_bb *hbb = (struct hsa_bb *) bb->aux; |
| bitmap_print (dump_file, hbb->m_livein, "m_livein ", "\n"); |
| dump_hsa_bb (f, hbb); |
| bitmap_print (dump_file, hbb->m_liveout, "m_liveout ", "\n"); |
| } |
| } |
| |
| /* Given the global register allocation state CLASSES and a |
| register REG, try to give it a hardware register. If successful, |
| store that hardreg in REG and return it, otherwise return -1. |
| Also changes CLASSES to accommodate for the allocated register. */ |
| |
| static int |
| try_alloc_reg (struct m_reg_class_desc *classes, hsa_op_reg *reg) |
| { |
| int cl = m_reg_class_for_type (reg->m_type); |
| int ret = -1; |
| if (classes[1].used_num + classes[2].used_num * 2 + classes[3].used_num * 4 |
| >= 128 - 5) |
| return -1; |
| if (classes[cl].used_num < classes[cl].max_num) |
| { |
| unsigned int i; |
| classes[cl].used_num++; |
| if (classes[cl].used_num > classes[cl].max_used) |
| classes[cl].max_used = classes[cl].used_num; |
| for (i = 0; i < classes[cl].used_num; i++) |
| if (! (classes[cl].used[i / 64] & (((uint64_t)1) << (i & 63)))) |
| break; |
| ret = i; |
| classes[cl].used[i / 64] |= (((uint64_t)1) << (i & 63)); |
| reg->m_reg_class = classes[cl].cl_char; |
| reg->m_hard_num = i; |
| } |
| return ret; |
| } |
| |
| /* Free up hardregs used by REG, into allocation state CLASSES. */ |
| |
| static void |
| free_reg (struct m_reg_class_desc *classes, hsa_op_reg *reg) |
| { |
| int cl = m_reg_class_for_type (reg->m_type); |
| int ret = reg->m_hard_num; |
| gcc_assert (reg->m_reg_class == classes[cl].cl_char); |
| classes[cl].used_num--; |
| classes[cl].used[ret / 64] &= ~(((uint64_t)1) << (ret & 63)); |
| } |
| |
| /* Note that the live range for REG ends at least at END. */ |
| |
| static void |
| note_lr_end (hsa_op_reg *reg, int end) |
| { |
| if (reg->m_lr_end < end) |
| reg->m_lr_end = end; |
| } |
| |
| /* Note that the live range for REG starts at least at BEGIN. */ |
| |
| static void |
| note_lr_begin (hsa_op_reg *reg, int begin) |
| { |
| if (reg->m_lr_begin > begin) |
| reg->m_lr_begin = begin; |
| } |
| |
| /* Given two registers A and B, return -1, 0 or 1 if A's live range |
| starts before, at or after B's live range. */ |
| |
| static int |
| cmp_begin (const void *a, const void *b) |
| { |
| const hsa_op_reg * const *rega = (const hsa_op_reg * const *)a; |
| const hsa_op_reg * const *regb = (const hsa_op_reg * const *)b; |
| int ret; |
| if (rega == regb) |
| return 0; |
| ret = (*rega)->m_lr_begin - (*regb)->m_lr_begin; |
| if (ret) |
| return ret; |
| return ((*rega)->m_order - (*regb)->m_order); |
| } |
| |
| /* Given two registers REGA and REGB, return true if REGA's |
| live range ends after REGB's. This results in a sorting order |
| with earlier end points at the end. */ |
| |
| static bool |
| cmp_end (hsa_op_reg * const ®a, hsa_op_reg * const ®b) |
| { |
| int ret; |
| if (rega == regb) |
| return false; |
| ret = (regb)->m_lr_end - (rega)->m_lr_end; |
| if (ret) |
| return ret < 0; |
| return (((regb)->m_order - (rega)->m_order)) < 0; |
| } |
| |
| /* Expire all old intervals in ACTIVE (a per-regclass vector), |
| that is, those that end before the interval REG starts. Give |
| back resources freed so into the state CLASSES. */ |
| |
| static void |
| expire_old_intervals (hsa_op_reg *reg, vec<hsa_op_reg*> *active, |
| struct m_reg_class_desc *classes) |
| { |
| for (int i = 0; i < 4; i++) |
| while (!active[i].is_empty ()) |
| { |
| hsa_op_reg *a = active[i].pop (); |
| if (a->m_lr_end > reg->m_lr_begin) |
| { |
| active[i].quick_push (a); |
| break; |
| } |
| free_reg (classes, a); |
| } |
| } |
| |
| /* The interval REG didn't get a hardreg. Spill it or one of those |
| from ACTIVE (if the latter, then REG will become allocated to the |
| hardreg that formerly was used by it). */ |
| |
| static void |
| spill_at_interval (hsa_op_reg *reg, vec<hsa_op_reg*> *active) |
| { |
| int cl = m_reg_class_for_type (reg->m_type); |
| gcc_assert (!active[cl].is_empty ()); |
| hsa_op_reg *cand = active[cl][0]; |
| if (cand->m_lr_end > reg->m_lr_end) |
| { |
| reg->m_reg_class = cand->m_reg_class; |
| reg->m_hard_num = cand->m_hard_num; |
| active[cl].ordered_remove (0); |
| unsigned place = active[cl].lower_bound (reg, cmp_end); |
| active[cl].quick_insert (place, reg); |
| } |
| else |
| cand = reg; |
| |
| gcc_assert (!cand->m_spill_sym); |
| BrigType16_t type = cand->m_type; |
| if (type == BRIG_TYPE_B1) |
| type = BRIG_TYPE_U8; |
| cand->m_reg_class = 0; |
| cand->m_spill_sym = hsa_get_spill_symbol (type); |
| cand->m_spill_sym->m_name_number = cand->m_order; |
| } |
| |
| /* Given the global register state CLASSES allocate all HSA virtual |
| registers either to hardregs or to a spill symbol. */ |
| |
| static void |
| linear_scan_regalloc (struct m_reg_class_desc *classes) |
| { |
| /* Compute liveness. */ |
| bool changed; |
| int i, n; |
| int insn_order; |
| int *bbs = XNEWVEC (int, n_basic_blocks_for_fn (cfun)); |
| bitmap work = BITMAP_ALLOC (NULL); |
| vec<hsa_op_reg*> ind2reg = vNULL; |
| vec<hsa_op_reg*> active[4] = {vNULL, vNULL, vNULL, vNULL}; |
| hsa_insn_basic *m_last_insn; |
| |
| /* We will need the reverse post order for linearization, |
| and the post order for liveness analysis, which is the same |
| backward. */ |
| n = pre_and_rev_post_order_compute (NULL, bbs, true); |
| ind2reg.safe_grow_cleared (hsa_cfun->m_reg_count); |
| |
| /* Give all instructions a linearized number, at the same time |
| build a mapping from register index to register. */ |
| insn_order = 1; |
| for (i = 0; i < n; i++) |
| { |
| basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bbs[i]); |
| hsa_bb *hbb = hsa_bb_for_bb (bb); |
| hsa_insn_basic *insn; |
| for (insn = hbb->m_first_insn; insn; insn = insn->m_next) |
| { |
| unsigned opi; |
| insn->m_number = insn_order++; |
| for (opi = 0; opi < insn->operand_count (); opi++) |
| { |
| gcc_checking_assert (insn->get_op (opi)); |
| hsa_op_reg **regaddr = insn_reg_addr (insn, opi); |
| if (regaddr) |
| ind2reg[(*regaddr)->m_order] = *regaddr; |
| } |
| } |
| } |
| |
| /* Initialize all live ranges to [after-end, 0). */ |
| for (i = 0; i < hsa_cfun->m_reg_count; i++) |
| if (ind2reg[i]) |
| ind2reg[i]->m_lr_begin = insn_order, ind2reg[i]->m_lr_end = 0; |
| |
| /* Classic liveness analysis, as long as something changes: |
| m_liveout is union (m_livein of successors) |
| m_livein is m_liveout minus defs plus uses. */ |
| do |
| { |
| changed = false; |
| for (i = n - 1; i >= 0; i--) |
| { |
| edge e; |
| edge_iterator ei; |
| basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bbs[i]); |
| hsa_bb *hbb = hsa_bb_for_bb (bb); |
| |
| /* Union of successors m_livein (or empty if none). */ |
| bool first = true; |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)) |
| { |
| hsa_bb *succ = hsa_bb_for_bb (e->dest); |
| if (first) |
| { |
| bitmap_copy (work, succ->m_livein); |
| first = false; |
| } |
| else |
| bitmap_ior_into (work, succ->m_livein); |
| } |
| if (first) |
| bitmap_clear (work); |
| |
| bitmap_copy (hbb->m_liveout, work); |
| |
| /* Remove defs, include uses in a backward insn walk. */ |
| hsa_insn_basic *insn; |
| for (insn = hbb->m_last_insn; insn; insn = insn->m_prev) |
| { |
| unsigned opi; |
| unsigned ndefs = insn->input_count (); |
| for (opi = 0; opi < ndefs && insn->get_op (opi); opi++) |
| { |
| gcc_checking_assert (insn->get_op (opi)); |
| hsa_op_reg **regaddr = insn_reg_addr (insn, opi); |
| if (regaddr) |
| bitmap_clear_bit (work, (*regaddr)->m_order); |
| } |
| for (; opi < insn->operand_count (); opi++) |
| { |
| gcc_checking_assert (insn->get_op (opi)); |
| hsa_op_reg **regaddr = insn_reg_addr (insn, opi); |
| if (regaddr) |
| bitmap_set_bit (work, (*regaddr)->m_order); |
| } |
| } |
| |
| /* Note if that changed something. */ |
| if (bitmap_ior_into (hbb->m_livein, work)) |
| changed = true; |
| } |
| } |
| while (changed); |
| |
| /* Make one pass through all instructions in linear order, |
| noting and merging possible live range start and end points. */ |
| m_last_insn = NULL; |
| for (i = n - 1; i >= 0; i--) |
| { |
| basic_block bb = BASIC_BLOCK_FOR_FN (cfun, bbs[i]); |
| hsa_bb *hbb = hsa_bb_for_bb (bb); |
| hsa_insn_basic *insn; |
| int after_end_number; |
| unsigned bit; |
| bitmap_iterator bi; |
| |
| if (m_last_insn) |
| after_end_number = m_last_insn->m_number; |
| else |
| after_end_number = insn_order; |
| /* Everything live-out in this BB has at least an end point |
| after us. */ |
| EXECUTE_IF_SET_IN_BITMAP (hbb->m_liveout, 0, bit, bi) |
| note_lr_end (ind2reg[bit], after_end_number); |
| |
| for (insn = hbb->m_last_insn; insn; insn = insn->m_prev) |
| { |
| unsigned opi; |
| unsigned ndefs = insn->input_count (); |
| for (opi = 0; opi < insn->operand_count (); opi++) |
| { |
| gcc_checking_assert (insn->get_op (opi)); |
| hsa_op_reg **regaddr = insn_reg_addr (insn, opi); |
| if (regaddr) |
| { |
| hsa_op_reg *reg = *regaddr; |
| if (opi < ndefs) |
| note_lr_begin (reg, insn->m_number); |
| else |
| note_lr_end (reg, insn->m_number); |
| } |
| } |
| } |
| |
| /* Everything live-in in this BB has a start point before |
| our first insn. */ |
| int before_start_number; |
| if (hbb->m_first_insn) |
| before_start_number = hbb->m_first_insn->m_number; |
| else |
| before_start_number = after_end_number; |
| before_start_number--; |
| EXECUTE_IF_SET_IN_BITMAP (hbb->m_livein, 0, bit, bi) |
| note_lr_begin (ind2reg[bit], before_start_number); |
| |
| if (hbb->m_first_insn) |
| m_last_insn = hbb->m_first_insn; |
| } |
| |
| for (i = 0; i < hsa_cfun->m_reg_count; i++) |
| if (ind2reg[i]) |
| { |
| /* All regs that have still their start at after all code actually |
| are defined at the start of the routine (prologue). */ |
| if (ind2reg[i]->m_lr_begin == insn_order) |
| ind2reg[i]->m_lr_begin = 0; |
| /* All regs that have no use but a def will have lr_end == 0, |
| they are actually live from def until after the insn they are |
| defined in. */ |
| if (ind2reg[i]->m_lr_end == 0) |
| ind2reg[i]->m_lr_end = ind2reg[i]->m_lr_begin + 1; |
| } |
| |
| /* Sort all intervals by increasing start point. */ |
| gcc_assert (ind2reg.length () == (size_t) hsa_cfun->m_reg_count); |
| |
| if (flag_checking) |
| for (unsigned i = 0; i < ind2reg.length (); i++) |
| gcc_assert (ind2reg[i]); |
| |
| ind2reg.qsort (cmp_begin); |
| for (i = 0; i < 4; i++) |
| active[i].reserve_exact (hsa_cfun->m_reg_count); |
| |
| /* Now comes the linear scan allocation. */ |
| for (i = 0; i < hsa_cfun->m_reg_count; i++) |
| { |
| hsa_op_reg *reg = ind2reg[i]; |
| if (!reg) |
| continue; |
| expire_old_intervals (reg, active, classes); |
| int cl = m_reg_class_for_type (reg->m_type); |
| if (try_alloc_reg (classes, reg) >= 0) |
| { |
| unsigned place = active[cl].lower_bound (reg, cmp_end); |
| active[cl].quick_insert (place, reg); |
| } |
| else |
| spill_at_interval (reg, active); |
| |
| /* Some interesting dumping as we go. */ |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, " reg%d: [%5d, %5d)->", |
| reg->m_order, reg->m_lr_begin, reg->m_lr_end); |
| if (reg->m_reg_class) |
| fprintf (dump_file, "$%c%i", reg->m_reg_class, reg->m_hard_num); |
| else |
| fprintf (dump_file, "[%%__%s_%i]", |
| hsa_seg_name (reg->m_spill_sym->m_segment), |
| reg->m_spill_sym->m_name_number); |
| for (int cl = 0; cl < 4; cl++) |
| { |
| bool first = true; |
| hsa_op_reg *r; |
| fprintf (dump_file, " {"); |
| for (int j = 0; active[cl].iterate (j, &r); j++) |
| if (first) |
| { |
| fprintf (dump_file, "%d", r->m_order); |
| first = false; |
| } |
| else |
| fprintf (dump_file, ", %d", r->m_order); |
| fprintf (dump_file, "}"); |
| } |
| fprintf (dump_file, "\n"); |
| } |
| } |
| |
| BITMAP_FREE (work); |
| free (bbs); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "------- After liveness: -------\n"); |
| dump_hsa_cfun_regalloc (dump_file); |
| fprintf (dump_file, " ----- Intervals:\n"); |
| for (i = 0; i < hsa_cfun->m_reg_count; i++) |
| { |
| hsa_op_reg *reg = ind2reg[i]; |
| if (!reg) |
| continue; |
| fprintf (dump_file, " reg%d: [%5d, %5d)->", reg->m_order, |
| reg->m_lr_begin, reg->m_lr_end); |
| if (reg->m_reg_class) |
| fprintf (dump_file, "$%c%i\n", reg->m_reg_class, reg->m_hard_num); |
| else |
| fprintf (dump_file, "[%%__%s_%i]\n", |
| hsa_seg_name (reg->m_spill_sym->m_segment), |
| reg->m_spill_sym->m_name_number); |
| } |
| } |
| |
| for (i = 0; i < 4; i++) |
| active[i].release (); |
| ind2reg.release (); |
| } |
| |
| /* Entry point for register allocation. */ |
| |
| static void |
| regalloc (void) |
| { |
| basic_block bb; |
| m_reg_class_desc classes[4]; |
| |
| /* If there are no registers used in the function, exit right away. */ |
| if (hsa_cfun->m_reg_count == 0) |
| return; |
| |
| memset (classes, 0, sizeof (classes)); |
| classes[0].next_avail = 0; |
| classes[0].max_num = 7; |
| classes[0].cl_char = 'c'; |
| classes[1].cl_char = 's'; |
| classes[2].cl_char = 'd'; |
| classes[3].cl_char = 'q'; |
| |
| for (int i = 1; i < 4; i++) |
| { |
| classes[i].next_avail = 0; |
| classes[i].max_num = 20; |
| } |
| |
| linear_scan_regalloc (classes); |
| |
| FOR_ALL_BB_FN (bb, cfun) |
| rewrite_code_bb (bb, classes); |
| } |
| |
| /* Out of SSA and register allocation on HSAIL IL. */ |
| |
| void |
| hsa_regalloc (void) |
| { |
| hsa_cfun->update_dominance (); |
| naive_outof_ssa (); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "------- After out-of-SSA: -------\n"); |
| dump_hsa_cfun (dump_file); |
| } |
| |
| regalloc (); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "------- After register allocation: -------\n"); |
| dump_hsa_cfun (dump_file); |
| } |
| } |