| // random number generation (out of line) -*- C++ -*- |
| |
| // Copyright (C) 2009-2025 Free Software Foundation, Inc. |
| // |
| // This file is part of the GNU ISO C++ Library. This library is free |
| // software; you can redistribute it and/or modify it under the |
| // terms of the GNU General Public License as published by the |
| // Free Software Foundation; either version 3, or (at your option) |
| // any later version. |
| |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // Under Section 7 of GPL version 3, you are granted additional |
| // permissions described in the GCC Runtime Library Exception, version |
| // 3.1, as published by the Free Software Foundation. |
| |
| // You should have received a copy of the GNU General Public License and |
| // a copy of the GCC Runtime Library Exception along with this program; |
| // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| // <http://www.gnu.org/licenses/>. |
| |
| /** @file bits/random.tcc |
| * This is an internal header file, included by other library headers. |
| * Do not attempt to use it directly. @headername{random} |
| */ |
| |
| #ifndef _RANDOM_TCC |
| #define _RANDOM_TCC 1 |
| |
| #include <numeric> // std::accumulate and std::partial_sum |
| |
| namespace std _GLIBCXX_VISIBILITY(default) |
| { |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| |
| /// @cond undocumented |
| // (Further) implementation-space details. |
| namespace __detail |
| { |
| // General case for x = (ax + c) mod m -- use Schrage's algorithm |
| // to avoid integer overflow. |
| // |
| // Preconditions: a > 0, m > 0. |
| // |
| // Note: only works correctly for __m % __a < __m / __a. |
| template<typename _Tp, _Tp __m, _Tp __a, _Tp __c> |
| _Tp |
| _Mod<_Tp, __m, __a, __c, false, true>:: |
| __calc(_Tp __x) |
| { |
| if (__a == 1) |
| __x %= __m; |
| else |
| { |
| static const _Tp __q = __m / __a; |
| static const _Tp __r = __m % __a; |
| |
| _Tp __t1 = __a * (__x % __q); |
| _Tp __t2 = __r * (__x / __q); |
| if (__t1 >= __t2) |
| __x = __t1 - __t2; |
| else |
| __x = __m - __t2 + __t1; |
| } |
| |
| if (__c != 0) |
| { |
| const _Tp __d = __m - __x; |
| if (__d > __c) |
| __x += __c; |
| else |
| __x = __c - __d; |
| } |
| return __x; |
| } |
| |
| template<typename _InputIterator, typename _OutputIterator, |
| typename _Tp> |
| _OutputIterator |
| __normalize(_InputIterator __first, _InputIterator __last, |
| _OutputIterator __result, const _Tp& __factor) |
| { |
| for (; __first != __last; ++__first, (void) ++__result) |
| *__result = *__first / __factor; |
| return __result; |
| } |
| |
| } // namespace __detail |
| /// @endcond |
| |
| #if ! __cpp_inline_variables |
| template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| constexpr _UIntType |
| linear_congruential_engine<_UIntType, __a, __c, __m>::multiplier; |
| |
| template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| constexpr _UIntType |
| linear_congruential_engine<_UIntType, __a, __c, __m>::increment; |
| |
| template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| constexpr _UIntType |
| linear_congruential_engine<_UIntType, __a, __c, __m>::modulus; |
| |
| template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| constexpr _UIntType |
| linear_congruential_engine<_UIntType, __a, __c, __m>::default_seed; |
| #endif |
| |
| /** |
| * Seeds the LCR with integral value @p __s, adjusted so that the |
| * ring identity is never a member of the convergence set. |
| */ |
| template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| void |
| linear_congruential_engine<_UIntType, __a, __c, __m>:: |
| seed(result_type __s) |
| { |
| if ((__detail::__mod<_UIntType, __m>(__c) == 0) |
| && (__detail::__mod<_UIntType, __m>(__s) == 0)) |
| _M_x = 1; |
| else |
| _M_x = __detail::__mod<_UIntType, __m>(__s); |
| } |
| |
| /** |
| * Seeds the LCR engine with a value generated by @p __q. |
| */ |
| template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| template<typename _Sseq> |
| auto |
| linear_congruential_engine<_UIntType, __a, __c, __m>:: |
| seed(_Sseq& __q) |
| -> _If_seed_seq<_Sseq> |
| { |
| const _UIntType __k0 = __m == 0 ? std::numeric_limits<_UIntType>::digits |
| : std::__lg(__m); |
| const _UIntType __k = (__k0 + 31) / 32; |
| uint_least32_t __arr[__k + 3]; |
| __q.generate(__arr + 0, __arr + __k + 3); |
| _UIntType __factor = 1u; |
| _UIntType __sum = 0u; |
| for (size_t __j = 0; __j < __k; ++__j) |
| { |
| __sum += __arr[__j + 3] * __factor; |
| __factor *= __detail::_Shift<_UIntType, 32>::__value; |
| } |
| seed(__sum); |
| } |
| |
| template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m, |
| typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const linear_congruential_engine<_UIntType, |
| __a, __c, __m>& __lcr) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| __os.fill(__os.widen(' ')); |
| |
| __os << __lcr._M_x; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| return __os; |
| } |
| |
| template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m, |
| typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| linear_congruential_engine<_UIntType, __a, __c, __m>& __lcr) |
| { |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec); |
| |
| __is >> __lcr._M_x; |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| #if ! __cpp_inline_variables |
| template<typename _UIntType, |
| size_t __w, size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| constexpr size_t |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>::word_size; |
| |
| template<typename _UIntType, |
| size_t __w, size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| constexpr size_t |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>::state_size; |
| |
| template<typename _UIntType, |
| size_t __w, size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| constexpr size_t |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>::shift_size; |
| |
| template<typename _UIntType, |
| size_t __w, size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| constexpr size_t |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>::mask_bits; |
| |
| template<typename _UIntType, |
| size_t __w, size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| constexpr _UIntType |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>::xor_mask; |
| |
| template<typename _UIntType, |
| size_t __w, size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| constexpr size_t |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>::tempering_u; |
| |
| template<typename _UIntType, |
| size_t __w, size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| constexpr _UIntType |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>::tempering_d; |
| |
| template<typename _UIntType, |
| size_t __w, size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| constexpr size_t |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>::tempering_s; |
| |
| template<typename _UIntType, |
| size_t __w, size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| constexpr _UIntType |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>::tempering_b; |
| |
| template<typename _UIntType, |
| size_t __w, size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| constexpr size_t |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>::tempering_t; |
| |
| template<typename _UIntType, |
| size_t __w, size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| constexpr _UIntType |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>::tempering_c; |
| |
| template<typename _UIntType, |
| size_t __w, size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| constexpr size_t |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>::tempering_l; |
| |
| template<typename _UIntType, |
| size_t __w, size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| constexpr _UIntType |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>:: |
| initialization_multiplier; |
| |
| template<typename _UIntType, |
| size_t __w, size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| constexpr _UIntType |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>::default_seed; |
| #endif |
| |
| template<typename _UIntType, |
| size_t __w, size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| void |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>:: |
| seed(result_type __sd) |
| { |
| _M_x[0] = __detail::__mod<_UIntType, |
| __detail::_Shift<_UIntType, __w>::__value>(__sd); |
| |
| for (size_t __i = 1; __i < state_size; ++__i) |
| { |
| _UIntType __x = _M_x[__i - 1]; |
| __x ^= __x >> (__w - 2); |
| __x *= __f; |
| __x += __detail::__mod<_UIntType, __n>(__i); |
| _M_x[__i] = __detail::__mod<_UIntType, |
| __detail::_Shift<_UIntType, __w>::__value>(__x); |
| } |
| _M_p = state_size; |
| } |
| |
| template<typename _UIntType, |
| size_t __w, size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| template<typename _Sseq> |
| auto |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>:: |
| seed(_Sseq& __q) |
| -> _If_seed_seq<_Sseq> |
| { |
| const _UIntType __upper_mask = (~_UIntType()) << __r; |
| const size_t __k = (__w + 31) / 32; |
| uint_least32_t __arr[__n * __k]; |
| __q.generate(__arr + 0, __arr + __n * __k); |
| |
| bool __zero = true; |
| for (size_t __i = 0; __i < state_size; ++__i) |
| { |
| _UIntType __factor = 1u; |
| _UIntType __sum = 0u; |
| for (size_t __j = 0; __j < __k; ++__j) |
| { |
| __sum += __arr[__k * __i + __j] * __factor; |
| __factor *= __detail::_Shift<_UIntType, 32>::__value; |
| } |
| _M_x[__i] = __detail::__mod<_UIntType, |
| __detail::_Shift<_UIntType, __w>::__value>(__sum); |
| |
| if (__zero) |
| { |
| if (__i == 0) |
| { |
| if ((_M_x[0] & __upper_mask) != 0u) |
| __zero = false; |
| } |
| else if (_M_x[__i] != 0u) |
| __zero = false; |
| } |
| } |
| if (__zero) |
| _M_x[0] = __detail::_Shift<_UIntType, __w - 1>::__value; |
| _M_p = state_size; |
| } |
| |
| template<typename _UIntType, size_t __w, |
| size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| void |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>:: |
| _M_gen_rand(void) |
| { |
| const _UIntType __upper_mask = (~_UIntType()) << __r; |
| const _UIntType __lower_mask = ~__upper_mask; |
| |
| for (size_t __k = 0; __k < (__n - __m); ++__k) |
| { |
| _UIntType __y = ((_M_x[__k] & __upper_mask) |
| | (_M_x[__k + 1] & __lower_mask)); |
| _M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1) |
| ^ ((__y & 0x01) ? __a : 0)); |
| } |
| |
| for (size_t __k = (__n - __m); __k < (__n - 1); ++__k) |
| { |
| _UIntType __y = ((_M_x[__k] & __upper_mask) |
| | (_M_x[__k + 1] & __lower_mask)); |
| _M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1) |
| ^ ((__y & 0x01) ? __a : 0)); |
| } |
| |
| _UIntType __y = ((_M_x[__n - 1] & __upper_mask) |
| | (_M_x[0] & __lower_mask)); |
| _M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1) |
| ^ ((__y & 0x01) ? __a : 0)); |
| _M_p = 0; |
| } |
| |
| template<typename _UIntType, size_t __w, |
| size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| void |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>:: |
| discard(unsigned long long __z) |
| { |
| while (__z > state_size - _M_p) |
| { |
| __z -= state_size - _M_p; |
| _M_gen_rand(); |
| } |
| _M_p += __z; |
| } |
| |
| template<typename _UIntType, size_t __w, |
| size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f> |
| typename |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>::result_type |
| mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| __s, __b, __t, __c, __l, __f>:: |
| operator()() |
| { |
| // Reload the vector - cost is O(n) amortized over n calls. |
| if (_M_p >= state_size) |
| _M_gen_rand(); |
| |
| // Calculate o(x(i)). |
| result_type __z = _M_x[_M_p++]; |
| __z ^= (__z >> __u) & __d; |
| __z ^= (__z << __s) & __b; |
| __z ^= (__z << __t) & __c; |
| __z ^= (__z >> __l); |
| |
| return __z; |
| } |
| |
| template<typename _UIntType, size_t __w, |
| size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const mersenne_twister_engine<_UIntType, __w, __n, __m, |
| __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| __os.fill(__space); |
| |
| for (size_t __i = 0; __i < __n; ++__i) |
| __os << __x._M_x[__i] << __space; |
| __os << __x._M_p; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| return __os; |
| } |
| |
| template<typename _UIntType, size_t __w, |
| size_t __n, size_t __m, size_t __r, |
| _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| _UIntType __f, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| mersenne_twister_engine<_UIntType, __w, __n, __m, |
| __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x) |
| { |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| for (size_t __i = 0; __i < __n; ++__i) |
| __is >> __x._M_x[__i]; |
| __is >> __x._M_p; |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| #if ! __cpp_inline_variables |
| template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| constexpr size_t |
| subtract_with_carry_engine<_UIntType, __w, __s, __r>::word_size; |
| |
| template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| constexpr size_t |
| subtract_with_carry_engine<_UIntType, __w, __s, __r>::short_lag; |
| |
| template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| constexpr size_t |
| subtract_with_carry_engine<_UIntType, __w, __s, __r>::long_lag; |
| |
| template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| constexpr uint_least32_t |
| subtract_with_carry_engine<_UIntType, __w, __s, __r>::default_seed; |
| #endif |
| |
| template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| void |
| subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
| seed(result_type __value) |
| { |
| // _GLIBCXX_RESOLVE_LIB_DEFECTS |
| // 3809. Is std::subtract_with_carry_engine<uint16_t> supposed to work? |
| // 4014. LWG 3809 changes behavior of some existing code |
| std::linear_congruential_engine<uint_least32_t, 40014u, 0u, 2147483563u> |
| __lcg(__value == 0u ? default_seed : __value % 2147483563u); |
| |
| const size_t __n = (__w + 31) / 32; |
| |
| for (size_t __i = 0; __i < long_lag; ++__i) |
| { |
| _UIntType __sum = 0u; |
| _UIntType __factor = 1u; |
| for (size_t __j = 0; __j < __n; ++__j) |
| { |
| __sum += __detail::__mod<uint_least32_t, |
| __detail::_Shift<uint_least32_t, 32>::__value> |
| (__lcg()) * __factor; |
| __factor *= __detail::_Shift<_UIntType, 32>::__value; |
| } |
| _M_x[__i] = __detail::__mod<_UIntType, |
| __detail::_Shift<_UIntType, __w>::__value>(__sum); |
| } |
| _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; |
| _M_p = 0; |
| } |
| |
| template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| template<typename _Sseq> |
| auto |
| subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
| seed(_Sseq& __q) |
| -> _If_seed_seq<_Sseq> |
| { |
| const size_t __k = (__w + 31) / 32; |
| uint_least32_t __arr[__r * __k]; |
| __q.generate(__arr + 0, __arr + __r * __k); |
| |
| for (size_t __i = 0; __i < long_lag; ++__i) |
| { |
| _UIntType __sum = 0u; |
| _UIntType __factor = 1u; |
| for (size_t __j = 0; __j < __k; ++__j) |
| { |
| __sum += __arr[__k * __i + __j] * __factor; |
| __factor *= __detail::_Shift<_UIntType, 32>::__value; |
| } |
| _M_x[__i] = __detail::__mod<_UIntType, |
| __detail::_Shift<_UIntType, __w>::__value>(__sum); |
| } |
| _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; |
| _M_p = 0; |
| } |
| |
| template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| typename subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
| result_type |
| subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
| operator()() |
| { |
| // Derive short lag index from current index. |
| long __ps = _M_p - short_lag; |
| if (__ps < 0) |
| __ps += long_lag; |
| |
| // Calculate new x(i) without overflow or division. |
| // NB: Thanks to the requirements for _UIntType, _M_x[_M_p] + _M_carry |
| // cannot overflow. |
| _UIntType __xi; |
| if (_M_x[__ps] >= _M_x[_M_p] + _M_carry) |
| { |
| __xi = _M_x[__ps] - _M_x[_M_p] - _M_carry; |
| _M_carry = 0; |
| } |
| else |
| { |
| __xi = (__detail::_Shift<_UIntType, __w>::__value |
| - _M_x[_M_p] - _M_carry + _M_x[__ps]); |
| _M_carry = 1; |
| } |
| _M_x[_M_p] = __xi; |
| |
| // Adjust current index to loop around in ring buffer. |
| if (++_M_p >= long_lag) |
| _M_p = 0; |
| |
| return __xi; |
| } |
| |
| template<typename _UIntType, size_t __w, size_t __s, size_t __r, |
| typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const subtract_with_carry_engine<_UIntType, |
| __w, __s, __r>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| __os.fill(__space); |
| |
| for (size_t __i = 0; __i < __r; ++__i) |
| __os << __x._M_x[__i] << __space; |
| __os << __x._M_carry << __space << __x._M_p; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| return __os; |
| } |
| |
| template<typename _UIntType, size_t __w, size_t __s, size_t __r, |
| typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| subtract_with_carry_engine<_UIntType, __w, __s, __r>& __x) |
| { |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| for (size_t __i = 0; __i < __r; ++__i) |
| __is >> __x._M_x[__i]; |
| __is >> __x._M_carry; |
| __is >> __x._M_p; |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| #if ! __cpp_inline_variables |
| template<typename _RandomNumberEngine, size_t __p, size_t __r> |
| constexpr size_t |
| discard_block_engine<_RandomNumberEngine, __p, __r>::block_size; |
| |
| template<typename _RandomNumberEngine, size_t __p, size_t __r> |
| constexpr size_t |
| discard_block_engine<_RandomNumberEngine, __p, __r>::used_block; |
| #endif |
| |
| template<typename _RandomNumberEngine, size_t __p, size_t __r> |
| typename discard_block_engine<_RandomNumberEngine, |
| __p, __r>::result_type |
| discard_block_engine<_RandomNumberEngine, __p, __r>:: |
| operator()() |
| { |
| if (_M_n >= used_block) |
| { |
| _M_b.discard(block_size - _M_n); |
| _M_n = 0; |
| } |
| ++_M_n; |
| return _M_b(); |
| } |
| |
| template<typename _RandomNumberEngine, size_t __p, size_t __r, |
| typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const discard_block_engine<_RandomNumberEngine, |
| __p, __r>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| __os.fill(__space); |
| |
| __os << __x.base() << __space << __x._M_n; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| return __os; |
| } |
| |
| template<typename _RandomNumberEngine, size_t __p, size_t __r, |
| typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| discard_block_engine<_RandomNumberEngine, __p, __r>& __x) |
| { |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| __is >> __x._M_b >> __x._M_n; |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RandomNumberEngine, size_t __w, typename _UIntType> |
| typename independent_bits_engine<_RandomNumberEngine, __w, _UIntType>:: |
| result_type |
| independent_bits_engine<_RandomNumberEngine, __w, _UIntType>:: |
| operator()() |
| { |
| typedef typename _RandomNumberEngine::result_type _Eresult_type; |
| const _Eresult_type __r |
| = (_M_b.max() - _M_b.min() < std::numeric_limits<_Eresult_type>::max() |
| ? _M_b.max() - _M_b.min() + 1 : 0); |
| const unsigned __edig = std::numeric_limits<_Eresult_type>::digits; |
| const unsigned __m = __r ? std::__lg(__r) : __edig; |
| |
| typedef typename std::common_type<_Eresult_type, result_type>::type |
| __ctype; |
| const unsigned __cdig = std::numeric_limits<__ctype>::digits; |
| |
| unsigned __n, __n0; |
| __ctype __s0, __s1, __y0, __y1; |
| |
| for (size_t __i = 0; __i < 2; ++__i) |
| { |
| __n = (__w + __m - 1) / __m + __i; |
| __n0 = __n - __w % __n; |
| const unsigned __w0 = __w / __n; // __w0 <= __m |
| |
| __s0 = 0; |
| __s1 = 0; |
| if (__w0 < __cdig) |
| { |
| __s0 = __ctype(1) << __w0; |
| __s1 = __s0 << 1; |
| } |
| |
| __y0 = 0; |
| __y1 = 0; |
| if (__r) |
| { |
| __y0 = __s0 * (__r / __s0); |
| if (__s1) |
| __y1 = __s1 * (__r / __s1); |
| |
| if (__r - __y0 <= __y0 / __n) |
| break; |
| } |
| else |
| break; |
| } |
| |
| result_type __sum = 0; |
| for (size_t __k = 0; __k < __n0; ++__k) |
| { |
| __ctype __u; |
| do |
| __u = _M_b() - _M_b.min(); |
| while (__y0 && __u >= __y0); |
| __sum = __s0 * __sum + (__s0 ? __u % __s0 : __u); |
| } |
| for (size_t __k = __n0; __k < __n; ++__k) |
| { |
| __ctype __u; |
| do |
| __u = _M_b() - _M_b.min(); |
| while (__y1 && __u >= __y1); |
| __sum = __s1 * __sum + (__s1 ? __u % __s1 : __u); |
| } |
| return __sum; |
| } |
| |
| #if ! __cpp_inline_variables |
| template<typename _RandomNumberEngine, size_t __k> |
| constexpr size_t |
| shuffle_order_engine<_RandomNumberEngine, __k>::table_size; |
| #endif |
| |
| namespace __detail |
| { |
| // Determine whether an integer is representable as double. |
| template<typename _Tp> |
| constexpr bool |
| __representable_as_double(_Tp __x) noexcept |
| { |
| static_assert(numeric_limits<_Tp>::is_integer, ""); |
| static_assert(!numeric_limits<_Tp>::is_signed, ""); |
| // All integers <= 2^53 are representable. |
| return (__x <= (1ull << __DBL_MANT_DIG__)) |
| // Between 2^53 and 2^54 only even numbers are representable. |
| || (!(__x & 1) && __detail::__representable_as_double(__x >> 1)); |
| } |
| |
| // Determine whether x+1 is representable as double. |
| template<typename _Tp> |
| constexpr bool |
| __p1_representable_as_double(_Tp __x) noexcept |
| { |
| static_assert(numeric_limits<_Tp>::is_integer, ""); |
| static_assert(!numeric_limits<_Tp>::is_signed, ""); |
| return numeric_limits<_Tp>::digits < __DBL_MANT_DIG__ |
| || (bool(__x + 1u) // return false if x+1 wraps around to zero |
| && __detail::__representable_as_double(__x + 1u)); |
| } |
| } |
| |
| template<typename _RandomNumberEngine, size_t __k> |
| typename shuffle_order_engine<_RandomNumberEngine, __k>::result_type |
| shuffle_order_engine<_RandomNumberEngine, __k>:: |
| operator()() |
| { |
| constexpr result_type __range = max() - min(); |
| size_t __j = __k; |
| const result_type __y = _M_y - min(); |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wc++17-extensions" // if constexpr |
| // Avoid using slower long double arithmetic if possible. |
| if constexpr (__detail::__p1_representable_as_double(__range)) |
| __j *= __y / (__range + 1.0); |
| else |
| __j *= __y / (__range + 1.0L); |
| #pragma GCC diagnostic pop |
| _M_y = _M_v[__j]; |
| _M_v[__j] = _M_b(); |
| |
| return _M_y; |
| } |
| |
| template<typename _RandomNumberEngine, size_t __k, |
| typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const shuffle_order_engine<_RandomNumberEngine, __k>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| __os.fill(__space); |
| |
| __os << __x.base(); |
| for (size_t __i = 0; __i < __k; ++__i) |
| __os << __space << __x._M_v[__i]; |
| __os << __space << __x._M_y; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| return __os; |
| } |
| |
| template<typename _RandomNumberEngine, size_t __k, |
| typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| shuffle_order_engine<_RandomNumberEngine, __k>& __x) |
| { |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| __is >> __x._M_b; |
| for (size_t __i = 0; __i < __k; ++__i) |
| __is >> __x._M_v[__i]; |
| __is >> __x._M_y; |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| #if __glibcxx_philox_engine // >= C++26 |
| |
| template<typename _UIntType, size_t __w, size_t __n, size_t __r, |
| _UIntType... __consts> |
| _UIntType |
| philox_engine<_UIntType, __w, __n, __r, __consts...>:: |
| _S_mulhi(_UIntType __a, _UIntType __b) |
| { |
| using __type = typename __detail::_Select_uint_least_t<__w * 2>::type; |
| const __type __num = static_cast<__type>(__a) * __b; |
| return static_cast<_UIntType>(__num >> __w) & max(); |
| } |
| |
| template<typename _UIntType, size_t __w, size_t __n, size_t __r, |
| _UIntType... __consts> |
| _UIntType |
| philox_engine<_UIntType, __w, __n, __r, __consts...>:: |
| _S_mullo(_UIntType __a, _UIntType __b) |
| { |
| return static_cast<_UIntType>((__a * __b) & max()); |
| } |
| |
| template<typename _UIntType, size_t __w, size_t __n, size_t __r, |
| _UIntType... __consts> |
| void |
| philox_engine<_UIntType, __w, __n, __r, __consts...>::_M_transition() |
| { |
| ++_M_i; |
| if (_M_i != __n) |
| return; |
| |
| using __type = typename __detail::_Select_uint_least_t<__w * 2>::type; |
| |
| _M_philox(); |
| if constexpr (__n == 4) |
| { |
| __type __uh |
| = (static_cast<__type>(_M_x[1]) << __w) |
| | (static_cast<__type>(_M_x[0]) + 1); |
| __type __lh |
| = (static_cast<__type>(_M_x[3]) << __w) |
| | static_cast<__type>(_M_x[2]); |
| __type __bigMask |
| = ~__type(0) >> ((sizeof(__type) * __CHAR_BIT__) - (__w * 2)); |
| if ((__uh & __bigMask) == 0) |
| { |
| ++__lh; |
| __uh = 0; |
| } |
| _M_x[0] = static_cast<_UIntType>(__uh & max()); |
| _M_x[1] = static_cast<_UIntType>((__uh >> (__w)) & max()); |
| _M_x[2] = static_cast<_UIntType>(__lh & max()); |
| _M_x[3] = static_cast<_UIntType>((__lh >> (__w)) & max()); |
| } |
| else |
| { |
| __type __num = |
| (static_cast<__type>(_M_x[1]) << __w) |
| | (static_cast<__type>(_M_x[0]) + 1); |
| _M_x[0] = __num & max(); |
| _M_x[1] = (__num >> __w) & max(); |
| } |
| _M_i = 0; |
| } |
| |
| template<typename _UIntType, size_t __w, size_t __n, size_t __r, |
| _UIntType... __consts> |
| void |
| philox_engine<_UIntType, __w, __n, __r, __consts...>::_M_philox() |
| { |
| array<_UIntType, __n> __outputSeq = _M_x; |
| for (size_t __j = 0; __j < __r; ++__j) |
| { |
| array<_UIntType, __n> __intermedSeq{}; |
| if constexpr (__n == 4) |
| { |
| __intermedSeq[0] = __outputSeq[2]; |
| __intermedSeq[1] = __outputSeq[1]; |
| __intermedSeq[2] = __outputSeq[0]; |
| __intermedSeq[3] = __outputSeq[3]; |
| } |
| else |
| { |
| __intermedSeq[0] = __outputSeq[0]; |
| __intermedSeq[1] = __outputSeq[1]; |
| } |
| for (unsigned long __k = 0; __k < (__n/2); ++__k) |
| { |
| __outputSeq[2*__k] |
| = _S_mulhi(__intermedSeq[2*__k], multipliers[__k]) |
| ^ (((_M_k[__k] + (__j * round_consts[__k])) & max())) |
| ^ __intermedSeq[2*__k+1]; |
| |
| __outputSeq[(2*__k)+1] |
| = _S_mullo(__intermedSeq[2*__k], multipliers[__k]); |
| } |
| } |
| _M_y = __outputSeq; |
| } |
| |
| template<typename _UIntType, size_t __w, size_t __n, size_t __r, |
| _UIntType... __consts> |
| template<typename _Sseq> |
| void |
| philox_engine<_UIntType, __w, __n, __r, __consts...>::seed(_Sseq& __q) |
| requires __is_seed_seq<_Sseq> |
| { |
| seed(0); |
| |
| const unsigned __p = 1 + ((__w - 1) / 32); |
| uint_least32_t __tmpArr[(__n/2) * __p]; |
| __q.generate(__tmpArr + 0, __tmpArr + ((__n/2) * __p)); |
| for (unsigned __k = 0; __k < (__n/2); ++__k) |
| { |
| unsigned long long __precalc = 0; |
| for (unsigned __j = 0; __j < __p; ++__j) |
| { |
| unsigned long long __multiplicand = (1ull << (32 * __j)); |
| __precalc += (__tmpArr[__k * __p + __j] * __multiplicand) & max(); |
| } |
| _M_k[__k] = __precalc; |
| } |
| } |
| #endif // philox_engine |
| |
| template<typename _IntType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const uniform_int_distribution<_IntType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| |
| __os << __x.a() << __space << __x.b(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| return __os; |
| } |
| |
| template<typename _IntType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| uniform_int_distribution<_IntType>& __x) |
| { |
| using param_type |
| = typename uniform_int_distribution<_IntType>::param_type; |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _IntType __a, __b; |
| if (__is >> __a >> __b) |
| __x.param(param_type(__a, __b)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| uniform_real_distribution<_RealType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| __aurng(__urng); |
| auto __range = __p.b() - __p.a(); |
| while (__f != __t) |
| *__f++ = __aurng() * __range + __p.a(); |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const uniform_real_distribution<_RealType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.a() << __space << __x.b(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| uniform_real_distribution<_RealType>& __x) |
| { |
| using param_type |
| = typename uniform_real_distribution<_RealType>::param_type; |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::skipws); |
| |
| _RealType __a, __b; |
| if (__is >> __a >> __b) |
| __x.param(param_type(__a, __b)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| std::bernoulli_distribution:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| __aurng(__urng); |
| auto __limit = __p.p() * (__aurng.max() - __aurng.min()); |
| |
| while (__f != __t) |
| *__f++ = (__aurng() - __aurng.min()) < __limit; |
| } |
| |
| template<typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const bernoulli_distribution& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__os.widen(' ')); |
| __os.precision(std::numeric_limits<double>::max_digits10); |
| |
| __os << __x.p(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| |
| template<typename _IntType> |
| template<typename _UniformRandomNumberGenerator> |
| typename geometric_distribution<_IntType>::result_type |
| geometric_distribution<_IntType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| // About the epsilon thing see this thread: |
| // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html |
| const double __naf = |
| (1 - std::numeric_limits<double>::epsilon()) / 2; |
| // The largest _RealType convertible to _IntType. |
| const double __thr = |
| std::numeric_limits<_IntType>::max() + __naf; |
| __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| __aurng(__urng); |
| |
| double __cand; |
| do |
| __cand = std::floor(std::log(1.0 - __aurng()) / __param._M_log_1_p); |
| while (__cand >= __thr); |
| |
| return result_type(__cand + __naf); |
| } |
| |
| template<typename _IntType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| geometric_distribution<_IntType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| // About the epsilon thing see this thread: |
| // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html |
| const double __naf = |
| (1 - std::numeric_limits<double>::epsilon()) / 2; |
| // The largest _RealType convertible to _IntType. |
| const double __thr = |
| std::numeric_limits<_IntType>::max() + __naf; |
| __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| __aurng(__urng); |
| |
| while (__f != __t) |
| { |
| double __cand; |
| do |
| __cand = std::floor(std::log(1.0 - __aurng()) |
| / __param._M_log_1_p); |
| while (__cand >= __thr); |
| |
| *__f++ = __cand + __naf; |
| } |
| } |
| |
| template<typename _IntType, |
| typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const geometric_distribution<_IntType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__os.widen(' ')); |
| __os.precision(std::numeric_limits<double>::max_digits10); |
| |
| __os << __x.p(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _IntType, |
| typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| geometric_distribution<_IntType>& __x) |
| { |
| using param_type = typename geometric_distribution<_IntType>::param_type; |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::skipws); |
| |
| double __p; |
| if (__is >> __p) |
| __x.param(param_type(__p)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| // This is Leger's algorithm, also in Devroye, Ch. X, Example 1.5. |
| template<typename _IntType> |
| template<typename _UniformRandomNumberGenerator> |
| typename negative_binomial_distribution<_IntType>::result_type |
| negative_binomial_distribution<_IntType>:: |
| operator()(_UniformRandomNumberGenerator& __urng) |
| { |
| const double __y = _M_gd(__urng); |
| |
| // XXX Is the constructor too slow? |
| std::poisson_distribution<result_type> __poisson(__y); |
| return __poisson(__urng); |
| } |
| |
| template<typename _IntType> |
| template<typename _UniformRandomNumberGenerator> |
| typename negative_binomial_distribution<_IntType>::result_type |
| negative_binomial_distribution<_IntType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| typedef typename std::gamma_distribution<double>::param_type |
| param_type; |
| |
| const double __y = |
| _M_gd(__urng, param_type(__p.k(), (1.0 - __p.p()) / __p.p())); |
| |
| std::poisson_distribution<result_type> __poisson(__y); |
| return __poisson(__urng); |
| } |
| |
| template<typename _IntType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| negative_binomial_distribution<_IntType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| while (__f != __t) |
| { |
| const double __y = _M_gd(__urng); |
| |
| // XXX Is the constructor too slow? |
| std::poisson_distribution<result_type> __poisson(__y); |
| *__f++ = __poisson(__urng); |
| } |
| } |
| |
| template<typename _IntType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| negative_binomial_distribution<_IntType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| typename std::gamma_distribution<result_type>::param_type |
| __p2(__p.k(), (1.0 - __p.p()) / __p.p()); |
| |
| while (__f != __t) |
| { |
| const double __y = _M_gd(__urng, __p2); |
| |
| std::poisson_distribution<result_type> __poisson(__y); |
| *__f++ = __poisson(__urng); |
| } |
| } |
| |
| template<typename _IntType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const negative_binomial_distribution<_IntType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__os.widen(' ')); |
| __os.precision(std::numeric_limits<double>::max_digits10); |
| |
| __os << __x.k() << __space << __x.p() |
| << __space << __x._M_gd; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _IntType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| negative_binomial_distribution<_IntType>& __x) |
| { |
| using param_type |
| = typename negative_binomial_distribution<_IntType>::param_type; |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::skipws); |
| |
| _IntType __k; |
| double __p; |
| if (__is >> __k >> __p >> __x._M_gd) |
| __x.param(param_type(__k, __p)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _IntType> |
| void |
| poisson_distribution<_IntType>::param_type:: |
| _M_initialize() |
| { |
| #if _GLIBCXX_USE_C99_MATH_FUNCS |
| if (_M_mean >= 12) |
| { |
| const double __m = std::floor(_M_mean); |
| _M_lm_thr = std::log(_M_mean); |
| _M_lfm = std::lgamma(__m + 1); |
| _M_sm = std::sqrt(__m); |
| |
| const double __pi_4 = 0.7853981633974483096156608458198757L; |
| const double __dx = std::sqrt(2 * __m * std::log(32 * __m |
| / __pi_4)); |
| _M_d = std::round(std::max<double>(6.0, std::min(__m, __dx))); |
| const double __cx = 2 * __m + _M_d; |
| _M_scx = std::sqrt(__cx / 2); |
| _M_1cx = 1 / __cx; |
| |
| _M_c2b = std::sqrt(__pi_4 * __cx) * std::exp(_M_1cx); |
| _M_cb = 2 * __cx * std::exp(-_M_d * _M_1cx * (1 + _M_d / 2)) |
| / _M_d; |
| } |
| else |
| #endif |
| _M_lm_thr = std::exp(-_M_mean); |
| } |
| |
| /** |
| * A rejection algorithm when mean >= 12 and a simple method based |
| * upon the multiplication of uniform random variates otherwise. |
| * NB: The former is available only if _GLIBCXX_USE_C99_MATH_FUNCS |
| * is defined. |
| * |
| * Reference: |
| * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
| * New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!). |
| */ |
| template<typename _IntType> |
| template<typename _UniformRandomNumberGenerator> |
| typename poisson_distribution<_IntType>::result_type |
| poisson_distribution<_IntType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| __aurng(__urng); |
| #if _GLIBCXX_USE_C99_MATH_FUNCS |
| if (__param.mean() >= 12) |
| { |
| double __x; |
| |
| // See comments above... |
| const double __naf = |
| (1 - std::numeric_limits<double>::epsilon()) / 2; |
| const double __thr = |
| std::numeric_limits<_IntType>::max() + __naf; |
| |
| const double __m = std::floor(__param.mean()); |
| // sqrt(pi / 2) |
| const double __spi_2 = 1.2533141373155002512078826424055226L; |
| const double __c1 = __param._M_sm * __spi_2; |
| const double __c2 = __param._M_c2b + __c1; |
| const double __c3 = __c2 + 1; |
| const double __c4 = __c3 + 1; |
| // 1 / 78 |
| const double __178 = 0.0128205128205128205128205128205128L; |
| // e^(1 / 78) |
| const double __e178 = 1.0129030479320018583185514777512983L; |
| const double __c5 = __c4 + __e178; |
| const double __c = __param._M_cb + __c5; |
| const double __2cx = 2 * (2 * __m + __param._M_d); |
| |
| bool __reject = true; |
| do |
| { |
| const double __u = __c * __aurng(); |
| const double __e = -std::log(1.0 - __aurng()); |
| |
| double __w = 0.0; |
| |
| if (__u <= __c1) |
| { |
| const double __n = _M_nd(__urng); |
| const double __y = -std::abs(__n) * __param._M_sm - 1; |
| __x = std::floor(__y); |
| __w = -__n * __n / 2; |
| if (__x < -__m) |
| continue; |
| } |
| else if (__u <= __c2) |
| { |
| const double __n = _M_nd(__urng); |
| const double __y = 1 + std::abs(__n) * __param._M_scx; |
| __x = std::ceil(__y); |
| __w = __y * (2 - __y) * __param._M_1cx; |
| if (__x > __param._M_d) |
| continue; |
| } |
| else if (__u <= __c3) |
| // NB: This case not in the book, nor in the Errata, |
| // but should be ok... |
| __x = -1; |
| else if (__u <= __c4) |
| __x = 0; |
| else if (__u <= __c5) |
| { |
| __x = 1; |
| // Only in the Errata, see libstdc++/83237. |
| __w = __178; |
| } |
| else |
| { |
| const double __v = -std::log(1.0 - __aurng()); |
| const double __y = __param._M_d |
| + __v * __2cx / __param._M_d; |
| __x = std::ceil(__y); |
| __w = -__param._M_d * __param._M_1cx * (1 + __y / 2); |
| } |
| |
| __reject = (__w - __e - __x * __param._M_lm_thr |
| > __param._M_lfm - std::lgamma(__x + __m + 1)); |
| |
| __reject |= __x + __m >= __thr; |
| |
| } while (__reject); |
| |
| return result_type(__x + __m + __naf); |
| } |
| else |
| #endif |
| { |
| _IntType __x = 0; |
| double __prod = 1.0; |
| |
| do |
| { |
| __prod *= __aurng(); |
| __x += 1; |
| } |
| while (__prod > __param._M_lm_thr); |
| |
| return __x - 1; |
| } |
| } |
| |
| template<typename _IntType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| poisson_distribution<_IntType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| // We could duplicate everything from operator()... |
| while (__f != __t) |
| *__f++ = this->operator()(__urng, __param); |
| } |
| |
| template<typename _IntType, |
| typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const poisson_distribution<_IntType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<double>::max_digits10); |
| |
| __os << __x.mean() << __space << __x._M_nd; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _IntType, |
| typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| poisson_distribution<_IntType>& __x) |
| { |
| using param_type = typename poisson_distribution<_IntType>::param_type; |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::skipws); |
| |
| double __mean; |
| if (__is >> __mean >> __x._M_nd) |
| __x.param(param_type(__mean)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _IntType> |
| void |
| binomial_distribution<_IntType>::param_type:: |
| _M_initialize() |
| { |
| const double __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p; |
| |
| _M_easy = true; |
| |
| #if _GLIBCXX_USE_C99_MATH_FUNCS |
| if (_M_t * __p12 >= 8) |
| { |
| _M_easy = false; |
| const double __np = std::floor(_M_t * __p12); |
| const double __pa = __np / _M_t; |
| const double __1p = 1 - __pa; |
| |
| const double __pi_4 = 0.7853981633974483096156608458198757L; |
| const double __d1x = |
| std::sqrt(__np * __1p * std::log(32 * __np |
| / (81 * __pi_4 * __1p))); |
| _M_d1 = std::round(std::max<double>(1.0, __d1x)); |
| const double __d2x = |
| std::sqrt(__np * __1p * std::log(32 * _M_t * __1p |
| / (__pi_4 * __pa))); |
| _M_d2 = std::round(std::max<double>(1.0, __d2x)); |
| |
| // sqrt(pi / 2) |
| const double __spi_2 = 1.2533141373155002512078826424055226L; |
| _M_s1 = std::sqrt(__np * __1p) * (1 + _M_d1 / (4 * __np)); |
| _M_s2 = std::sqrt(__np * __1p) * (1 + _M_d2 / (4 * (_M_t * __1p))); |
| _M_c = 2 * _M_d1 / __np; |
| _M_a1 = std::exp(_M_c) * _M_s1 * __spi_2; |
| const double __a12 = _M_a1 + _M_s2 * __spi_2; |
| const double __s1s = _M_s1 * _M_s1; |
| _M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p)) |
| * 2 * __s1s / _M_d1 |
| * std::exp(-_M_d1 * _M_d1 / (2 * __s1s))); |
| const double __s2s = _M_s2 * _M_s2; |
| _M_s = (_M_a123 + 2 * __s2s / _M_d2 |
| * std::exp(-_M_d2 * _M_d2 / (2 * __s2s))); |
| _M_lf = (std::lgamma(__np + 1) |
| + std::lgamma(_M_t - __np + 1)); |
| _M_lp1p = std::log(__pa / __1p); |
| |
| _M_q = -std::log(1 - (__p12 - __pa) / __1p); |
| } |
| else |
| #endif |
| _M_q = -std::log(1 - __p12); |
| } |
| |
| template<typename _IntType> |
| template<typename _UniformRandomNumberGenerator> |
| typename binomial_distribution<_IntType>::result_type |
| binomial_distribution<_IntType>:: |
| _M_waiting(_UniformRandomNumberGenerator& __urng, |
| _IntType __t, double __q) |
| { |
| _IntType __x = 0; |
| double __sum = 0.0; |
| __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| __aurng(__urng); |
| |
| do |
| { |
| if (__t == __x) |
| return __x; |
| const double __e = -std::log(1.0 - __aurng()); |
| __sum += __e / (__t - __x); |
| __x += 1; |
| } |
| while (__sum <= __q); |
| |
| return __x - 1; |
| } |
| |
| /** |
| * A rejection algorithm when t * p >= 8 and a simple waiting time |
| * method - the second in the referenced book - otherwise. |
| * NB: The former is available only if _GLIBCXX_USE_C99_MATH_FUNCS |
| * is defined. |
| * |
| * Reference: |
| * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
| * New York, 1986, Ch. X, Sect. 4 (+ Errata!). |
| */ |
| template<typename _IntType> |
| template<typename _UniformRandomNumberGenerator> |
| typename binomial_distribution<_IntType>::result_type |
| binomial_distribution<_IntType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| result_type __ret; |
| const _IntType __t = __param.t(); |
| const double __p = __param.p(); |
| const double __p12 = __p <= 0.5 ? __p : 1.0 - __p; |
| __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| __aurng(__urng); |
| |
| #if _GLIBCXX_USE_C99_MATH_FUNCS |
| if (!__param._M_easy) |
| { |
| double __x; |
| |
| // See comments above... |
| const double __naf = |
| (1 - std::numeric_limits<double>::epsilon()) / 2; |
| const double __thr = |
| std::numeric_limits<_IntType>::max() + __naf; |
| |
| const double __np = std::floor(__t * __p12); |
| |
| // sqrt(pi / 2) |
| const double __spi_2 = 1.2533141373155002512078826424055226L; |
| const double __a1 = __param._M_a1; |
| const double __a12 = __a1 + __param._M_s2 * __spi_2; |
| const double __a123 = __param._M_a123; |
| const double __s1s = __param._M_s1 * __param._M_s1; |
| const double __s2s = __param._M_s2 * __param._M_s2; |
| |
| bool __reject; |
| do |
| { |
| const double __u = __param._M_s * __aurng(); |
| |
| double __v; |
| |
| if (__u <= __a1) |
| { |
| const double __n = _M_nd(__urng); |
| const double __y = __param._M_s1 * std::abs(__n); |
| __reject = __y >= __param._M_d1; |
| if (!__reject) |
| { |
| const double __e = -std::log(1.0 - __aurng()); |
| __x = std::floor(__y); |
| __v = -__e - __n * __n / 2 + __param._M_c; |
| } |
| } |
| else if (__u <= __a12) |
| { |
| const double __n = _M_nd(__urng); |
| const double __y = __param._M_s2 * std::abs(__n); |
| __reject = __y >= __param._M_d2; |
| if (!__reject) |
| { |
| const double __e = -std::log(1.0 - __aurng()); |
| __x = std::floor(-__y); |
| __v = -__e - __n * __n / 2; |
| } |
| } |
| else if (__u <= __a123) |
| { |
| const double __e1 = -std::log(1.0 - __aurng()); |
| const double __e2 = -std::log(1.0 - __aurng()); |
| |
| const double __y = __param._M_d1 |
| + 2 * __s1s * __e1 / __param._M_d1; |
| __x = std::floor(__y); |
| __v = (-__e2 + __param._M_d1 * (1 / (__t - __np) |
| -__y / (2 * __s1s))); |
| __reject = false; |
| } |
| else |
| { |
| const double __e1 = -std::log(1.0 - __aurng()); |
| const double __e2 = -std::log(1.0 - __aurng()); |
| |
| const double __y = __param._M_d2 |
| + 2 * __s2s * __e1 / __param._M_d2; |
| __x = std::floor(-__y); |
| __v = -__e2 - __param._M_d2 * __y / (2 * __s2s); |
| __reject = false; |
| } |
| |
| __reject = __reject || __x < -__np || __x > __t - __np; |
| if (!__reject) |
| { |
| const double __lfx = |
| std::lgamma(__np + __x + 1) |
| + std::lgamma(__t - (__np + __x) + 1); |
| __reject = __v > __param._M_lf - __lfx |
| + __x * __param._M_lp1p; |
| } |
| |
| __reject |= __x + __np >= __thr; |
| } |
| while (__reject); |
| |
| __x += __np + __naf; |
| |
| const _IntType __z = _M_waiting(__urng, __t - _IntType(__x), |
| __param._M_q); |
| __ret = _IntType(__x) + __z; |
| } |
| else |
| #endif |
| __ret = _M_waiting(__urng, __t, __param._M_q); |
| |
| if (__p12 != __p) |
| __ret = __t - __ret; |
| return __ret; |
| } |
| |
| template<typename _IntType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| binomial_distribution<_IntType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| // We could duplicate everything from operator()... |
| while (__f != __t) |
| *__f++ = this->operator()(__urng, __param); |
| } |
| |
| template<typename _IntType, |
| typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const binomial_distribution<_IntType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<double>::max_digits10); |
| |
| __os << __x.t() << __space << __x.p() |
| << __space << __x._M_nd; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _IntType, |
| typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| binomial_distribution<_IntType>& __x) |
| { |
| using param_type = typename binomial_distribution<_IntType>::param_type; |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _IntType __t; |
| double __p; |
| if (__is >> __t >> __p >> __x._M_nd) |
| __x.param(param_type(__t, __p)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| std::exponential_distribution<_RealType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| __aurng(__urng); |
| while (__f != __t) |
| *__f++ = -std::log(result_type(1) - __aurng()) / __p.lambda(); |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const exponential_distribution<_RealType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__os.widen(' ')); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.lambda(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| exponential_distribution<_RealType>& __x) |
| { |
| using param_type |
| = typename exponential_distribution<_RealType>::param_type; |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __lambda; |
| if (__is >> __lambda) |
| __x.param(param_type(__lambda)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| /** |
| * Polar method due to Marsaglia. |
| * |
| * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
| * New York, 1986, Ch. V, Sect. 4.4. |
| */ |
| template<typename _RealType> |
| template<typename _UniformRandomNumberGenerator> |
| typename normal_distribution<_RealType>::result_type |
| normal_distribution<_RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| result_type __ret; |
| __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| __aurng(__urng); |
| |
| if (_M_saved_available) |
| { |
| _M_saved_available = false; |
| __ret = _M_saved; |
| } |
| else |
| { |
| result_type __x, __y, __r2; |
| do |
| { |
| __x = result_type(2.0) * __aurng() - 1.0; |
| __y = result_type(2.0) * __aurng() - 1.0; |
| __r2 = __x * __x + __y * __y; |
| } |
| while (__r2 > 1.0 || __r2 == 0.0); |
| |
| const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
| _M_saved = __x * __mult; |
| _M_saved_available = true; |
| __ret = __y * __mult; |
| } |
| |
| __ret = __ret * __param.stddev() + __param.mean(); |
| return __ret; |
| } |
| |
| template<typename _RealType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| normal_distribution<_RealType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| |
| if (__f == __t) |
| return; |
| |
| if (_M_saved_available) |
| { |
| _M_saved_available = false; |
| *__f++ = _M_saved * __param.stddev() + __param.mean(); |
| |
| if (__f == __t) |
| return; |
| } |
| |
| __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| __aurng(__urng); |
| |
| while (__f + 1 < __t) |
| { |
| result_type __x, __y, __r2; |
| do |
| { |
| __x = result_type(2.0) * __aurng() - 1.0; |
| __y = result_type(2.0) * __aurng() - 1.0; |
| __r2 = __x * __x + __y * __y; |
| } |
| while (__r2 > 1.0 || __r2 == 0.0); |
| |
| const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
| *__f++ = __y * __mult * __param.stddev() + __param.mean(); |
| *__f++ = __x * __mult * __param.stddev() + __param.mean(); |
| } |
| |
| if (__f != __t) |
| { |
| result_type __x, __y, __r2; |
| do |
| { |
| __x = result_type(2.0) * __aurng() - 1.0; |
| __y = result_type(2.0) * __aurng() - 1.0; |
| __r2 = __x * __x + __y * __y; |
| } |
| while (__r2 > 1.0 || __r2 == 0.0); |
| |
| const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
| _M_saved = __x * __mult; |
| _M_saved_available = true; |
| *__f = __y * __mult * __param.stddev() + __param.mean(); |
| } |
| } |
| |
| template<typename _RealType> |
| bool |
| operator==(const std::normal_distribution<_RealType>& __d1, |
| const std::normal_distribution<_RealType>& __d2) |
| { |
| if (__d1._M_param == __d2._M_param |
| && __d1._M_saved_available == __d2._M_saved_available) |
| return __d1._M_saved_available ? __d1._M_saved == __d2._M_saved : true; |
| else |
| return false; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const normal_distribution<_RealType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.mean() << __space << __x.stddev() |
| << __space << __x._M_saved_available; |
| if (__x._M_saved_available) |
| __os << __space << __x._M_saved; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| normal_distribution<_RealType>& __x) |
| { |
| using param_type = typename normal_distribution<_RealType>::param_type; |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| double __mean, __stddev; |
| bool __saved_avail; |
| if (__is >> __mean >> __stddev >> __saved_avail) |
| { |
| if (!__saved_avail || (__is >> __x._M_saved)) |
| { |
| __x._M_saved_available = __saved_avail; |
| __x.param(param_type(__mean, __stddev)); |
| } |
| } |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| lognormal_distribution<_RealType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| while (__f != __t) |
| *__f++ = std::exp(__p.s() * _M_nd(__urng) + __p.m()); |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const lognormal_distribution<_RealType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.m() << __space << __x.s() |
| << __space << __x._M_nd; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| lognormal_distribution<_RealType>& __x) |
| { |
| using param_type |
| = typename lognormal_distribution<_RealType>::param_type; |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __m, __s; |
| if (__is >> __m >> __s >> __x._M_nd) |
| __x.param(param_type(__m, __s)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| template<typename _RealType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| std::chi_squared_distribution<_RealType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| while (__f != __t) |
| *__f++ = 2 * _M_gd(__urng); |
| } |
| |
| template<typename _RealType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| std::chi_squared_distribution<_RealType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const typename |
| std::gamma_distribution<result_type>::param_type& __p) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| while (__f != __t) |
| *__f++ = 2 * _M_gd(__urng, __p); |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const chi_squared_distribution<_RealType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.n() << __space << __x._M_gd; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| chi_squared_distribution<_RealType>& __x) |
| { |
| using param_type |
| = typename chi_squared_distribution<_RealType>::param_type; |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __n; |
| if (__is >> __n >> __x._M_gd) |
| __x.param(param_type(__n)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| template<typename _UniformRandomNumberGenerator> |
| typename cauchy_distribution<_RealType>::result_type |
| cauchy_distribution<_RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| __aurng(__urng); |
| _RealType __u; |
| do |
| __u = __aurng(); |
| while (__u == 0.5); |
| |
| const _RealType __pi = 3.1415926535897932384626433832795029L; |
| return __p.a() + __p.b() * std::tan(__pi * __u); |
| } |
| |
| template<typename _RealType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| cauchy_distribution<_RealType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| const _RealType __pi = 3.1415926535897932384626433832795029L; |
| __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| __aurng(__urng); |
| while (__f != __t) |
| { |
| _RealType __u; |
| do |
| __u = __aurng(); |
| while (__u == 0.5); |
| |
| *__f++ = __p.a() + __p.b() * std::tan(__pi * __u); |
| } |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const cauchy_distribution<_RealType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.a() << __space << __x.b(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| cauchy_distribution<_RealType>& __x) |
| { |
| using param_type = typename cauchy_distribution<_RealType>::param_type; |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __a, __b; |
| if (__is >> __a >> __b) |
| __x.param(param_type(__a, __b)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| std::fisher_f_distribution<_RealType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| while (__f != __t) |
| *__f++ = ((_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m())); |
| } |
| |
| template<typename _RealType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| std::fisher_f_distribution<_RealType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| typedef typename std::gamma_distribution<result_type>::param_type |
| param_type; |
| param_type __p1(__p.m() / 2); |
| param_type __p2(__p.n() / 2); |
| while (__f != __t) |
| *__f++ = ((_M_gd_x(__urng, __p1) * n()) |
| / (_M_gd_y(__urng, __p2) * m())); |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const fisher_f_distribution<_RealType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.m() << __space << __x.n() |
| << __space << __x._M_gd_x << __space << __x._M_gd_y; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| fisher_f_distribution<_RealType>& __x) |
| { |
| using param_type |
| = typename fisher_f_distribution<_RealType>::param_type; |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __m, __n; |
| if (__is >> __m >> __n >> __x._M_gd_x >> __x._M_gd_y) |
| __x.param(param_type(__m, __n)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| std::student_t_distribution<_RealType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| while (__f != __t) |
| *__f++ = _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng)); |
| } |
| |
| template<typename _RealType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| std::student_t_distribution<_RealType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| typename std::gamma_distribution<result_type>::param_type |
| __p2(__p.n() / 2, 2); |
| while (__f != __t) |
| *__f++ = _M_nd(__urng) * std::sqrt(__p.n() / _M_gd(__urng, __p2)); |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const student_t_distribution<_RealType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.n() << __space << __x._M_nd << __space << __x._M_gd; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| student_t_distribution<_RealType>& __x) |
| { |
| using param_type |
| = typename student_t_distribution<_RealType>::param_type; |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __n; |
| if (__is >> __n >> __x._M_nd >> __x._M_gd) |
| __x.param(param_type(__n)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| void |
| gamma_distribution<_RealType>::param_type:: |
| _M_initialize() |
| { |
| _M_malpha = _M_alpha < 1.0 ? _M_alpha + _RealType(1.0) : _M_alpha; |
| |
| const _RealType __a1 = _M_malpha - _RealType(1.0) / _RealType(3.0); |
| _M_a2 = _RealType(1.0) / std::sqrt(_RealType(9.0) * __a1); |
| } |
| |
| /** |
| * Marsaglia, G. and Tsang, W. W. |
| * "A Simple Method for Generating Gamma Variables" |
| * ACM Transactions on Mathematical Software, 26, 3, 363-372, 2000. |
| */ |
| template<typename _RealType> |
| template<typename _UniformRandomNumberGenerator> |
| typename gamma_distribution<_RealType>::result_type |
| gamma_distribution<_RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| __aurng(__urng); |
| |
| result_type __u, __v, __n; |
| const result_type __a1 = (__param._M_malpha |
| - _RealType(1.0) / _RealType(3.0)); |
| |
| do |
| { |
| do |
| { |
| __n = _M_nd(__urng); |
| __v = result_type(1.0) + __param._M_a2 * __n; |
| } |
| while (__v <= 0.0); |
| |
| __v = __v * __v * __v; |
| __u = __aurng(); |
| } |
| while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n |
| && (std::log(__u) > (0.5 * __n * __n + __a1 |
| * (1.0 - __v + std::log(__v))))); |
| |
| if (__param.alpha() == __param._M_malpha) |
| return __a1 * __v * __param.beta(); |
| else |
| { |
| do |
| __u = __aurng(); |
| while (__u == 0.0); |
| |
| return (std::pow(__u, result_type(1.0) / __param.alpha()) |
| * __a1 * __v * __param.beta()); |
| } |
| } |
| |
| template<typename _RealType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| gamma_distribution<_RealType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| __aurng(__urng); |
| |
| result_type __u, __v, __n; |
| const result_type __a1 = (__param._M_malpha |
| - _RealType(1.0) / _RealType(3.0)); |
| |
| if (__param.alpha() == __param._M_malpha) |
| while (__f != __t) |
| { |
| do |
| { |
| do |
| { |
| __n = _M_nd(__urng); |
| __v = result_type(1.0) + __param._M_a2 * __n; |
| } |
| while (__v <= 0.0); |
| |
| __v = __v * __v * __v; |
| __u = __aurng(); |
| } |
| while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n |
| && (std::log(__u) > (0.5 * __n * __n + __a1 |
| * (1.0 - __v + std::log(__v))))); |
| |
| *__f++ = __a1 * __v * __param.beta(); |
| } |
| else |
| while (__f != __t) |
| { |
| do |
| { |
| do |
| { |
| __n = _M_nd(__urng); |
| __v = result_type(1.0) + __param._M_a2 * __n; |
| } |
| while (__v <= 0.0); |
| |
| __v = __v * __v * __v; |
| __u = __aurng(); |
| } |
| while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n |
| && (std::log(__u) > (0.5 * __n * __n + __a1 |
| * (1.0 - __v + std::log(__v))))); |
| |
| do |
| __u = __aurng(); |
| while (__u == 0.0); |
| |
| *__f++ = (std::pow(__u, result_type(1.0) / __param.alpha()) |
| * __a1 * __v * __param.beta()); |
| } |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const gamma_distribution<_RealType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.alpha() << __space << __x.beta() |
| << __space << __x._M_nd; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| gamma_distribution<_RealType>& __x) |
| { |
| using param_type = typename gamma_distribution<_RealType>::param_type; |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __alpha_val, __beta_val; |
| if (__is >> __alpha_val >> __beta_val >> __x._M_nd) |
| __x.param(param_type(__alpha_val, __beta_val)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| template<typename _UniformRandomNumberGenerator> |
| typename weibull_distribution<_RealType>::result_type |
| weibull_distribution<_RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| __aurng(__urng); |
| return __p.b() * std::pow(-std::log(result_type(1) - __aurng()), |
| result_type(1) / __p.a()); |
| } |
| |
| template<typename _RealType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| weibull_distribution<_RealType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| __aurng(__urng); |
| auto __inv_a = result_type(1) / __p.a(); |
| |
| while (__f != __t) |
| *__f++ = __p.b() * std::pow(-std::log(result_type(1) - __aurng()), |
| __inv_a); |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const weibull_distribution<_RealType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.a() << __space << __x.b(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| weibull_distribution<_RealType>& __x) |
| { |
| using param_type = typename weibull_distribution<_RealType>::param_type; |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __a, __b; |
| if (__is >> __a >> __b) |
| __x.param(param_type(__a, __b)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| template<typename _UniformRandomNumberGenerator> |
| typename extreme_value_distribution<_RealType>::result_type |
| extreme_value_distribution<_RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| __aurng(__urng); |
| return __p.a() - __p.b() * std::log(-std::log(result_type(1) |
| - __aurng())); |
| } |
| |
| template<typename _RealType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| extreme_value_distribution<_RealType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __p) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| __aurng(__urng); |
| |
| while (__f != __t) |
| *__f++ = __p.a() - __p.b() * std::log(-std::log(result_type(1) |
| - __aurng())); |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const extreme_value_distribution<_RealType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| __os << __x.a() << __space << __x.b(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| extreme_value_distribution<_RealType>& __x) |
| { |
| using param_type |
| = typename extreme_value_distribution<_RealType>::param_type; |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| _RealType __a, __b; |
| if (__is >> __a >> __b) |
| __x.param(param_type(__a, __b)); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _IntType> |
| void |
| discrete_distribution<_IntType>::param_type:: |
| _M_initialize() |
| { |
| if (_M_prob.size() < 2) |
| { |
| _M_prob.clear(); |
| return; |
| } |
| |
| const double __sum = std::accumulate(_M_prob.begin(), |
| _M_prob.end(), 0.0); |
| __glibcxx_assert(__sum > 0); |
| // Now normalize the probabilites. |
| __detail::__normalize(_M_prob.begin(), _M_prob.end(), _M_prob.begin(), |
| __sum); |
| // Accumulate partial sums. |
| _M_cp.reserve(_M_prob.size()); |
| std::partial_sum(_M_prob.begin(), _M_prob.end(), |
| std::back_inserter(_M_cp)); |
| // Make sure the last cumulative probability is one. |
| _M_cp[_M_cp.size() - 1] = 1.0; |
| } |
| |
| template<typename _IntType> |
| template<typename _Func> |
| discrete_distribution<_IntType>::param_type:: |
| param_type(size_t __nw, double __xmin, double __xmax, _Func __fw) |
| : _M_prob(), _M_cp() |
| { |
| const size_t __n = __nw == 0 ? 1 : __nw; |
| const double __delta = (__xmax - __xmin) / __n; |
| |
| _M_prob.reserve(__n); |
| for (size_t __k = 0; __k < __nw; ++__k) |
| _M_prob.push_back(__fw(__xmin + __k * __delta + 0.5 * __delta)); |
| |
| _M_initialize(); |
| } |
| |
| template<typename _IntType> |
| template<typename _UniformRandomNumberGenerator> |
| typename discrete_distribution<_IntType>::result_type |
| discrete_distribution<_IntType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| if (__param._M_cp.empty()) |
| return result_type(0); |
| |
| __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| __aurng(__urng); |
| |
| const double __p = __aurng(); |
| auto __pos = std::lower_bound(__param._M_cp.begin(), |
| __param._M_cp.end(), __p); |
| |
| return __pos - __param._M_cp.begin(); |
| } |
| |
| template<typename _IntType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| discrete_distribution<_IntType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| |
| if (__param._M_cp.empty()) |
| { |
| while (__f != __t) |
| *__f++ = result_type(0); |
| return; |
| } |
| |
| __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| __aurng(__urng); |
| |
| while (__f != __t) |
| { |
| const double __p = __aurng(); |
| auto __pos = std::lower_bound(__param._M_cp.begin(), |
| __param._M_cp.end(), __p); |
| |
| *__f++ = __pos - __param._M_cp.begin(); |
| } |
| } |
| |
| template<typename _IntType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const discrete_distribution<_IntType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<double>::max_digits10); |
| |
| std::vector<double> __prob = __x.probabilities(); |
| __os << __prob.size(); |
| for (auto __dit = __prob.begin(); __dit != __prob.end(); ++__dit) |
| __os << __space << *__dit; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| namespace __detail |
| { |
| template<typename _ValT, typename _CharT, typename _Traits> |
| basic_istream<_CharT, _Traits>& |
| __extract_params(basic_istream<_CharT, _Traits>& __is, |
| vector<_ValT>& __vals, size_t __n) |
| { |
| __vals.reserve(__n); |
| while (__n--) |
| { |
| _ValT __val; |
| if (__is >> __val) |
| __vals.push_back(__val); |
| else |
| break; |
| } |
| return __is; |
| } |
| } // namespace __detail |
| |
| template<typename _IntType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| discrete_distribution<_IntType>& __x) |
| { |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| size_t __n; |
| if (__is >> __n) |
| { |
| std::vector<double> __prob_vec; |
| if (__detail::__extract_params(__is, __prob_vec, __n)) |
| __x.param({__prob_vec.begin(), __prob_vec.end()}); |
| } |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| void |
| piecewise_constant_distribution<_RealType>::param_type:: |
| _M_initialize() |
| { |
| if (_M_int.size() < 2 |
| || (_M_int.size() == 2 |
| && _M_int[0] == _RealType(0) |
| && _M_int[1] == _RealType(1))) |
| { |
| _M_int.clear(); |
| _M_den.clear(); |
| return; |
| } |
| |
| const double __sum = std::accumulate(_M_den.begin(), |
| _M_den.end(), 0.0); |
| __glibcxx_assert(__sum > 0); |
| |
| __detail::__normalize(_M_den.begin(), _M_den.end(), _M_den.begin(), |
| __sum); |
| |
| _M_cp.reserve(_M_den.size()); |
| std::partial_sum(_M_den.begin(), _M_den.end(), |
| std::back_inserter(_M_cp)); |
| |
| // Make sure the last cumulative probability is one. |
| _M_cp[_M_cp.size() - 1] = 1.0; |
| |
| for (size_t __k = 0; __k < _M_den.size(); ++__k) |
| _M_den[__k] /= _M_int[__k + 1] - _M_int[__k]; |
| } |
| |
| template<typename _RealType> |
| template<typename _InputIteratorB, typename _InputIteratorW> |
| piecewise_constant_distribution<_RealType>::param_type:: |
| param_type(_InputIteratorB __bbegin, |
| _InputIteratorB __bend, |
| _InputIteratorW __wbegin) |
| : _M_int(), _M_den(), _M_cp() |
| { |
| if (__bbegin != __bend) |
| { |
| for (;;) |
| { |
| _M_int.push_back(*__bbegin); |
| ++__bbegin; |
| if (__bbegin == __bend) |
| break; |
| |
| _M_den.push_back(*__wbegin); |
| ++__wbegin; |
| } |
| } |
| |
| _M_initialize(); |
| } |
| |
| template<typename _RealType> |
| template<typename _Func> |
| piecewise_constant_distribution<_RealType>::param_type:: |
| param_type(initializer_list<_RealType> __bl, _Func __fw) |
| : _M_int(), _M_den(), _M_cp() |
| { |
| _M_int.reserve(__bl.size()); |
| for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter) |
| _M_int.push_back(*__biter); |
| |
| _M_den.reserve(_M_int.size() - 1); |
| for (size_t __k = 0; __k < _M_int.size() - 1; ++__k) |
| _M_den.push_back(__fw(0.5 * (_M_int[__k + 1] + _M_int[__k]))); |
| |
| _M_initialize(); |
| } |
| |
| template<typename _RealType> |
| template<typename _Func> |
| piecewise_constant_distribution<_RealType>::param_type:: |
| param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw) |
| : _M_int(), _M_den(), _M_cp() |
| { |
| const size_t __n = __nw == 0 ? 1 : __nw; |
| const _RealType __delta = (__xmax - __xmin) / __n; |
| |
| _M_int.reserve(__n + 1); |
| for (size_t __k = 0; __k <= __nw; ++__k) |
| _M_int.push_back(__xmin + __k * __delta); |
| |
| _M_den.reserve(__n); |
| for (size_t __k = 0; __k < __nw; ++__k) |
| _M_den.push_back(__fw(_M_int[__k] + 0.5 * __delta)); |
| |
| _M_initialize(); |
| } |
| |
| template<typename _RealType> |
| template<typename _UniformRandomNumberGenerator> |
| typename piecewise_constant_distribution<_RealType>::result_type |
| piecewise_constant_distribution<_RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| __aurng(__urng); |
| |
| const double __p = __aurng(); |
| if (__param._M_cp.empty()) |
| return __p; |
| |
| auto __pos = std::lower_bound(__param._M_cp.begin(), |
| __param._M_cp.end(), __p); |
| const size_t __i = __pos - __param._M_cp.begin(); |
| |
| const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; |
| |
| return __param._M_int[__i] + (__p - __pref) / __param._M_den[__i]; |
| } |
| |
| template<typename _RealType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| piecewise_constant_distribution<_RealType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| __aurng(__urng); |
| |
| if (__param._M_cp.empty()) |
| { |
| while (__f != __t) |
| *__f++ = __aurng(); |
| return; |
| } |
| |
| while (__f != __t) |
| { |
| const double __p = __aurng(); |
| |
| auto __pos = std::lower_bound(__param._M_cp.begin(), |
| __param._M_cp.end(), __p); |
| const size_t __i = __pos - __param._M_cp.begin(); |
| |
| const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; |
| |
| *__f++ = (__param._M_int[__i] |
| + (__p - __pref) / __param._M_den[__i]); |
| } |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const piecewise_constant_distribution<_RealType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| std::vector<_RealType> __int = __x.intervals(); |
| __os << __int.size() - 1; |
| |
| for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit) |
| __os << __space << *__xit; |
| |
| std::vector<double> __den = __x.densities(); |
| for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit) |
| __os << __space << *__dit; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| piecewise_constant_distribution<_RealType>& __x) |
| { |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| size_t __n; |
| if (__is >> __n) |
| { |
| std::vector<_RealType> __int_vec; |
| if (__detail::__extract_params(__is, __int_vec, __n + 1)) |
| { |
| std::vector<double> __den_vec; |
| if (__detail::__extract_params(__is, __den_vec, __n)) |
| { |
| __x.param({ __int_vec.begin(), __int_vec.end(), |
| __den_vec.begin() }); |
| } |
| } |
| } |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| void |
| piecewise_linear_distribution<_RealType>::param_type:: |
| _M_initialize() |
| { |
| if (_M_int.size() < 2 |
| || (_M_int.size() == 2 |
| && _M_int[0] == _RealType(0) |
| && _M_int[1] == _RealType(1) |
| && _M_den[0] == _M_den[1])) |
| { |
| _M_int.clear(); |
| _M_den.clear(); |
| return; |
| } |
| |
| double __sum = 0.0; |
| _M_cp.reserve(_M_int.size() - 1); |
| _M_m.reserve(_M_int.size() - 1); |
| for (size_t __k = 0; __k < _M_int.size() - 1; ++__k) |
| { |
| const _RealType __delta = _M_int[__k + 1] - _M_int[__k]; |
| __sum += 0.5 * (_M_den[__k + 1] + _M_den[__k]) * __delta; |
| _M_cp.push_back(__sum); |
| _M_m.push_back((_M_den[__k + 1] - _M_den[__k]) / __delta); |
| } |
| __glibcxx_assert(__sum > 0); |
| |
| // Now normalize the densities... |
| __detail::__normalize(_M_den.begin(), _M_den.end(), _M_den.begin(), |
| __sum); |
| // ... and partial sums... |
| __detail::__normalize(_M_cp.begin(), _M_cp.end(), _M_cp.begin(), __sum); |
| // ... and slopes. |
| __detail::__normalize(_M_m.begin(), _M_m.end(), _M_m.begin(), __sum); |
| |
| // Make sure the last cumulative probablility is one. |
| _M_cp[_M_cp.size() - 1] = 1.0; |
| } |
| |
| template<typename _RealType> |
| template<typename _InputIteratorB, typename _InputIteratorW> |
| piecewise_linear_distribution<_RealType>::param_type:: |
| param_type(_InputIteratorB __bbegin, |
| _InputIteratorB __bend, |
| _InputIteratorW __wbegin) |
| : _M_int(), _M_den(), _M_cp(), _M_m() |
| { |
| for (; __bbegin != __bend; ++__bbegin, (void) ++__wbegin) |
| { |
| _M_int.push_back(*__bbegin); |
| _M_den.push_back(*__wbegin); |
| } |
| |
| _M_initialize(); |
| } |
| |
| template<typename _RealType> |
| template<typename _Func> |
| piecewise_linear_distribution<_RealType>::param_type:: |
| param_type(initializer_list<_RealType> __bl, _Func __fw) |
| : _M_int(), _M_den(), _M_cp(), _M_m() |
| { |
| _M_int.reserve(__bl.size()); |
| _M_den.reserve(__bl.size()); |
| for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter) |
| { |
| _M_int.push_back(*__biter); |
| _M_den.push_back(__fw(*__biter)); |
| } |
| |
| _M_initialize(); |
| } |
| |
| template<typename _RealType> |
| template<typename _Func> |
| piecewise_linear_distribution<_RealType>::param_type:: |
| param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw) |
| : _M_int(), _M_den(), _M_cp(), _M_m() |
| { |
| const size_t __n = __nw == 0 ? 1 : __nw; |
| const _RealType __delta = (__xmax - __xmin) / __n; |
| |
| _M_int.reserve(__n + 1); |
| _M_den.reserve(__n + 1); |
| for (size_t __k = 0; __k <= __nw; ++__k) |
| { |
| _M_int.push_back(__xmin + __k * __delta); |
| _M_den.push_back(__fw(_M_int[__k] + __delta)); |
| } |
| |
| _M_initialize(); |
| } |
| |
| template<typename _RealType> |
| template<typename _UniformRandomNumberGenerator> |
| typename piecewise_linear_distribution<_RealType>::result_type |
| piecewise_linear_distribution<_RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| __aurng(__urng); |
| |
| const double __p = __aurng(); |
| if (__param._M_cp.empty()) |
| return __p; |
| |
| auto __pos = std::lower_bound(__param._M_cp.begin(), |
| __param._M_cp.end(), __p); |
| const size_t __i = __pos - __param._M_cp.begin(); |
| |
| const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; |
| |
| const double __a = 0.5 * __param._M_m[__i]; |
| const double __b = __param._M_den[__i]; |
| const double __cm = __p - __pref; |
| |
| _RealType __x = __param._M_int[__i]; |
| if (__a == 0) |
| __x += __cm / __b; |
| else |
| { |
| const double __d = __b * __b + 4.0 * __a * __cm; |
| __x += 0.5 * (std::sqrt(__d) - __b) / __a; |
| } |
| |
| return __x; |
| } |
| |
| template<typename _RealType> |
| template<typename _ForwardIterator, |
| typename _UniformRandomNumberGenerator> |
| void |
| piecewise_linear_distribution<_RealType>:: |
| __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| _UniformRandomNumberGenerator& __urng, |
| const param_type& __param) |
| { |
| __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| // We could duplicate everything from operator()... |
| while (__f != __t) |
| *__f++ = this->operator()(__urng, __param); |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const piecewise_linear_distribution<_RealType>& __x) |
| { |
| using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| |
| std::vector<_RealType> __int = __x.intervals(); |
| __os << __int.size() - 1; |
| |
| for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit) |
| __os << __space << *__xit; |
| |
| std::vector<double> __den = __x.densities(); |
| for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit) |
| __os << __space << *__dit; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| piecewise_linear_distribution<_RealType>& __x) |
| { |
| using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| size_t __n; |
| if (__is >> __n) |
| { |
| vector<_RealType> __int_vec; |
| if (__detail::__extract_params(__is, __int_vec, __n + 1)) |
| { |
| vector<double> __den_vec; |
| if (__detail::__extract_params(__is, __den_vec, __n + 1)) |
| { |
| __x.param({ __int_vec.begin(), __int_vec.end(), |
| __den_vec.begin() }); |
| } |
| } |
| } |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _IntType, typename> |
| seed_seq::seed_seq(std::initializer_list<_IntType> __il) |
| { |
| _M_v.reserve(__il.size()); |
| for (auto __iter = __il.begin(); __iter != __il.end(); ++__iter) |
| _M_v.push_back(__detail::__mod<result_type, |
| __detail::_Shift<result_type, 32>::__value>(*__iter)); |
| } |
| |
| template<typename _InputIterator> |
| seed_seq::seed_seq(_InputIterator __begin, _InputIterator __end) |
| { |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wc++17-extensions" // if constexpr |
| if constexpr (__is_random_access_iter<_InputIterator>::value) |
| _M_v.reserve(std::distance(__begin, __end)); |
| #pragma GCC diagnostic pop |
| |
| for (_InputIterator __iter = __begin; __iter != __end; ++__iter) |
| _M_v.push_back(__detail::__mod<result_type, |
| __detail::_Shift<result_type, 32>::__value>(*__iter)); |
| } |
| |
| template<typename _RandomAccessIterator> |
| void |
| seed_seq::generate(_RandomAccessIterator __begin, |
| _RandomAccessIterator __end) |
| { |
| typedef typename iterator_traits<_RandomAccessIterator>::value_type |
| _Type; |
| |
| if (__begin == __end) |
| return; |
| |
| std::fill(__begin, __end, _Type(0x8b8b8b8bu)); |
| |
| const size_t __n = __end - __begin; |
| const size_t __s = _M_v.size(); |
| const size_t __t = (__n >= 623) ? 11 |
| : (__n >= 68) ? 7 |
| : (__n >= 39) ? 5 |
| : (__n >= 7) ? 3 |
| : (__n - 1) / 2; |
| const size_t __p = (__n - __t) / 2; |
| const size_t __q = __p + __t; |
| const size_t __m = std::max(size_t(__s + 1), __n); |
| |
| #ifndef __UINT32_TYPE__ |
| struct _Up |
| { |
| _Up(uint_least32_t v) : _M_v(v & 0xffffffffu) { } |
| |
| operator uint_least32_t() const { return _M_v; } |
| |
| uint_least32_t _M_v; |
| }; |
| using uint32_t = _Up; |
| #endif |
| |
| // k == 0, every element in [begin,end) equals 0x8b8b8b8bu |
| { |
| uint32_t __r1 = 1371501266u; |
| uint32_t __r2 = __r1 + __s; |
| __begin[__p] += __r1; |
| __begin[__q] = (uint32_t)__begin[__q] + __r2; |
| __begin[0] = __r2; |
| } |
| |
| for (size_t __k = 1; __k <= __s; ++__k) |
| { |
| const size_t __kn = __k % __n; |
| const size_t __kpn = (__k + __p) % __n; |
| const size_t __kqn = (__k + __q) % __n; |
| uint32_t __arg = (__begin[__kn] |
| ^ __begin[__kpn] |
| ^ __begin[(__k - 1) % __n]); |
| uint32_t __r1 = 1664525u * (__arg ^ (__arg >> 27)); |
| uint32_t __r2 = __r1 + (uint32_t)__kn + _M_v[__k - 1]; |
| __begin[__kpn] = (uint32_t)__begin[__kpn] + __r1; |
| __begin[__kqn] = (uint32_t)__begin[__kqn] + __r2; |
| __begin[__kn] = __r2; |
| } |
| |
| for (size_t __k = __s + 1; __k < __m; ++__k) |
| { |
| const size_t __kn = __k % __n; |
| const size_t __kpn = (__k + __p) % __n; |
| const size_t __kqn = (__k + __q) % __n; |
| uint32_t __arg = (__begin[__kn] |
| ^ __begin[__kpn] |
| ^ __begin[(__k - 1) % __n]); |
| uint32_t __r1 = 1664525u * (__arg ^ (__arg >> 27)); |
| uint32_t __r2 = __r1 + (uint32_t)__kn; |
| __begin[__kpn] = (uint32_t)__begin[__kpn] + __r1; |
| __begin[__kqn] = (uint32_t)__begin[__kqn] + __r2; |
| __begin[__kn] = __r2; |
| } |
| |
| for (size_t __k = __m; __k < __m + __n; ++__k) |
| { |
| const size_t __kn = __k % __n; |
| const size_t __kpn = (__k + __p) % __n; |
| const size_t __kqn = (__k + __q) % __n; |
| uint32_t __arg = (__begin[__kn] |
| + __begin[__kpn] |
| + __begin[(__k - 1) % __n]); |
| uint32_t __r3 = 1566083941u * (__arg ^ (__arg >> 27)); |
| uint32_t __r4 = __r3 - __kn; |
| __begin[__kpn] ^= __r3; |
| __begin[__kqn] ^= __r4; |
| __begin[__kn] = __r4; |
| } |
| } |
| |
| // [rand.util.canonical] |
| // generate_canonical(RNG&) |
| |
| #ifndef _GLIBCXX_USE_OLD_GENERATE_CANONICAL |
| |
| #pragma GCC diagnostic push |
| #pragma GCC diagnostic ignored "-Wc++14-extensions" // for variable templates |
| #pragma GCC diagnostic ignored "-Wc++17-extensions" // if constexpr |
| |
| // __generate_canonical_pow2 is used when Urbg::max()-Urbg::min() is |
| // a power of two less 1. It works by calling urng() as many times as |
| // needed to fill the target mantissa, accumulating entropy into an |
| // integer value, converting that to the float type, and then dividing |
| // by the range of the integer value (a constexpr power of 2, |
| // so only adjusts the exponent) to produce a result in [0..1]. |
| // In case of an exact 1.0 result, we re-try. |
| // |
| // It needs to work even when the integer type used is only as big |
| // as the float mantissa, such as uint64_t for long double. So, |
| // commented-out assignments represent computations the Standard |
| // prescribes but cannot be performed, or are not used. Names are |
| // chosen to match the description in the Standard. |
| // |
| // When the result is close to zero, the strict Standard-prescribed |
| // calculation may leave more low-order zeros in the mantissa than |
| // is usually necessary. When spare entropy has been extracted, as |
| // is usual for float and double, some or all of the spare entropy |
| // can commonly be pulled into the result for better randomness. |
| // Defining _GLIBCXX_GENERATE_CANONICAL_STRICT discards it instead. |
| // |
| // When k calls to urng() yield more bits of entropy, log2_Rk_max, |
| // than fit into UInt, we discard some of it by overflowing, which |
| // is OK. On converting the integer representation of the sample |
| // to the float value, we must divide out the (possibly-truncated) |
| // size log2_Rk. |
| // |
| // This implementation works with std::bfloat16, which can exactly |
| // represent 2^32, but not with std::float16_t, limited to 2^15. |
| |
| template<typename _RealT, size_t __d, typename _Urbg> |
| _RealT |
| __generate_canonical_pow2(_Urbg& __urng) |
| { |
| using _UInt = typename __detail::_Select_uint_least_t<__d>::type; |
| |
| // Parameter __d is the actual target number of bits. |
| // Commented-out assignments below are of values specified in |
| // the Standard, but not used here for reasons noted. |
| // r = 2; // Redundant, we only support radix 2. |
| using _Rng = decltype(_Urbg::max()); |
| const _Rng __rng_range_less_1 = _Urbg::max() - _Urbg::min(); |
| // R = _UInt(__rng_range_less_1) + 1; // May wrap to 0. |
| const auto __log2_R = __builtin_popcountg(__rng_range_less_1); |
| const auto __log2_uint_max = sizeof(_UInt) * __CHAR_BIT__; |
| // rd = _UInt(1) << __d; // Could overflow, UB. |
| const unsigned __k = (__d + __log2_R - 1) / __log2_R; |
| const unsigned __log2_Rk_max = __k * __log2_R; |
| const unsigned __log2_Rk = // Bits of entropy actually obtained: |
| __log2_uint_max < __log2_Rk_max ? __log2_uint_max : __log2_Rk_max; |
| // Rk = _UInt(1) << __log2_Rk; // Likely overflows, UB. |
| _GLIBCXX14_CONSTEXPR const _RealT __Rk |
| = _RealT(_UInt(1) << (__log2_Rk - 1)) * _RealT(2.0); |
| #if defined(_GLIBCXX_GENERATE_CANONICAL_STRICT) |
| const unsigned __log2_x = __log2_Rk - __d; // # of spare entropy bits. |
| #else |
| const unsigned __log2_x = 0; |
| #endif |
| _GLIBCXX14_CONSTEXPR const _UInt __x = _UInt(1) << __log2_x; |
| _GLIBCXX14_CONSTEXPR const _RealT __rd = __Rk / _RealT(__x); |
| // xrd = __x << __d; // Could overflow. |
| |
| while (true) |
| { |
| _UInt __sum = _UInt(__urng() - _Urbg::min()); |
| for (unsigned __i = __k - 1, __shift = 0; __i > 0; --__i) |
| { |
| __shift += __log2_R; |
| __sum |= _UInt(__urng() - _Urbg::min()) << __shift; |
| } |
| const _RealT __ret = _RealT(__sum >> __log2_x) / _RealT(__rd); |
| if (__ret < _RealT(1.0)) |
| return __ret; |
| } |
| } |
| |
| |
| template<typename _UInt> |
| struct __gen_canon_log_res |
| { |
| unsigned __floor_log; |
| _UInt __floor_pow; |
| |
| constexpr __gen_canon_log_res |
| update(_UInt __base) const |
| { return {__floor_log + 1, __floor_pow * __base}; } |
| }; |
| |
| |
| template <typename _UInt1, typename _UInt2, |
| typename _UComm = __conditional_t<(sizeof(_UInt2) > sizeof(_UInt1)), |
| _UInt2, _UInt1>> |
| constexpr __gen_canon_log_res<_UInt1> |
| __gen_canon_log(_UInt1 __val, _UInt2 __base) |
| { |
| #if __cplusplus >= 201402L |
| __gen_canon_log_res<_UInt1> __res{0, _UInt1(1)}; |
| if (_UComm(__base) > _UComm(__val)) |
| return __res; |
| |
| const _UInt1 __base1(__base); |
| do |
| { |
| __val /= __base1; |
| __res = __res.update(__base1); |
| } |
| while (__val >= __base1); |
| return __res; |
| #else |
| return (_UComm(__val) >= _UComm(__base)) |
| ? __gen_canon_log(__val / _UInt1(__base), _UInt1(__base)) |
| .update(_UInt1(__base)) |
| : __gen_canon_log_res<_UInt1>{0, _UInt1(1)}; |
| #endif |
| } |
| |
| // This version must be used when the range of possible RNG results, |
| // Urbg::max()-Urbg::min(), is not a power of two less one. The UInt |
| // type passed must be big enough to represent Rk, R^k, a power of R |
| // (the range of values produced by the rng) up to twice the length |
| // of the mantissa. |
| |
| template<typename _RealT, size_t __d, typename _Urbg> |
| _RealT |
| __generate_canonical_any(_Urbg& __urng) |
| { |
| // Names below are chosen to match the description in the Standard. |
| // Parameter d is the actual target number of bits. |
| #if (__cplusplus >= 201402L) || defined(__SIZEOF_INT128__) |
| # define _GLIBCXX_GEN_CANON_CONST constexpr |
| #else |
| # define _GLIBCXX_GEN_CANON_CONST const |
| #endif |
| |
| using _UIntR = typename make_unsigned<decltype(_Urbg::max())>::type; |
| // Cannot overflow, as _Urbg::max() - _Urbg::min() is not power of |
| // two minus one |
| constexpr _UIntR __R = _UIntR(_Urbg::max() - _Urbg::min()) + 1; |
| constexpr unsigned __log2R |
| = sizeof(_UIntR) * __CHAR_BIT__ - __builtin_clzg(__R) - 1; |
| // We overstimate number of required bits, by computing |
| // r such that l * log2(R) >= d, so: |
| // R^l >= (2 ^ log2(R)) ^ l == 2 ^ (log2(r) * l) >= 2^d |
| // And then requiring l * bit_width(R) bits. |
| constexpr unsigned __l = (__d + __log2R - 1) / __log2R; |
| constexpr unsigned __bits = (__log2R + 1) * __l; |
| using _UInt = typename __detail::_Select_uint_least_t<__bits>::type; |
| |
| _GLIBCXX_GEN_CANON_CONST _UInt __rd = _UInt(1) << __d; |
| _GLIBCXX_GEN_CANON_CONST auto __logRrd = __gen_canon_log(__rd, __R); |
| _GLIBCXX_GEN_CANON_CONST unsigned __k |
| = __logRrd.__floor_log + (__rd > __logRrd.__floor_pow); |
| |
| _GLIBCXX_GEN_CANON_CONST _UInt __Rk |
| = (__k > __logRrd.__floor_log) |
| ? _UInt(__logRrd.__floor_pow) * _UInt(__R) |
| : _UInt(__logRrd.__floor_pow); |
| _GLIBCXX_GEN_CANON_CONST _UInt __x = __Rk / __rd; |
| |
| while (true) |
| { |
| _UInt __Ri{1}; |
| _UInt __sum(__urng() - _Urbg::min()); |
| for (int __i = __k - 1; __i > 0; --__i) |
| { |
| __Ri *= _UInt(__R); |
| __sum += _UInt(__urng() - _Urbg::min()) * __Ri; |
| } |
| const _RealT __ret = _RealT(__sum / __x) / _RealT(__rd); |
| if (__ret < _RealT(1.0)) |
| return __ret; |
| } |
| #undef _GLIBCXX_GEN_CANON_CONST |
| } |
| |
| #if !defined(_GLIBCXX_GENERATE_CANONICAL_STRICT) |
| template <typename _Tp> |
| const bool __is_rand_dist_float_v = is_floating_point<_Tp>::value; |
| #else |
| template <typename _Tp> const bool __is_rand_dist_float_v = false; |
| template <> const bool __is_rand_dist_float_v<float> = true; |
| template <> const bool __is_rand_dist_float_v<double> = true; |
| template <> const bool __is_rand_dist_float_v<long double> = true; |
| #endif |
| |
| // Note, this works even when (__range + 1) overflows: |
| template <typename _Rng> |
| constexpr bool __is_power_of_2_less_1(_Rng __range) |
| { return ((__range + 1) & __range) == 0; }; |
| |
| _GLIBCXX_BEGIN_INLINE_ABI_NAMESPACE(_V2) |
| /** Produce a random floating-point value in the range [0..1) |
| * |
| * The result of `std::generate_canonical<RealT,digits>(urng)` is a |
| * random floating-point value of type `RealT` in the range [0..1), |
| * using entropy provided by the uniform random bit generator `urng`. |
| * A value for `digits` may be passed to limit the precision of the |
| * result to so many bits, but normally `-1u` is passed to get the |
| * native precision of `RealT`. As many `urng()` calls are made as |
| * needed to obtain the required entropy. On rare occasions, more |
| * `urng()` calls are used. It is fastest when the value of |
| * `Urbg::max()` is a power of two less one, such as from a |
| * `std::philox4x32` (for `float`) or `philox4x64` (for `double`). |
| * |
| * @since C++11 |
| */ |
| template<typename _RealT, size_t __digits, |
| typename _Urbg> |
| _RealT |
| generate_canonical(_Urbg& __urng) |
| { |
| #ifdef __glibcxx_concepts |
| static_assert(uniform_random_bit_generator<_Urbg>); |
| #endif |
| static_assert(__is_rand_dist_float_v<_RealT>, |
| "template argument must be a floating point type"); |
| static_assert(__digits != 0 && _Urbg::max() > _Urbg::min(), |
| "random samples with 0 bits are not meaningful"); |
| static_assert(std::numeric_limits<_RealT>::radix == 2, |
| "only base-2 float types are supported"); |
| #if defined(__STDCPP_FLOAT16_T__) |
| static_assert(! is_same_v<_RealT, _Float16>, |
| "float16_t type is not supported, consider using bfloat16_t"); |
| #endif |
| |
| const unsigned __d_max = std::numeric_limits<_RealT>::digits; |
| const unsigned __d = __digits > __d_max ? __d_max : __digits; |
| |
| // If the RNG range is a power of 2 less 1, the float type mantissa |
| // is enough bits. If not, we need more. |
| if constexpr (__is_power_of_2_less_1(_Urbg::max() - _Urbg::min())) |
| return __generate_canonical_pow2<_RealT, __d>(__urng); |
| else // Need up to 2x bits. |
| return __generate_canonical_any<_RealT, __d>(__urng); |
| } |
| _GLIBCXX_END_INLINE_ABI_NAMESPACE(_V2) |
| |
| #pragma GCC diagnostic pop |
| |
| #else // _GLIBCXX_USE_OLD_GENERATE_CANONICAL |
| |
| // This is the pre-P0952 definition, to reproduce old results. |
| |
| template<typename _RealType, size_t __bits, |
| typename _UniformRandomNumberGenerator> |
| _RealType |
| generate_canonical(_UniformRandomNumberGenerator& __urng) |
| { |
| static_assert(std::is_floating_point<_RealType>::value, |
| "template argument must be a floating point type"); |
| |
| const size_t __b |
| = std::min(static_cast<size_t>(std::numeric_limits<_RealType>::digits), |
| __bits); |
| const long double __r = static_cast<long double>(__urng.max()) |
| - static_cast<long double>(__urng.min()) + 1.0L; |
| const size_t __log2r = std::log(__r) / std::log(2.0L); |
| const size_t __m = std::max<size_t>(1UL, |
| (__b + __log2r - 1UL) / __log2r); |
| _RealType __ret; |
| _RealType __sum = _RealType(0); |
| _RealType __tmp = _RealType(1); |
| for (size_t __k = __m; __k != 0; --__k) |
| { |
| __sum += _RealType(__urng() - __urng.min()) * __tmp; |
| __tmp *= __r; |
| } |
| __ret = __sum / __tmp; |
| if (__builtin_expect(__ret >= _RealType(1), 0)) |
| { |
| # if _GLIBCXX_USE_C99_MATH_FUNCS |
| __ret = std::nextafter(_RealType(1), _RealType(0)); |
| # else |
| __ret = _RealType(1) |
| - std::numeric_limits<_RealType>::epsilon() / _RealType(2); |
| # endif |
| } |
| return __ret; |
| } |
| |
| #endif // _GLIBCXX_USE_OLD_GENERATE_CANONICAL |
| |
| _GLIBCXX_END_NAMESPACE_VERSION |
| } // namespace |
| |
| #endif |