blob: b63c600c47b2972c08c8df57a6ff9ffb6ceeeae9 [file] [log] [blame]
/* Combining of if-expressions on trees.
Copyright (C) 2007-2018 Free Software Foundation, Inc.
Contributed by Richard Guenther <rguenther@suse.de>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "memmodel.h"
#include "tm_p.h"
#include "ssa.h"
#include "tree-pretty-print.h"
/* rtl is needed only because arm back-end requires it for
BRANCH_COST. */
#include "fold-const.h"
#include "cfganal.h"
#include "gimple-fold.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "tree-cfg.h"
#include "tree-ssa.h"
#ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
#define LOGICAL_OP_NON_SHORT_CIRCUIT \
(BRANCH_COST (optimize_function_for_speed_p (cfun), \
false) >= 2)
#endif
/* This pass combines COND_EXPRs to simplify control flow. It
currently recognizes bit tests and comparisons in chains that
represent logical and or logical or of two COND_EXPRs.
It does so by walking basic blocks in a approximate reverse
post-dominator order and trying to match CFG patterns that
represent logical and or logical or of two COND_EXPRs.
Transformations are done if the COND_EXPR conditions match
either
1. two single bit tests X & (1 << Yn) (for logical and)
2. two bit tests X & Yn (for logical or)
3. two comparisons X OPn Y (for logical or)
To simplify this pass, removing basic blocks and dead code
is left to CFG cleanup and DCE. */
/* Recognize a if-then-else CFG pattern starting to match with the
COND_BB basic-block containing the COND_EXPR. The recognized
then end else blocks are stored to *THEN_BB and *ELSE_BB. If
*THEN_BB and/or *ELSE_BB are already set, they are required to
match the then and else basic-blocks to make the pattern match.
Returns true if the pattern matched, false otherwise. */
static bool
recognize_if_then_else (basic_block cond_bb,
basic_block *then_bb, basic_block *else_bb)
{
edge t, e;
if (EDGE_COUNT (cond_bb->succs) != 2)
return false;
/* Find the then/else edges. */
t = EDGE_SUCC (cond_bb, 0);
e = EDGE_SUCC (cond_bb, 1);
if (!(t->flags & EDGE_TRUE_VALUE))
std::swap (t, e);
if (!(t->flags & EDGE_TRUE_VALUE)
|| !(e->flags & EDGE_FALSE_VALUE))
return false;
/* Check if the edge destinations point to the required block. */
if (*then_bb
&& t->dest != *then_bb)
return false;
if (*else_bb
&& e->dest != *else_bb)
return false;
if (!*then_bb)
*then_bb = t->dest;
if (!*else_bb)
*else_bb = e->dest;
return true;
}
/* Verify if the basic block BB does not have side-effects. Return
true in this case, else false. */
static bool
bb_no_side_effects_p (basic_block bb)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (is_gimple_debug (stmt))
continue;
if (gimple_has_side_effects (stmt)
|| gimple_uses_undefined_value_p (stmt)
|| gimple_could_trap_p (stmt)
|| gimple_vuse (stmt)
/* const calls don't match any of the above, yet they could
still have some side-effects - they could contain
gimple_could_trap_p statements, like floating point
exceptions or integer division by zero. See PR70586.
FIXME: perhaps gimple_has_side_effects or gimple_could_trap_p
should handle this. */
|| is_gimple_call (stmt))
return false;
}
return true;
}
/* Return true if BB is an empty forwarder block to TO_BB. */
static bool
forwarder_block_to (basic_block bb, basic_block to_bb)
{
return empty_block_p (bb)
&& single_succ_p (bb)
&& single_succ (bb) == to_bb;
}
/* Verify if all PHI node arguments in DEST for edges from BB1 or
BB2 to DEST are the same. This makes the CFG merge point
free from side-effects. Return true in this case, else false. */
static bool
same_phi_args_p (basic_block bb1, basic_block bb2, basic_block dest)
{
edge e1 = find_edge (bb1, dest);
edge e2 = find_edge (bb2, dest);
gphi_iterator gsi;
gphi *phi;
for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
{
phi = gsi.phi ();
if (!operand_equal_p (PHI_ARG_DEF_FROM_EDGE (phi, e1),
PHI_ARG_DEF_FROM_EDGE (phi, e2), 0))
return false;
}
return true;
}
/* Return the best representative SSA name for CANDIDATE which is used
in a bit test. */
static tree
get_name_for_bit_test (tree candidate)
{
/* Skip single-use names in favor of using the name from a
non-widening conversion definition. */
if (TREE_CODE (candidate) == SSA_NAME
&& has_single_use (candidate))
{
gimple *def_stmt = SSA_NAME_DEF_STMT (candidate);
if (is_gimple_assign (def_stmt)
&& CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
{
if (TYPE_PRECISION (TREE_TYPE (candidate))
<= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
return gimple_assign_rhs1 (def_stmt);
}
}
return candidate;
}
/* Recognize a single bit test pattern in GIMPLE_COND and its defining
statements. Store the name being tested in *NAME and the bit
in *BIT. The GIMPLE_COND computes *NAME & (1 << *BIT).
Returns true if the pattern matched, false otherwise. */
static bool
recognize_single_bit_test (gcond *cond, tree *name, tree *bit, bool inv)
{
gimple *stmt;
/* Get at the definition of the result of the bit test. */
if (gimple_cond_code (cond) != (inv ? EQ_EXPR : NE_EXPR)
|| TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
|| !integer_zerop (gimple_cond_rhs (cond)))
return false;
stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
if (!is_gimple_assign (stmt))
return false;
/* Look at which bit is tested. One form to recognize is
D.1985_5 = state_3(D) >> control1_4(D);
D.1986_6 = (int) D.1985_5;
D.1987_7 = op0 & 1;
if (D.1987_7 != 0) */
if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
&& integer_onep (gimple_assign_rhs2 (stmt))
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
{
tree orig_name = gimple_assign_rhs1 (stmt);
/* Look through copies and conversions to eventually
find the stmt that computes the shift. */
stmt = SSA_NAME_DEF_STMT (orig_name);
while (is_gimple_assign (stmt)
&& ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))
&& (TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (stmt)))
<= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt))))
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
|| gimple_assign_ssa_name_copy_p (stmt)))
stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
/* If we found such, decompose it. */
if (is_gimple_assign (stmt)
&& gimple_assign_rhs_code (stmt) == RSHIFT_EXPR)
{
/* op0 & (1 << op1) */
*bit = gimple_assign_rhs2 (stmt);
*name = gimple_assign_rhs1 (stmt);
}
else
{
/* t & 1 */
*bit = integer_zero_node;
*name = get_name_for_bit_test (orig_name);
}
return true;
}
/* Another form is
D.1987_7 = op0 & (1 << CST)
if (D.1987_7 != 0) */
if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
&& integer_pow2p (gimple_assign_rhs2 (stmt)))
{
*name = gimple_assign_rhs1 (stmt);
*bit = build_int_cst (integer_type_node,
tree_log2 (gimple_assign_rhs2 (stmt)));
return true;
}
/* Another form is
D.1986_6 = 1 << control1_4(D)
D.1987_7 = op0 & D.1986_6
if (D.1987_7 != 0) */
if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
&& TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
&& TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
{
gimple *tmp;
/* Both arguments of the BIT_AND_EXPR can be the single-bit
specifying expression. */
tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
if (is_gimple_assign (tmp)
&& gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
&& integer_onep (gimple_assign_rhs1 (tmp)))
{
*name = gimple_assign_rhs2 (stmt);
*bit = gimple_assign_rhs2 (tmp);
return true;
}
tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
if (is_gimple_assign (tmp)
&& gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
&& integer_onep (gimple_assign_rhs1 (tmp)))
{
*name = gimple_assign_rhs1 (stmt);
*bit = gimple_assign_rhs2 (tmp);
return true;
}
}
return false;
}
/* Recognize a bit test pattern in a GIMPLE_COND and its defining
statements. Store the name being tested in *NAME and the bits
in *BITS. The COND_EXPR computes *NAME & *BITS.
Returns true if the pattern matched, false otherwise. */
static bool
recognize_bits_test (gcond *cond, tree *name, tree *bits, bool inv)
{
gimple *stmt;
/* Get at the definition of the result of the bit test. */
if (gimple_cond_code (cond) != (inv ? EQ_EXPR : NE_EXPR)
|| TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
|| !integer_zerop (gimple_cond_rhs (cond)))
return false;
stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
if (!is_gimple_assign (stmt)
|| gimple_assign_rhs_code (stmt) != BIT_AND_EXPR)
return false;
*name = get_name_for_bit_test (gimple_assign_rhs1 (stmt));
*bits = gimple_assign_rhs2 (stmt);
return true;
}
/* Update profile after code in outer_cond_bb was adjusted so
outer_cond_bb has no condition. */
static void
update_profile_after_ifcombine (basic_block inner_cond_bb,
basic_block outer_cond_bb)
{
edge outer_to_inner = find_edge (outer_cond_bb, inner_cond_bb);
edge outer2 = (EDGE_SUCC (outer_cond_bb, 0) == outer_to_inner
? EDGE_SUCC (outer_cond_bb, 1)
: EDGE_SUCC (outer_cond_bb, 0));
edge inner_taken = EDGE_SUCC (inner_cond_bb, 0);
edge inner_not_taken = EDGE_SUCC (inner_cond_bb, 1);
if (inner_taken->dest != outer2->dest)
std::swap (inner_taken, inner_not_taken);
gcc_assert (inner_taken->dest == outer2->dest);
/* In the following we assume that inner_cond_bb has single predecessor. */
gcc_assert (single_pred_p (inner_cond_bb));
/* Path outer_cond_bb->(outer2) needs to be merged into path
outer_cond_bb->(outer_to_inner)->inner_cond_bb->(inner_taken)
and probability of inner_not_taken updated. */
inner_cond_bb->count = outer_cond_bb->count;
inner_taken->probability = outer2->probability + outer_to_inner->probability
* inner_taken->probability;
inner_not_taken->probability = profile_probability::always ()
- inner_taken->probability;
outer_to_inner->probability = profile_probability::always ();
outer2->probability = profile_probability::never ();
}
/* If-convert on a and pattern with a common else block. The inner
if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
inner_inv, outer_inv and result_inv indicate whether the conditions
are inverted.
Returns true if the edges to the common else basic-block were merged. */
static bool
ifcombine_ifandif (basic_block inner_cond_bb, bool inner_inv,
basic_block outer_cond_bb, bool outer_inv, bool result_inv)
{
gimple_stmt_iterator gsi;
gimple *inner_stmt, *outer_stmt;
gcond *inner_cond, *outer_cond;
tree name1, name2, bit1, bit2, bits1, bits2;
inner_stmt = last_stmt (inner_cond_bb);
if (!inner_stmt
|| gimple_code (inner_stmt) != GIMPLE_COND)
return false;
inner_cond = as_a <gcond *> (inner_stmt);
outer_stmt = last_stmt (outer_cond_bb);
if (!outer_stmt
|| gimple_code (outer_stmt) != GIMPLE_COND)
return false;
outer_cond = as_a <gcond *> (outer_stmt);
/* See if we test a single bit of the same name in both tests. In
that case remove the outer test, merging both else edges,
and change the inner one to test for
name & (bit1 | bit2) == (bit1 | bit2). */
if (recognize_single_bit_test (inner_cond, &name1, &bit1, inner_inv)
&& recognize_single_bit_test (outer_cond, &name2, &bit2, outer_inv)
&& name1 == name2)
{
tree t, t2;
/* Do it. */
gsi = gsi_for_stmt (inner_cond);
t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
build_int_cst (TREE_TYPE (name1), 1), bit1);
t2 = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
build_int_cst (TREE_TYPE (name1), 1), bit2);
t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), t, t2);
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
true, GSI_SAME_STMT);
t2 = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
t2 = force_gimple_operand_gsi (&gsi, t2, true, NULL_TREE,
true, GSI_SAME_STMT);
t = fold_build2 (result_inv ? NE_EXPR : EQ_EXPR,
boolean_type_node, t2, t);
t = canonicalize_cond_expr_cond (t);
if (!t)
return false;
gimple_cond_set_condition_from_tree (inner_cond, t);
update_stmt (inner_cond);
/* Leave CFG optimization to cfg_cleanup. */
gimple_cond_set_condition_from_tree (outer_cond,
outer_inv ? boolean_false_node : boolean_true_node);
update_stmt (outer_cond);
update_profile_after_ifcombine (inner_cond_bb, outer_cond_bb);
if (dump_file)
{
fprintf (dump_file, "optimizing double bit test to ");
print_generic_expr (dump_file, name1);
fprintf (dump_file, " & T == T\nwith temporary T = (1 << ");
print_generic_expr (dump_file, bit1);
fprintf (dump_file, ") | (1 << ");
print_generic_expr (dump_file, bit2);
fprintf (dump_file, ")\n");
}
return true;
}
/* See if we have two bit tests of the same name in both tests.
In that case remove the outer test and change the inner one to
test for name & (bits1 | bits2) != 0. */
else if (recognize_bits_test (inner_cond, &name1, &bits1, !inner_inv)
&& recognize_bits_test (outer_cond, &name2, &bits2, !outer_inv))
{
gimple_stmt_iterator gsi;
tree t;
/* Find the common name which is bit-tested. */
if (name1 == name2)
;
else if (bits1 == bits2)
{
std::swap (name2, bits2);
std::swap (name1, bits1);
}
else if (name1 == bits2)
std::swap (name2, bits2);
else if (bits1 == name2)
std::swap (name1, bits1);
else
return false;
/* As we strip non-widening conversions in finding a common
name that is tested make sure to end up with an integral
type for building the bit operations. */
if (TYPE_PRECISION (TREE_TYPE (bits1))
>= TYPE_PRECISION (TREE_TYPE (bits2)))
{
bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
name1 = fold_convert (TREE_TYPE (bits1), name1);
bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
bits2 = fold_convert (TREE_TYPE (bits1), bits2);
}
else
{
bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
name1 = fold_convert (TREE_TYPE (bits2), name1);
bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
bits1 = fold_convert (TREE_TYPE (bits2), bits1);
}
/* Do it. */
gsi = gsi_for_stmt (inner_cond);
t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), bits1, bits2);
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
true, GSI_SAME_STMT);
t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
true, GSI_SAME_STMT);
t = fold_build2 (result_inv ? NE_EXPR : EQ_EXPR, boolean_type_node, t,
build_int_cst (TREE_TYPE (t), 0));
t = canonicalize_cond_expr_cond (t);
if (!t)
return false;
gimple_cond_set_condition_from_tree (inner_cond, t);
update_stmt (inner_cond);
/* Leave CFG optimization to cfg_cleanup. */
gimple_cond_set_condition_from_tree (outer_cond,
outer_inv ? boolean_false_node : boolean_true_node);
update_stmt (outer_cond);
update_profile_after_ifcombine (inner_cond_bb, outer_cond_bb);
if (dump_file)
{
fprintf (dump_file, "optimizing bits or bits test to ");
print_generic_expr (dump_file, name1);
fprintf (dump_file, " & T != 0\nwith temporary T = ");
print_generic_expr (dump_file, bits1);
fprintf (dump_file, " | ");
print_generic_expr (dump_file, bits2);
fprintf (dump_file, "\n");
}
return true;
}
/* See if we have two comparisons that we can merge into one. */
else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison
&& TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison)
{
tree t;
enum tree_code inner_cond_code = gimple_cond_code (inner_cond);
enum tree_code outer_cond_code = gimple_cond_code (outer_cond);
/* Invert comparisons if necessary (and possible). */
if (inner_inv)
inner_cond_code = invert_tree_comparison (inner_cond_code,
HONOR_NANS (gimple_cond_lhs (inner_cond)));
if (inner_cond_code == ERROR_MARK)
return false;
if (outer_inv)
outer_cond_code = invert_tree_comparison (outer_cond_code,
HONOR_NANS (gimple_cond_lhs (outer_cond)));
if (outer_cond_code == ERROR_MARK)
return false;
/* Don't return false so fast, try maybe_fold_or_comparisons? */
if (!(t = maybe_fold_and_comparisons (inner_cond_code,
gimple_cond_lhs (inner_cond),
gimple_cond_rhs (inner_cond),
outer_cond_code,
gimple_cond_lhs (outer_cond),
gimple_cond_rhs (outer_cond))))
{
tree t1, t2;
gimple_stmt_iterator gsi;
if (!LOGICAL_OP_NON_SHORT_CIRCUIT || flag_sanitize_coverage)
return false;
/* Only do this optimization if the inner bb contains only the conditional. */
if (!gsi_one_before_end_p (gsi_start_nondebug_after_labels_bb (inner_cond_bb)))
return false;
t1 = fold_build2_loc (gimple_location (inner_cond),
inner_cond_code,
boolean_type_node,
gimple_cond_lhs (inner_cond),
gimple_cond_rhs (inner_cond));
t2 = fold_build2_loc (gimple_location (outer_cond),
outer_cond_code,
boolean_type_node,
gimple_cond_lhs (outer_cond),
gimple_cond_rhs (outer_cond));
t = fold_build2_loc (gimple_location (inner_cond),
TRUTH_AND_EXPR, boolean_type_node, t1, t2);
if (result_inv)
{
t = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (t), t);
result_inv = false;
}
gsi = gsi_for_stmt (inner_cond);
t = force_gimple_operand_gsi_1 (&gsi, t, is_gimple_condexpr, NULL, true,
GSI_SAME_STMT);
}
if (result_inv)
t = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (t), t);
t = canonicalize_cond_expr_cond (t);
if (!t)
return false;
gimple_cond_set_condition_from_tree (inner_cond, t);
update_stmt (inner_cond);
/* Leave CFG optimization to cfg_cleanup. */
gimple_cond_set_condition_from_tree (outer_cond,
outer_inv ? boolean_false_node : boolean_true_node);
update_stmt (outer_cond);
update_profile_after_ifcombine (inner_cond_bb, outer_cond_bb);
if (dump_file)
{
fprintf (dump_file, "optimizing two comparisons to ");
print_generic_expr (dump_file, t);
fprintf (dump_file, "\n");
}
return true;
}
return false;
}
/* Helper function for tree_ssa_ifcombine_bb. Recognize a CFG pattern and
dispatch to the appropriate if-conversion helper for a particular
set of INNER_COND_BB, OUTER_COND_BB, THEN_BB and ELSE_BB.
PHI_PRED_BB should be one of INNER_COND_BB, THEN_BB or ELSE_BB. */
static bool
tree_ssa_ifcombine_bb_1 (basic_block inner_cond_bb, basic_block outer_cond_bb,
basic_block then_bb, basic_block else_bb,
basic_block phi_pred_bb)
{
/* The && form is characterized by a common else_bb with
the two edges leading to it mergable. The latter is
guaranteed by matching PHI arguments in the else_bb and
the inner cond_bb having no side-effects. */
if (phi_pred_bb != else_bb
&& recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &else_bb)
&& same_phi_args_p (outer_cond_bb, phi_pred_bb, else_bb))
{
/* We have
<outer_cond_bb>
if (q) goto inner_cond_bb; else goto else_bb;
<inner_cond_bb>
if (p) goto ...; else goto else_bb;
...
<else_bb>
...
*/
return ifcombine_ifandif (inner_cond_bb, false, outer_cond_bb, false,
false);
}
/* And a version where the outer condition is negated. */
if (phi_pred_bb != else_bb
&& recognize_if_then_else (outer_cond_bb, &else_bb, &inner_cond_bb)
&& same_phi_args_p (outer_cond_bb, phi_pred_bb, else_bb))
{
/* We have
<outer_cond_bb>
if (q) goto else_bb; else goto inner_cond_bb;
<inner_cond_bb>
if (p) goto ...; else goto else_bb;
...
<else_bb>
...
*/
return ifcombine_ifandif (inner_cond_bb, false, outer_cond_bb, true,
false);
}
/* The || form is characterized by a common then_bb with the
two edges leading to it mergable. The latter is guaranteed
by matching PHI arguments in the then_bb and the inner cond_bb
having no side-effects. */
if (phi_pred_bb != then_bb
&& recognize_if_then_else (outer_cond_bb, &then_bb, &inner_cond_bb)
&& same_phi_args_p (outer_cond_bb, phi_pred_bb, then_bb))
{
/* We have
<outer_cond_bb>
if (q) goto then_bb; else goto inner_cond_bb;
<inner_cond_bb>
if (q) goto then_bb; else goto ...;
<then_bb>
...
*/
return ifcombine_ifandif (inner_cond_bb, true, outer_cond_bb, true,
true);
}
/* And a version where the outer condition is negated. */
if (phi_pred_bb != then_bb
&& recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &then_bb)
&& same_phi_args_p (outer_cond_bb, phi_pred_bb, then_bb))
{
/* We have
<outer_cond_bb>
if (q) goto inner_cond_bb; else goto then_bb;
<inner_cond_bb>
if (q) goto then_bb; else goto ...;
<then_bb>
...
*/
return ifcombine_ifandif (inner_cond_bb, true, outer_cond_bb, false,
true);
}
return false;
}
/* Recognize a CFG pattern and dispatch to the appropriate
if-conversion helper. We start with BB as the innermost
worker basic-block. Returns true if a transformation was done. */
static bool
tree_ssa_ifcombine_bb (basic_block inner_cond_bb)
{
basic_block then_bb = NULL, else_bb = NULL;
if (!recognize_if_then_else (inner_cond_bb, &then_bb, &else_bb))
return false;
/* Recognize && and || of two conditions with a common
then/else block which entry edges we can merge. That is:
if (a || b)
;
and
if (a && b)
;
This requires a single predecessor of the inner cond_bb. */
if (single_pred_p (inner_cond_bb)
&& bb_no_side_effects_p (inner_cond_bb))
{
basic_block outer_cond_bb = single_pred (inner_cond_bb);
if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb,
then_bb, else_bb, inner_cond_bb))
return true;
if (forwarder_block_to (else_bb, then_bb))
{
/* Other possibilities for the && form, if else_bb is
empty forwarder block to then_bb. Compared to the above simpler
forms this can be treated as if then_bb and else_bb were swapped,
and the corresponding inner_cond_bb not inverted because of that.
For same_phi_args_p we look at equality of arguments between
edge from outer_cond_bb and the forwarder block. */
if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb, else_bb,
then_bb, else_bb))
return true;
}
else if (forwarder_block_to (then_bb, else_bb))
{
/* Other possibilities for the || form, if then_bb is
empty forwarder block to else_bb. Compared to the above simpler
forms this can be treated as if then_bb and else_bb were swapped,
and the corresponding inner_cond_bb not inverted because of that.
For same_phi_args_p we look at equality of arguments between
edge from outer_cond_bb and the forwarder block. */
if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb, else_bb,
then_bb, then_bb))
return true;
}
}
return false;
}
/* Main entry for the tree if-conversion pass. */
namespace {
const pass_data pass_data_tree_ifcombine =
{
GIMPLE_PASS, /* type */
"ifcombine", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_IFCOMBINE, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_tree_ifcombine : public gimple_opt_pass
{
public:
pass_tree_ifcombine (gcc::context *ctxt)
: gimple_opt_pass (pass_data_tree_ifcombine, ctxt)
{}
/* opt_pass methods: */
virtual unsigned int execute (function *);
}; // class pass_tree_ifcombine
unsigned int
pass_tree_ifcombine::execute (function *fun)
{
basic_block *bbs;
bool cfg_changed = false;
int i;
bbs = single_pred_before_succ_order ();
calculate_dominance_info (CDI_DOMINATORS);
/* Search every basic block for COND_EXPR we may be able to optimize.
We walk the blocks in order that guarantees that a block with
a single predecessor is processed after the predecessor.
This ensures that we collapse outter ifs before visiting the
inner ones, and also that we do not try to visit a removed
block. This is opposite of PHI-OPT, because we cascade the
combining rather than cascading PHIs. */
for (i = n_basic_blocks_for_fn (fun) - NUM_FIXED_BLOCKS - 1; i >= 0; i--)
{
basic_block bb = bbs[i];
gimple *stmt = last_stmt (bb);
if (stmt
&& gimple_code (stmt) == GIMPLE_COND)
if (tree_ssa_ifcombine_bb (bb))
{
/* Clear range info from all stmts in BB which is now executed
conditional on a always true/false condition. */
reset_flow_sensitive_info_in_bb (bb);
cfg_changed |= true;
}
}
free (bbs);
return cfg_changed ? TODO_cleanup_cfg : 0;
}
} // anon namespace
gimple_opt_pass *
make_pass_tree_ifcombine (gcc::context *ctxt)
{
return new pass_tree_ifcombine (ctxt);
}