| //===-- sanitizer_win.cc --------------------------------------------------===// |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is shared between AddressSanitizer and ThreadSanitizer |
| // run-time libraries and implements windows-specific functions from |
| // sanitizer_libc.h. |
| //===----------------------------------------------------------------------===// |
| |
| #include "sanitizer_platform.h" |
| #if SANITIZER_WINDOWS |
| |
| #define WIN32_LEAN_AND_MEAN |
| #define NOGDI |
| #include <windows.h> |
| #include <io.h> |
| #include <psapi.h> |
| #include <stdlib.h> |
| |
| #include "sanitizer_common.h" |
| #include "sanitizer_dbghelp.h" |
| #include "sanitizer_file.h" |
| #include "sanitizer_libc.h" |
| #include "sanitizer_mutex.h" |
| #include "sanitizer_placement_new.h" |
| #include "sanitizer_stacktrace.h" |
| #include "sanitizer_symbolizer.h" |
| #include "sanitizer_win_defs.h" |
| |
| // A macro to tell the compiler that this part of the code cannot be reached, |
| // if the compiler supports this feature. Since we're using this in |
| // code that is called when terminating the process, the expansion of the |
| // macro should not terminate the process to avoid infinite recursion. |
| #if defined(__clang__) |
| # define BUILTIN_UNREACHABLE() __builtin_unreachable() |
| #elif defined(__GNUC__) && \ |
| (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)) |
| # define BUILTIN_UNREACHABLE() __builtin_unreachable() |
| #elif defined(_MSC_VER) |
| # define BUILTIN_UNREACHABLE() __assume(0) |
| #else |
| # define BUILTIN_UNREACHABLE() |
| #endif |
| |
| namespace __sanitizer { |
| |
| #include "sanitizer_syscall_generic.inc" |
| |
| // --------------------- sanitizer_common.h |
| uptr GetPageSize() { |
| SYSTEM_INFO si; |
| GetSystemInfo(&si); |
| return si.dwPageSize; |
| } |
| |
| uptr GetMmapGranularity() { |
| SYSTEM_INFO si; |
| GetSystemInfo(&si); |
| return si.dwAllocationGranularity; |
| } |
| |
| uptr GetMaxVirtualAddress() { |
| SYSTEM_INFO si; |
| GetSystemInfo(&si); |
| return (uptr)si.lpMaximumApplicationAddress; |
| } |
| |
| bool FileExists(const char *filename) { |
| return ::GetFileAttributesA(filename) != INVALID_FILE_ATTRIBUTES; |
| } |
| |
| uptr internal_getpid() { |
| return GetProcessId(GetCurrentProcess()); |
| } |
| |
| // In contrast to POSIX, on Windows GetCurrentThreadId() |
| // returns a system-unique identifier. |
| tid_t GetTid() { |
| return GetCurrentThreadId(); |
| } |
| |
| uptr GetThreadSelf() { |
| return GetTid(); |
| } |
| |
| #if !SANITIZER_GO |
| void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, |
| uptr *stack_bottom) { |
| CHECK(stack_top); |
| CHECK(stack_bottom); |
| MEMORY_BASIC_INFORMATION mbi; |
| CHECK_NE(VirtualQuery(&mbi /* on stack */, &mbi, sizeof(mbi)), 0); |
| // FIXME: is it possible for the stack to not be a single allocation? |
| // Are these values what ASan expects to get (reserved, not committed; |
| // including stack guard page) ? |
| *stack_top = (uptr)mbi.BaseAddress + mbi.RegionSize; |
| *stack_bottom = (uptr)mbi.AllocationBase; |
| } |
| #endif // #if !SANITIZER_GO |
| |
| void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) { |
| void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); |
| if (rv == 0) |
| ReportMmapFailureAndDie(size, mem_type, "allocate", |
| GetLastError(), raw_report); |
| return rv; |
| } |
| |
| void UnmapOrDie(void *addr, uptr size) { |
| if (!size || !addr) |
| return; |
| |
| MEMORY_BASIC_INFORMATION mbi; |
| CHECK(VirtualQuery(addr, &mbi, sizeof(mbi))); |
| |
| // MEM_RELEASE can only be used to unmap whole regions previously mapped with |
| // VirtualAlloc. So we first try MEM_RELEASE since it is better, and if that |
| // fails try MEM_DECOMMIT. |
| if (VirtualFree(addr, 0, MEM_RELEASE) == 0) { |
| if (VirtualFree(addr, size, MEM_DECOMMIT) == 0) { |
| Report("ERROR: %s failed to " |
| "deallocate 0x%zx (%zd) bytes at address %p (error code: %d)\n", |
| SanitizerToolName, size, size, addr, GetLastError()); |
| CHECK("unable to unmap" && 0); |
| } |
| } |
| } |
| |
| static void *ReturnNullptrOnOOMOrDie(uptr size, const char *mem_type, |
| const char *mmap_type) { |
| error_t last_error = GetLastError(); |
| if (last_error == ERROR_NOT_ENOUGH_MEMORY) |
| return nullptr; |
| ReportMmapFailureAndDie(size, mem_type, mmap_type, last_error); |
| } |
| |
| void *MmapOrDieOnFatalError(uptr size, const char *mem_type) { |
| void *rv = VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); |
| if (rv == 0) |
| return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate"); |
| return rv; |
| } |
| |
| // We want to map a chunk of address space aligned to 'alignment'. |
| void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment, |
| const char *mem_type) { |
| CHECK(IsPowerOfTwo(size)); |
| CHECK(IsPowerOfTwo(alignment)); |
| |
| // Windows will align our allocations to at least 64K. |
| alignment = Max(alignment, GetMmapGranularity()); |
| |
| uptr mapped_addr = |
| (uptr)VirtualAlloc(0, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); |
| if (!mapped_addr) |
| return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned"); |
| |
| // If we got it right on the first try, return. Otherwise, unmap it and go to |
| // the slow path. |
| if (IsAligned(mapped_addr, alignment)) |
| return (void*)mapped_addr; |
| if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0) |
| ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError()); |
| |
| // If we didn't get an aligned address, overallocate, find an aligned address, |
| // unmap, and try to allocate at that aligned address. |
| int retries = 0; |
| const int kMaxRetries = 10; |
| for (; retries < kMaxRetries && |
| (mapped_addr == 0 || !IsAligned(mapped_addr, alignment)); |
| retries++) { |
| // Overallocate size + alignment bytes. |
| mapped_addr = |
| (uptr)VirtualAlloc(0, size + alignment, MEM_RESERVE, PAGE_NOACCESS); |
| if (!mapped_addr) |
| return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned"); |
| |
| // Find the aligned address. |
| uptr aligned_addr = RoundUpTo(mapped_addr, alignment); |
| |
| // Free the overallocation. |
| if (VirtualFree((void *)mapped_addr, 0, MEM_RELEASE) == 0) |
| ReportMmapFailureAndDie(size, mem_type, "deallocate", GetLastError()); |
| |
| // Attempt to allocate exactly the number of bytes we need at the aligned |
| // address. This may fail for a number of reasons, in which case we continue |
| // the loop. |
| mapped_addr = (uptr)VirtualAlloc((void *)aligned_addr, size, |
| MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE); |
| } |
| |
| // Fail if we can't make this work quickly. |
| if (retries == kMaxRetries && mapped_addr == 0) |
| return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate aligned"); |
| |
| return (void *)mapped_addr; |
| } |
| |
| void *MmapFixedNoReserve(uptr fixed_addr, uptr size, const char *name) { |
| // FIXME: is this really "NoReserve"? On Win32 this does not matter much, |
| // but on Win64 it does. |
| (void)name; // unsupported |
| #if !SANITIZER_GO && SANITIZER_WINDOWS64 |
| // On asan/Windows64, use MEM_COMMIT would result in error |
| // 1455:ERROR_COMMITMENT_LIMIT. |
| // Asan uses exception handler to commit page on demand. |
| void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE, PAGE_READWRITE); |
| #else |
| void *p = VirtualAlloc((LPVOID)fixed_addr, size, MEM_RESERVE | MEM_COMMIT, |
| PAGE_READWRITE); |
| #endif |
| if (p == 0) |
| Report("ERROR: %s failed to " |
| "allocate %p (%zd) bytes at %p (error code: %d)\n", |
| SanitizerToolName, size, size, fixed_addr, GetLastError()); |
| return p; |
| } |
| |
| // Memory space mapped by 'MmapFixedOrDie' must have been reserved by |
| // 'MmapFixedNoAccess'. |
| void *MmapFixedOrDie(uptr fixed_addr, uptr size) { |
| void *p = VirtualAlloc((LPVOID)fixed_addr, size, |
| MEM_COMMIT, PAGE_READWRITE); |
| if (p == 0) { |
| char mem_type[30]; |
| internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx", |
| fixed_addr); |
| ReportMmapFailureAndDie(size, mem_type, "allocate", GetLastError()); |
| } |
| return p; |
| } |
| |
| void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size) { |
| void *p = VirtualAlloc((LPVOID)fixed_addr, size, |
| MEM_COMMIT, PAGE_READWRITE); |
| if (p == 0) { |
| char mem_type[30]; |
| internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx", |
| fixed_addr); |
| return ReturnNullptrOnOOMOrDie(size, mem_type, "allocate"); |
| } |
| return p; |
| } |
| |
| void *MmapNoReserveOrDie(uptr size, const char *mem_type) { |
| // FIXME: make this really NoReserve? |
| return MmapOrDie(size, mem_type); |
| } |
| |
| void *MmapFixedNoAccess(uptr fixed_addr, uptr size, const char *name) { |
| (void)name; // unsupported |
| void *res = VirtualAlloc((LPVOID)fixed_addr, size, |
| MEM_RESERVE, PAGE_NOACCESS); |
| if (res == 0) |
| Report("WARNING: %s failed to " |
| "mprotect %p (%zd) bytes at %p (error code: %d)\n", |
| SanitizerToolName, size, size, fixed_addr, GetLastError()); |
| return res; |
| } |
| |
| void *MmapNoAccess(uptr size) { |
| void *res = VirtualAlloc(nullptr, size, MEM_RESERVE, PAGE_NOACCESS); |
| if (res == 0) |
| Report("WARNING: %s failed to " |
| "mprotect %p (%zd) bytes (error code: %d)\n", |
| SanitizerToolName, size, size, GetLastError()); |
| return res; |
| } |
| |
| bool MprotectNoAccess(uptr addr, uptr size) { |
| DWORD old_protection; |
| return VirtualProtect((LPVOID)addr, size, PAGE_NOACCESS, &old_protection); |
| } |
| |
| void ReleaseMemoryPagesToOS(uptr beg, uptr end) { |
| // This is almost useless on 32-bits. |
| // FIXME: add madvise-analog when we move to 64-bits. |
| } |
| |
| void NoHugePagesInRegion(uptr addr, uptr size) { |
| // FIXME: probably similar to ReleaseMemoryToOS. |
| } |
| |
| void DontDumpShadowMemory(uptr addr, uptr length) { |
| // This is almost useless on 32-bits. |
| // FIXME: add madvise-analog when we move to 64-bits. |
| } |
| |
| uptr FindAvailableMemoryRange(uptr size, uptr alignment, uptr left_padding, |
| uptr *largest_gap_found) { |
| uptr address = 0; |
| while (true) { |
| MEMORY_BASIC_INFORMATION info; |
| if (!::VirtualQuery((void*)address, &info, sizeof(info))) |
| return 0; |
| |
| if (info.State == MEM_FREE) { |
| uptr shadow_address = RoundUpTo((uptr)info.BaseAddress + left_padding, |
| alignment); |
| if (shadow_address + size < (uptr)info.BaseAddress + info.RegionSize) |
| return shadow_address; |
| } |
| |
| // Move to the next region. |
| address = (uptr)info.BaseAddress + info.RegionSize; |
| } |
| return 0; |
| } |
| |
| bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) { |
| MEMORY_BASIC_INFORMATION mbi; |
| CHECK(VirtualQuery((void *)range_start, &mbi, sizeof(mbi))); |
| return mbi.Protect == PAGE_NOACCESS && |
| (uptr)mbi.BaseAddress + mbi.RegionSize >= range_end; |
| } |
| |
| void *MapFileToMemory(const char *file_name, uptr *buff_size) { |
| UNIMPLEMENTED(); |
| } |
| |
| void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) { |
| UNIMPLEMENTED(); |
| } |
| |
| static const int kMaxEnvNameLength = 128; |
| static const DWORD kMaxEnvValueLength = 32767; |
| |
| namespace { |
| |
| struct EnvVariable { |
| char name[kMaxEnvNameLength]; |
| char value[kMaxEnvValueLength]; |
| }; |
| |
| } // namespace |
| |
| static const int kEnvVariables = 5; |
| static EnvVariable env_vars[kEnvVariables]; |
| static int num_env_vars; |
| |
| const char *GetEnv(const char *name) { |
| // Note: this implementation caches the values of the environment variables |
| // and limits their quantity. |
| for (int i = 0; i < num_env_vars; i++) { |
| if (0 == internal_strcmp(name, env_vars[i].name)) |
| return env_vars[i].value; |
| } |
| CHECK_LT(num_env_vars, kEnvVariables); |
| DWORD rv = GetEnvironmentVariableA(name, env_vars[num_env_vars].value, |
| kMaxEnvValueLength); |
| if (rv > 0 && rv < kMaxEnvValueLength) { |
| CHECK_LT(internal_strlen(name), kMaxEnvNameLength); |
| internal_strncpy(env_vars[num_env_vars].name, name, kMaxEnvNameLength); |
| num_env_vars++; |
| return env_vars[num_env_vars - 1].value; |
| } |
| return 0; |
| } |
| |
| const char *GetPwd() { |
| UNIMPLEMENTED(); |
| } |
| |
| u32 GetUid() { |
| UNIMPLEMENTED(); |
| } |
| |
| namespace { |
| struct ModuleInfo { |
| const char *filepath; |
| uptr base_address; |
| uptr end_address; |
| }; |
| |
| #if !SANITIZER_GO |
| int CompareModulesBase(const void *pl, const void *pr) { |
| const ModuleInfo *l = (ModuleInfo *)pl, *r = (ModuleInfo *)pr; |
| if (l->base_address < r->base_address) |
| return -1; |
| return l->base_address > r->base_address; |
| } |
| #endif |
| } // namespace |
| |
| #if !SANITIZER_GO |
| void DumpProcessMap() { |
| Report("Dumping process modules:\n"); |
| ListOfModules modules; |
| modules.init(); |
| uptr num_modules = modules.size(); |
| |
| InternalScopedBuffer<ModuleInfo> module_infos(num_modules); |
| for (size_t i = 0; i < num_modules; ++i) { |
| module_infos[i].filepath = modules[i].full_name(); |
| module_infos[i].base_address = modules[i].ranges().front()->beg; |
| module_infos[i].end_address = modules[i].ranges().back()->end; |
| } |
| qsort(module_infos.data(), num_modules, sizeof(ModuleInfo), |
| CompareModulesBase); |
| |
| for (size_t i = 0; i < num_modules; ++i) { |
| const ModuleInfo &mi = module_infos[i]; |
| if (mi.end_address != 0) { |
| Printf("\t%p-%p %s\n", mi.base_address, mi.end_address, |
| mi.filepath[0] ? mi.filepath : "[no name]"); |
| } else if (mi.filepath[0]) { |
| Printf("\t??\?-??? %s\n", mi.filepath); |
| } else { |
| Printf("\t???\n"); |
| } |
| } |
| } |
| #endif |
| |
| void PrintModuleMap() { } |
| |
| void DisableCoreDumperIfNecessary() { |
| // Do nothing. |
| } |
| |
| void ReExec() { |
| UNIMPLEMENTED(); |
| } |
| |
| void PrepareForSandboxing(__sanitizer_sandbox_arguments *args) { |
| } |
| |
| bool StackSizeIsUnlimited() { |
| UNIMPLEMENTED(); |
| } |
| |
| void SetStackSizeLimitInBytes(uptr limit) { |
| UNIMPLEMENTED(); |
| } |
| |
| bool AddressSpaceIsUnlimited() { |
| UNIMPLEMENTED(); |
| } |
| |
| void SetAddressSpaceUnlimited() { |
| UNIMPLEMENTED(); |
| } |
| |
| bool IsPathSeparator(const char c) { |
| return c == '\\' || c == '/'; |
| } |
| |
| bool IsAbsolutePath(const char *path) { |
| UNIMPLEMENTED(); |
| } |
| |
| void SleepForSeconds(int seconds) { |
| Sleep(seconds * 1000); |
| } |
| |
| void SleepForMillis(int millis) { |
| Sleep(millis); |
| } |
| |
| u64 NanoTime() { |
| return 0; |
| } |
| |
| void Abort() { |
| internal__exit(3); |
| } |
| |
| #if !SANITIZER_GO |
| // Read the file to extract the ImageBase field from the PE header. If ASLR is |
| // disabled and this virtual address is available, the loader will typically |
| // load the image at this address. Therefore, we call it the preferred base. Any |
| // addresses in the DWARF typically assume that the object has been loaded at |
| // this address. |
| static uptr GetPreferredBase(const char *modname) { |
| fd_t fd = OpenFile(modname, RdOnly, nullptr); |
| if (fd == kInvalidFd) |
| return 0; |
| FileCloser closer(fd); |
| |
| // Read just the DOS header. |
| IMAGE_DOS_HEADER dos_header; |
| uptr bytes_read; |
| if (!ReadFromFile(fd, &dos_header, sizeof(dos_header), &bytes_read) || |
| bytes_read != sizeof(dos_header)) |
| return 0; |
| |
| // The file should start with the right signature. |
| if (dos_header.e_magic != IMAGE_DOS_SIGNATURE) |
| return 0; |
| |
| // The layout at e_lfanew is: |
| // "PE\0\0" |
| // IMAGE_FILE_HEADER |
| // IMAGE_OPTIONAL_HEADER |
| // Seek to e_lfanew and read all that data. |
| char buf[4 + sizeof(IMAGE_FILE_HEADER) + sizeof(IMAGE_OPTIONAL_HEADER)]; |
| if (::SetFilePointer(fd, dos_header.e_lfanew, nullptr, FILE_BEGIN) == |
| INVALID_SET_FILE_POINTER) |
| return 0; |
| if (!ReadFromFile(fd, &buf[0], sizeof(buf), &bytes_read) || |
| bytes_read != sizeof(buf)) |
| return 0; |
| |
| // Check for "PE\0\0" before the PE header. |
| char *pe_sig = &buf[0]; |
| if (internal_memcmp(pe_sig, "PE\0\0", 4) != 0) |
| return 0; |
| |
| // Skip over IMAGE_FILE_HEADER. We could do more validation here if we wanted. |
| IMAGE_OPTIONAL_HEADER *pe_header = |
| (IMAGE_OPTIONAL_HEADER *)(pe_sig + 4 + sizeof(IMAGE_FILE_HEADER)); |
| |
| // Check for more magic in the PE header. |
| if (pe_header->Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC) |
| return 0; |
| |
| // Finally, return the ImageBase. |
| return (uptr)pe_header->ImageBase; |
| } |
| |
| void ListOfModules::init() { |
| clearOrInit(); |
| HANDLE cur_process = GetCurrentProcess(); |
| |
| // Query the list of modules. Start by assuming there are no more than 256 |
| // modules and retry if that's not sufficient. |
| HMODULE *hmodules = 0; |
| uptr modules_buffer_size = sizeof(HMODULE) * 256; |
| DWORD bytes_required; |
| while (!hmodules) { |
| hmodules = (HMODULE *)MmapOrDie(modules_buffer_size, __FUNCTION__); |
| CHECK(EnumProcessModules(cur_process, hmodules, modules_buffer_size, |
| &bytes_required)); |
| if (bytes_required > modules_buffer_size) { |
| // Either there turned out to be more than 256 hmodules, or new hmodules |
| // could have loaded since the last try. Retry. |
| UnmapOrDie(hmodules, modules_buffer_size); |
| hmodules = 0; |
| modules_buffer_size = bytes_required; |
| } |
| } |
| |
| // |num_modules| is the number of modules actually present, |
| size_t num_modules = bytes_required / sizeof(HMODULE); |
| for (size_t i = 0; i < num_modules; ++i) { |
| HMODULE handle = hmodules[i]; |
| MODULEINFO mi; |
| if (!GetModuleInformation(cur_process, handle, &mi, sizeof(mi))) |
| continue; |
| |
| // Get the UTF-16 path and convert to UTF-8. |
| wchar_t modname_utf16[kMaxPathLength]; |
| int modname_utf16_len = |
| GetModuleFileNameW(handle, modname_utf16, kMaxPathLength); |
| if (modname_utf16_len == 0) |
| modname_utf16[0] = '\0'; |
| char module_name[kMaxPathLength]; |
| int module_name_len = |
| ::WideCharToMultiByte(CP_UTF8, 0, modname_utf16, modname_utf16_len + 1, |
| &module_name[0], kMaxPathLength, NULL, NULL); |
| module_name[module_name_len] = '\0'; |
| |
| uptr base_address = (uptr)mi.lpBaseOfDll; |
| uptr end_address = (uptr)mi.lpBaseOfDll + mi.SizeOfImage; |
| |
| // Adjust the base address of the module so that we get a VA instead of an |
| // RVA when computing the module offset. This helps llvm-symbolizer find the |
| // right DWARF CU. In the common case that the image is loaded at it's |
| // preferred address, we will now print normal virtual addresses. |
| uptr preferred_base = GetPreferredBase(&module_name[0]); |
| uptr adjusted_base = base_address - preferred_base; |
| |
| LoadedModule cur_module; |
| cur_module.set(module_name, adjusted_base); |
| // We add the whole module as one single address range. |
| cur_module.addAddressRange(base_address, end_address, /*executable*/ true, |
| /*writable*/ true); |
| modules_.push_back(cur_module); |
| } |
| UnmapOrDie(hmodules, modules_buffer_size); |
| } |
| |
| void ListOfModules::fallbackInit() { clear(); } |
| |
| // We can't use atexit() directly at __asan_init time as the CRT is not fully |
| // initialized at this point. Place the functions into a vector and use |
| // atexit() as soon as it is ready for use (i.e. after .CRT$XIC initializers). |
| InternalMmapVectorNoCtor<void (*)(void)> atexit_functions; |
| |
| int Atexit(void (*function)(void)) { |
| atexit_functions.push_back(function); |
| return 0; |
| } |
| |
| static int RunAtexit() { |
| int ret = 0; |
| for (uptr i = 0; i < atexit_functions.size(); ++i) { |
| ret |= atexit(atexit_functions[i]); |
| } |
| return ret; |
| } |
| |
| #pragma section(".CRT$XID", long, read) // NOLINT |
| __declspec(allocate(".CRT$XID")) int (*__run_atexit)() = RunAtexit; |
| #endif |
| |
| // ------------------ sanitizer_libc.h |
| fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *last_error) { |
| // FIXME: Use the wide variants to handle Unicode filenames. |
| fd_t res; |
| if (mode == RdOnly) { |
| res = CreateFileA(filename, GENERIC_READ, |
| FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, |
| nullptr, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, nullptr); |
| } else if (mode == WrOnly) { |
| res = CreateFileA(filename, GENERIC_WRITE, 0, nullptr, CREATE_ALWAYS, |
| FILE_ATTRIBUTE_NORMAL, nullptr); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| CHECK(res != kStdoutFd || kStdoutFd == kInvalidFd); |
| CHECK(res != kStderrFd || kStderrFd == kInvalidFd); |
| if (res == kInvalidFd && last_error) |
| *last_error = GetLastError(); |
| return res; |
| } |
| |
| void CloseFile(fd_t fd) { |
| CloseHandle(fd); |
| } |
| |
| bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read, |
| error_t *error_p) { |
| CHECK(fd != kInvalidFd); |
| |
| // bytes_read can't be passed directly to ReadFile: |
| // uptr is unsigned long long on 64-bit Windows. |
| unsigned long num_read_long; |
| |
| bool success = ::ReadFile(fd, buff, buff_size, &num_read_long, nullptr); |
| if (!success && error_p) |
| *error_p = GetLastError(); |
| if (bytes_read) |
| *bytes_read = num_read_long; |
| return success; |
| } |
| |
| bool SupportsColoredOutput(fd_t fd) { |
| // FIXME: support colored output. |
| return false; |
| } |
| |
| bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written, |
| error_t *error_p) { |
| CHECK(fd != kInvalidFd); |
| |
| // Handle null optional parameters. |
| error_t dummy_error; |
| error_p = error_p ? error_p : &dummy_error; |
| uptr dummy_bytes_written; |
| bytes_written = bytes_written ? bytes_written : &dummy_bytes_written; |
| |
| // Initialize output parameters in case we fail. |
| *error_p = 0; |
| *bytes_written = 0; |
| |
| // Map the conventional Unix fds 1 and 2 to Windows handles. They might be |
| // closed, in which case this will fail. |
| if (fd == kStdoutFd || fd == kStderrFd) { |
| fd = GetStdHandle(fd == kStdoutFd ? STD_OUTPUT_HANDLE : STD_ERROR_HANDLE); |
| if (fd == 0) { |
| *error_p = ERROR_INVALID_HANDLE; |
| return false; |
| } |
| } |
| |
| DWORD bytes_written_32; |
| if (!WriteFile(fd, buff, buff_size, &bytes_written_32, 0)) { |
| *error_p = GetLastError(); |
| return false; |
| } else { |
| *bytes_written = bytes_written_32; |
| return true; |
| } |
| } |
| |
| bool RenameFile(const char *oldpath, const char *newpath, error_t *error_p) { |
| UNIMPLEMENTED(); |
| } |
| |
| uptr internal_sched_yield() { |
| Sleep(0); |
| return 0; |
| } |
| |
| void internal__exit(int exitcode) { |
| // ExitProcess runs some finalizers, so use TerminateProcess to avoid that. |
| // The debugger doesn't stop on TerminateProcess like it does on ExitProcess, |
| // so add our own breakpoint here. |
| if (::IsDebuggerPresent()) |
| __debugbreak(); |
| TerminateProcess(GetCurrentProcess(), exitcode); |
| BUILTIN_UNREACHABLE(); |
| } |
| |
| uptr internal_ftruncate(fd_t fd, uptr size) { |
| UNIMPLEMENTED(); |
| } |
| |
| uptr GetRSS() { |
| return 0; |
| } |
| |
| void *internal_start_thread(void (*func)(void *arg), void *arg) { return 0; } |
| void internal_join_thread(void *th) { } |
| |
| // ---------------------- BlockingMutex ---------------- {{{1 |
| const uptr LOCK_UNINITIALIZED = 0; |
| const uptr LOCK_READY = (uptr)-1; |
| |
| BlockingMutex::BlockingMutex(LinkerInitialized li) { |
| // FIXME: see comments in BlockingMutex::Lock() for the details. |
| CHECK(li == LINKER_INITIALIZED || owner_ == LOCK_UNINITIALIZED); |
| |
| CHECK(sizeof(CRITICAL_SECTION) <= sizeof(opaque_storage_)); |
| InitializeCriticalSection((LPCRITICAL_SECTION)opaque_storage_); |
| owner_ = LOCK_READY; |
| } |
| |
| BlockingMutex::BlockingMutex() { |
| CHECK(sizeof(CRITICAL_SECTION) <= sizeof(opaque_storage_)); |
| InitializeCriticalSection((LPCRITICAL_SECTION)opaque_storage_); |
| owner_ = LOCK_READY; |
| } |
| |
| void BlockingMutex::Lock() { |
| if (owner_ == LOCK_UNINITIALIZED) { |
| // FIXME: hm, global BlockingMutex objects are not initialized?!? |
| // This might be a side effect of the clang+cl+link Frankenbuild... |
| new(this) BlockingMutex((LinkerInitialized)(LINKER_INITIALIZED + 1)); |
| |
| // FIXME: If it turns out the linker doesn't invoke our |
| // constructors, we should probably manually Lock/Unlock all the global |
| // locks while we're starting in one thread to avoid double-init races. |
| } |
| EnterCriticalSection((LPCRITICAL_SECTION)opaque_storage_); |
| CHECK_EQ(owner_, LOCK_READY); |
| owner_ = GetThreadSelf(); |
| } |
| |
| void BlockingMutex::Unlock() { |
| CHECK_EQ(owner_, GetThreadSelf()); |
| owner_ = LOCK_READY; |
| LeaveCriticalSection((LPCRITICAL_SECTION)opaque_storage_); |
| } |
| |
| void BlockingMutex::CheckLocked() { |
| CHECK_EQ(owner_, GetThreadSelf()); |
| } |
| |
| uptr GetTlsSize() { |
| return 0; |
| } |
| |
| void InitTlsSize() { |
| } |
| |
| void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, |
| uptr *tls_addr, uptr *tls_size) { |
| #if SANITIZER_GO |
| *stk_addr = 0; |
| *stk_size = 0; |
| *tls_addr = 0; |
| *tls_size = 0; |
| #else |
| uptr stack_top, stack_bottom; |
| GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom); |
| *stk_addr = stack_bottom; |
| *stk_size = stack_top - stack_bottom; |
| *tls_addr = 0; |
| *tls_size = 0; |
| #endif |
| } |
| |
| #if !SANITIZER_GO |
| void BufferedStackTrace::SlowUnwindStack(uptr pc, u32 max_depth) { |
| CHECK_GE(max_depth, 2); |
| // FIXME: CaptureStackBackTrace might be too slow for us. |
| // FIXME: Compare with StackWalk64. |
| // FIXME: Look at LLVMUnhandledExceptionFilter in Signals.inc |
| size = CaptureStackBackTrace(1, Min(max_depth, kStackTraceMax), |
| (void**)trace, 0); |
| if (size == 0) |
| return; |
| |
| // Skip the RTL frames by searching for the PC in the stacktrace. |
| uptr pc_location = LocatePcInTrace(pc); |
| PopStackFrames(pc_location); |
| } |
| |
| void BufferedStackTrace::SlowUnwindStackWithContext(uptr pc, void *context, |
| u32 max_depth) { |
| CONTEXT ctx = *(CONTEXT *)context; |
| STACKFRAME64 stack_frame; |
| memset(&stack_frame, 0, sizeof(stack_frame)); |
| |
| InitializeDbgHelpIfNeeded(); |
| |
| size = 0; |
| #if defined(_WIN64) |
| int machine_type = IMAGE_FILE_MACHINE_AMD64; |
| stack_frame.AddrPC.Offset = ctx.Rip; |
| stack_frame.AddrFrame.Offset = ctx.Rbp; |
| stack_frame.AddrStack.Offset = ctx.Rsp; |
| #else |
| int machine_type = IMAGE_FILE_MACHINE_I386; |
| stack_frame.AddrPC.Offset = ctx.Eip; |
| stack_frame.AddrFrame.Offset = ctx.Ebp; |
| stack_frame.AddrStack.Offset = ctx.Esp; |
| #endif |
| stack_frame.AddrPC.Mode = AddrModeFlat; |
| stack_frame.AddrFrame.Mode = AddrModeFlat; |
| stack_frame.AddrStack.Mode = AddrModeFlat; |
| while (StackWalk64(machine_type, GetCurrentProcess(), GetCurrentThread(), |
| &stack_frame, &ctx, NULL, SymFunctionTableAccess64, |
| SymGetModuleBase64, NULL) && |
| size < Min(max_depth, kStackTraceMax)) { |
| trace_buffer[size++] = (uptr)stack_frame.AddrPC.Offset; |
| } |
| } |
| #endif // #if !SANITIZER_GO |
| |
| void ReportFile::Write(const char *buffer, uptr length) { |
| SpinMutexLock l(mu); |
| ReopenIfNecessary(); |
| if (!WriteToFile(fd, buffer, length)) { |
| // stderr may be closed, but we may be able to print to the debugger |
| // instead. This is the case when launching a program from Visual Studio, |
| // and the following routine should write to its console. |
| OutputDebugStringA(buffer); |
| } |
| } |
| |
| void SetAlternateSignalStack() { |
| // FIXME: Decide what to do on Windows. |
| } |
| |
| void UnsetAlternateSignalStack() { |
| // FIXME: Decide what to do on Windows. |
| } |
| |
| void InstallDeadlySignalHandlers(SignalHandlerType handler) { |
| (void)handler; |
| // FIXME: Decide what to do on Windows. |
| } |
| |
| HandleSignalMode GetHandleSignalMode(int signum) { |
| // FIXME: Decide what to do on Windows. |
| return kHandleSignalNo; |
| } |
| |
| // Check based on flags if we should handle this exception. |
| bool IsHandledDeadlyException(DWORD exceptionCode) { |
| switch (exceptionCode) { |
| case EXCEPTION_ACCESS_VIOLATION: |
| case EXCEPTION_ARRAY_BOUNDS_EXCEEDED: |
| case EXCEPTION_STACK_OVERFLOW: |
| case EXCEPTION_DATATYPE_MISALIGNMENT: |
| case EXCEPTION_IN_PAGE_ERROR: |
| return common_flags()->handle_segv; |
| case EXCEPTION_ILLEGAL_INSTRUCTION: |
| case EXCEPTION_PRIV_INSTRUCTION: |
| case EXCEPTION_BREAKPOINT: |
| return common_flags()->handle_sigill; |
| case EXCEPTION_FLT_DENORMAL_OPERAND: |
| case EXCEPTION_FLT_DIVIDE_BY_ZERO: |
| case EXCEPTION_FLT_INEXACT_RESULT: |
| case EXCEPTION_FLT_INVALID_OPERATION: |
| case EXCEPTION_FLT_OVERFLOW: |
| case EXCEPTION_FLT_STACK_CHECK: |
| case EXCEPTION_FLT_UNDERFLOW: |
| case EXCEPTION_INT_DIVIDE_BY_ZERO: |
| case EXCEPTION_INT_OVERFLOW: |
| return common_flags()->handle_sigfpe; |
| } |
| return false; |
| } |
| |
| bool IsAccessibleMemoryRange(uptr beg, uptr size) { |
| SYSTEM_INFO si; |
| GetNativeSystemInfo(&si); |
| uptr page_size = si.dwPageSize; |
| uptr page_mask = ~(page_size - 1); |
| |
| for (uptr page = beg & page_mask, end = (beg + size - 1) & page_mask; |
| page <= end;) { |
| MEMORY_BASIC_INFORMATION info; |
| if (VirtualQuery((LPCVOID)page, &info, sizeof(info)) != sizeof(info)) |
| return false; |
| |
| if (info.Protect == 0 || info.Protect == PAGE_NOACCESS || |
| info.Protect == PAGE_EXECUTE) |
| return false; |
| |
| if (info.RegionSize == 0) |
| return false; |
| |
| page += info.RegionSize; |
| } |
| |
| return true; |
| } |
| |
| bool SignalContext::IsStackOverflow() const { |
| return GetType() == EXCEPTION_STACK_OVERFLOW; |
| } |
| |
| void SignalContext::InitPcSpBp() { |
| EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo; |
| CONTEXT *context_record = (CONTEXT *)context; |
| |
| pc = (uptr)exception_record->ExceptionAddress; |
| #ifdef _WIN64 |
| bp = (uptr)context_record->Rbp; |
| sp = (uptr)context_record->Rsp; |
| #else |
| bp = (uptr)context_record->Ebp; |
| sp = (uptr)context_record->Esp; |
| #endif |
| } |
| |
| uptr SignalContext::GetAddress() const { |
| EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo; |
| return exception_record->ExceptionInformation[1]; |
| } |
| |
| bool SignalContext::IsMemoryAccess() const { |
| return GetWriteFlag() != SignalContext::UNKNOWN; |
| } |
| |
| SignalContext::WriteFlag SignalContext::GetWriteFlag() const { |
| EXCEPTION_RECORD *exception_record = (EXCEPTION_RECORD *)siginfo; |
| // The contents of this array are documented at |
| // https://msdn.microsoft.com/en-us/library/windows/desktop/aa363082(v=vs.85).aspx |
| // The first element indicates read as 0, write as 1, or execute as 8. The |
| // second element is the faulting address. |
| switch (exception_record->ExceptionInformation[0]) { |
| case 0: |
| return SignalContext::READ; |
| case 1: |
| return SignalContext::WRITE; |
| case 8: |
| return SignalContext::UNKNOWN; |
| } |
| return SignalContext::UNKNOWN; |
| } |
| |
| void SignalContext::DumpAllRegisters(void *context) { |
| // FIXME: Implement this. |
| } |
| |
| int SignalContext::GetType() const { |
| return static_cast<const EXCEPTION_RECORD *>(siginfo)->ExceptionCode; |
| } |
| |
| const char *SignalContext::Describe() const { |
| unsigned code = GetType(); |
| // Get the string description of the exception if this is a known deadly |
| // exception. |
| switch (code) { |
| case EXCEPTION_ACCESS_VIOLATION: |
| return "access-violation"; |
| case EXCEPTION_ARRAY_BOUNDS_EXCEEDED: |
| return "array-bounds-exceeded"; |
| case EXCEPTION_STACK_OVERFLOW: |
| return "stack-overflow"; |
| case EXCEPTION_DATATYPE_MISALIGNMENT: |
| return "datatype-misalignment"; |
| case EXCEPTION_IN_PAGE_ERROR: |
| return "in-page-error"; |
| case EXCEPTION_ILLEGAL_INSTRUCTION: |
| return "illegal-instruction"; |
| case EXCEPTION_PRIV_INSTRUCTION: |
| return "priv-instruction"; |
| case EXCEPTION_BREAKPOINT: |
| return "breakpoint"; |
| case EXCEPTION_FLT_DENORMAL_OPERAND: |
| return "flt-denormal-operand"; |
| case EXCEPTION_FLT_DIVIDE_BY_ZERO: |
| return "flt-divide-by-zero"; |
| case EXCEPTION_FLT_INEXACT_RESULT: |
| return "flt-inexact-result"; |
| case EXCEPTION_FLT_INVALID_OPERATION: |
| return "flt-invalid-operation"; |
| case EXCEPTION_FLT_OVERFLOW: |
| return "flt-overflow"; |
| case EXCEPTION_FLT_STACK_CHECK: |
| return "flt-stack-check"; |
| case EXCEPTION_FLT_UNDERFLOW: |
| return "flt-underflow"; |
| case EXCEPTION_INT_DIVIDE_BY_ZERO: |
| return "int-divide-by-zero"; |
| case EXCEPTION_INT_OVERFLOW: |
| return "int-overflow"; |
| } |
| return "unknown exception"; |
| } |
| |
| uptr ReadBinaryName(/*out*/char *buf, uptr buf_len) { |
| // FIXME: Actually implement this function. |
| CHECK_GT(buf_len, 0); |
| buf[0] = 0; |
| return 0; |
| } |
| |
| uptr ReadLongProcessName(/*out*/char *buf, uptr buf_len) { |
| return ReadBinaryName(buf, buf_len); |
| } |
| |
| void CheckVMASize() { |
| // Do nothing. |
| } |
| |
| void MaybeReexec() { |
| // No need to re-exec on Windows. |
| } |
| |
| char **GetArgv() { |
| // FIXME: Actually implement this function. |
| return 0; |
| } |
| |
| pid_t StartSubprocess(const char *program, const char *const argv[], |
| fd_t stdin_fd, fd_t stdout_fd, fd_t stderr_fd) { |
| // FIXME: implement on this platform |
| // Should be implemented based on |
| // SymbolizerProcess::StarAtSymbolizerSubprocess |
| // from lib/sanitizer_common/sanitizer_symbolizer_win.cc. |
| return -1; |
| } |
| |
| bool IsProcessRunning(pid_t pid) { |
| // FIXME: implement on this platform. |
| return false; |
| } |
| |
| int WaitForProcess(pid_t pid) { return -1; } |
| |
| // FIXME implement on this platform. |
| void GetMemoryProfile(fill_profile_f cb, uptr *stats, uptr stats_size) { } |
| |
| void CheckNoDeepBind(const char *filename, int flag) { |
| // Do nothing. |
| } |
| |
| // FIXME: implement on this platform. |
| bool GetRandom(void *buffer, uptr length, bool blocking) { |
| UNIMPLEMENTED(); |
| } |
| |
| } // namespace __sanitizer |
| |
| #endif // _WIN32 |