blob: 71c73d6b84698c9f3f88756ce08fae7a34fa159d [file] [log] [blame]
/* More subroutines needed by GCC output code on some machines. */
/* Compile this one with gcc. */
/* Copyright (C) 1989-2024 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "tconfig.h"
#include "tsystem.h"
#include "coretypes.h"
#include "tm.h"
#include "libgcc_tm.h"
#ifdef HAVE_GAS_HIDDEN
#define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
#else
#define ATTRIBUTE_HIDDEN
#endif
/* Work out the largest "word" size that we can deal with on this target. */
#if MIN_UNITS_PER_WORD > 4
# define LIBGCC2_MAX_UNITS_PER_WORD 8
#elif (MIN_UNITS_PER_WORD > 2 \
|| (MIN_UNITS_PER_WORD > 1 && __SIZEOF_LONG_LONG__ > 4))
# define LIBGCC2_MAX_UNITS_PER_WORD 4
#else
# define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
#endif
/* Work out what word size we are using for this compilation.
The value can be set on the command line. */
#ifndef LIBGCC2_UNITS_PER_WORD
#define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
#endif
#if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
#include "libgcc2.h"
#ifdef DECLARE_LIBRARY_RENAMES
DECLARE_LIBRARY_RENAMES
#endif
#if defined (L_negdi2)
DWtype
__negdi2 (DWtype u)
{
const DWunion uu = {.ll = u};
const DWunion w = { {.low = -uu.s.low,
.high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
return w.ll;
}
#endif
#ifdef L_addvsi3
Wtype
__addvSI3 (Wtype a, Wtype b)
{
Wtype w;
if (__builtin_add_overflow (a, b, &w))
abort ();
return w;
}
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
SItype
__addvsi3 (SItype a, SItype b)
{
SItype w;
if (__builtin_add_overflow (a, b, &w))
abort ();
return w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
#endif
#ifdef L_addvdi3
DWtype
__addvDI3 (DWtype a, DWtype b)
{
DWtype w;
if (__builtin_add_overflow (a, b, &w))
abort ();
return w;
}
#endif
#ifdef L_subvsi3
Wtype
__subvSI3 (Wtype a, Wtype b)
{
Wtype w;
if (__builtin_sub_overflow (a, b, &w))
abort ();
return w;
}
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
SItype
__subvsi3 (SItype a, SItype b)
{
SItype w;
if (__builtin_sub_overflow (a, b, &w))
abort ();
return w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
#endif
#ifdef L_subvdi3
DWtype
__subvDI3 (DWtype a, DWtype b)
{
DWtype w;
if (__builtin_sub_overflow (a, b, &w))
abort ();
return w;
}
#endif
#ifdef L_mulvsi3
Wtype
__mulvSI3 (Wtype a, Wtype b)
{
Wtype w;
if (__builtin_mul_overflow (a, b, &w))
abort ();
return w;
}
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
SItype
__mulvsi3 (SItype a, SItype b)
{
SItype w;
if (__builtin_mul_overflow (a, b, &w))
abort ();
return w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
#endif
#ifdef L_negvsi2
Wtype
__negvSI2 (Wtype a)
{
Wtype w;
if (__builtin_sub_overflow (0, a, &w))
abort ();
return w;
}
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
SItype
__negvsi2 (SItype a)
{
SItype w;
if (__builtin_sub_overflow (0, a, &w))
abort ();
return w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
#endif
#ifdef L_negvdi2
DWtype
__negvDI2 (DWtype a)
{
DWtype w;
if (__builtin_sub_overflow (0, a, &w))
abort ();
return w;
}
#endif
#ifdef L_absvsi2
Wtype
__absvSI2 (Wtype a)
{
const Wtype v = 0 - (a < 0);
Wtype w;
if (__builtin_add_overflow (a, v, &w))
abort ();
return v ^ w;
}
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
SItype
__absvsi2 (SItype a)
{
const SItype v = 0 - (a < 0);
SItype w;
if (__builtin_add_overflow (a, v, &w))
abort ();
return v ^ w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
#endif
#ifdef L_absvdi2
DWtype
__absvDI2 (DWtype a)
{
const DWtype v = 0 - (a < 0);
DWtype w;
if (__builtin_add_overflow (a, v, &w))
abort ();
return v ^ w;
}
#endif
#ifdef L_mulvdi3
DWtype
__mulvDI3 (DWtype u, DWtype v)
{
/* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
but the checked multiplication needs only two. */
const DWunion uu = {.ll = u};
const DWunion vv = {.ll = v};
if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
{
/* u fits in a single Wtype. */
if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
{
/* v fits in a single Wtype as well. */
/* A single multiplication. No overflow risk. */
return (DWtype) uu.s.low * (DWtype) vv.s.low;
}
else
{
/* Two multiplications. */
DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
* (UDWtype) (UWtype) vv.s.low};
DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
* (UDWtype) (UWtype) vv.s.high};
if (vv.s.high < 0)
w1.s.high -= uu.s.low;
if (uu.s.low < 0)
w1.ll -= vv.ll;
w1.ll += (UWtype) w0.s.high;
if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
{
w0.s.high = w1.s.low;
return w0.ll;
}
}
}
else
{
if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
{
/* v fits into a single Wtype. */
/* Two multiplications. */
DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
* (UDWtype) (UWtype) vv.s.low};
DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
* (UDWtype) (UWtype) vv.s.low};
if (uu.s.high < 0)
w1.s.high -= vv.s.low;
if (vv.s.low < 0)
w1.ll -= uu.ll;
w1.ll += (UWtype) w0.s.high;
if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
{
w0.s.high = w1.s.low;
return w0.ll;
}
}
else
{
/* A few sign checks and a single multiplication. */
if (uu.s.high >= 0)
{
if (vv.s.high >= 0)
{
if (uu.s.high == 0 && vv.s.high == 0)
{
const DWtype w = (UDWtype) (UWtype) uu.s.low
* (UDWtype) (UWtype) vv.s.low;
if (__builtin_expect (w >= 0, 1))
return w;
}
}
else
{
if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
{
DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
* (UDWtype) (UWtype) vv.s.low};
ww.s.high -= uu.s.low;
if (__builtin_expect (ww.s.high < 0, 1))
return ww.ll;
}
}
}
else
{
if (vv.s.high >= 0)
{
if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
{
DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
* (UDWtype) (UWtype) vv.s.low};
ww.s.high -= vv.s.low;
if (__builtin_expect (ww.s.high < 0, 1))
return ww.ll;
}
}
else
{
if ((uu.s.high & vv.s.high) == (Wtype) -1
&& (uu.s.low | vv.s.low) != 0)
{
DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
* (UDWtype) (UWtype) vv.s.low};
ww.s.high -= uu.s.low;
ww.s.high -= vv.s.low;
if (__builtin_expect (ww.s.high >= 0, 1))
return ww.ll;
}
}
}
}
}
/* Overflow. */
abort ();
}
#endif
/* Unless shift functions are defined with full ANSI prototypes,
parameter b will be promoted to int if shift_count_type is smaller than an int. */
#ifdef L_lshrdi3
DWtype
__lshrdi3 (DWtype u, shift_count_type b)
{
if (b == 0)
return u;
const DWunion uu = {.ll = u};
const shift_count_type bm = W_TYPE_SIZE - b;
DWunion w;
if (bm <= 0)
{
w.s.high = 0;
w.s.low = (UWtype) uu.s.high >> -bm;
}
else
{
const UWtype carries = (UWtype) uu.s.high << bm;
w.s.high = (UWtype) uu.s.high >> b;
w.s.low = ((UWtype) uu.s.low >> b) | carries;
}
return w.ll;
}
#endif
#ifdef L_ashldi3
DWtype
__ashldi3 (DWtype u, shift_count_type b)
{
if (b == 0)
return u;
const DWunion uu = {.ll = u};
const shift_count_type bm = W_TYPE_SIZE - b;
DWunion w;
if (bm <= 0)
{
w.s.low = 0;
w.s.high = (UWtype) uu.s.low << -bm;
}
else
{
const UWtype carries = (UWtype) uu.s.low >> bm;
w.s.low = (UWtype) uu.s.low << b;
w.s.high = ((UWtype) uu.s.high << b) | carries;
}
return w.ll;
}
#endif
#ifdef L_ashrdi3
DWtype
__ashrdi3 (DWtype u, shift_count_type b)
{
if (b == 0)
return u;
const DWunion uu = {.ll = u};
const shift_count_type bm = W_TYPE_SIZE - b;
DWunion w;
if (bm <= 0)
{
/* w.s.high = 1..1 or 0..0 */
w.s.high = uu.s.high >> (W_TYPE_SIZE - 1);
w.s.low = uu.s.high >> -bm;
}
else
{
const UWtype carries = (UWtype) uu.s.high << bm;
w.s.high = uu.s.high >> b;
w.s.low = ((UWtype) uu.s.low >> b) | carries;
}
return w.ll;
}
#endif
#ifdef L_bswapsi2
SItype
__bswapsi2 (SItype u)
{
return ((((u) & 0xff000000u) >> 24)
| (((u) & 0x00ff0000u) >> 8)
| (((u) & 0x0000ff00u) << 8)
| (((u) & 0x000000ffu) << 24));
}
#endif
#ifdef L_bswapdi2
DItype
__bswapdi2 (DItype u)
{
return ((((u) & 0xff00000000000000ull) >> 56)
| (((u) & 0x00ff000000000000ull) >> 40)
| (((u) & 0x0000ff0000000000ull) >> 24)
| (((u) & 0x000000ff00000000ull) >> 8)
| (((u) & 0x00000000ff000000ull) << 8)
| (((u) & 0x0000000000ff0000ull) << 24)
| (((u) & 0x000000000000ff00ull) << 40)
| (((u) & 0x00000000000000ffull) << 56));
}
#endif
#ifdef L_ffssi2
#undef int
int
__ffsSI2 (UWtype u)
{
UWtype count;
if (u == 0)
return 0;
count_trailing_zeros (count, u);
return count + 1;
}
#endif
#ifdef L_ffsdi2
#undef int
int
__ffsDI2 (DWtype u)
{
const DWunion uu = {.ll = u};
UWtype word, count, add;
if (uu.s.low != 0)
word = uu.s.low, add = 0;
else if (uu.s.high != 0)
word = uu.s.high, add = W_TYPE_SIZE;
else
return 0;
count_trailing_zeros (count, word);
return count + add + 1;
}
#endif
#ifdef L_muldi3
DWtype
__muldi3 (DWtype u, DWtype v)
{
const DWunion uu = {.ll = u};
const DWunion vv = {.ll = v};
DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
+ (UWtype) uu.s.high * (UWtype) vv.s.low);
return w.ll;
}
#endif
#if (defined (L_udivdi3) || defined (L_divdi3) || \
defined (L_umoddi3) || defined (L_moddi3))
#if defined (sdiv_qrnnd)
#define L_udiv_w_sdiv
#endif
#endif
#ifdef L_udiv_w_sdiv
#if defined (sdiv_qrnnd)
#if (defined (L_udivdi3) || defined (L_divdi3) || \
defined (L_umoddi3) || defined (L_moddi3))
static inline __attribute__ ((__always_inline__))
#endif
UWtype
__udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
{
UWtype q, r;
UWtype c0, c1, b1;
if ((Wtype) d >= 0)
{
if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
{
/* Dividend, divisor, and quotient are nonnegative. */
sdiv_qrnnd (q, r, a1, a0, d);
}
else
{
/* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
/* Divide (c1*2^32 + c0) by d. */
sdiv_qrnnd (q, r, c1, c0, d);
/* Add 2^31 to quotient. */
q += (UWtype) 1 << (W_TYPE_SIZE - 1);
}
}
else
{
b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */
c1 = a1 >> 1; /* A/2 */
c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */
{
sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */
if ((d & 1) != 0)
{
if (r >= q)
r = r - q;
else if (q - r <= d)
{
r = r - q + d;
q--;
}
else
{
r = r - q + 2*d;
q -= 2;
}
}
}
else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */
{
c1 = (b1 - 1) - c1;
c0 = ~c0; /* logical NOT */
sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
q = ~q; /* (A/2)/b1 */
r = (b1 - 1) - r;
r = 2*r + (a0 & 1); /* A/(2*b1) */
if ((d & 1) != 0)
{
if (r >= q)
r = r - q;
else if (q - r <= d)
{
r = r - q + d;
q--;
}
else
{
r = r - q + 2*d;
q -= 2;
}
}
}
else /* Implies c1 = b1 */
{ /* Hence a1 = d - 1 = 2*b1 - 1 */
if (a0 >= -d)
{
q = -1;
r = a0 + d;
}
else
{
q = -2;
r = a0 + 2*d;
}
}
}
*rp = r;
return q;
}
#else
/* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
UWtype
__udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
UWtype a1 __attribute__ ((__unused__)),
UWtype a0 __attribute__ ((__unused__)),
UWtype d __attribute__ ((__unused__)))
{
return 0;
}
#endif
#endif
#if (defined (L_udivdi3) || defined (L_divdi3) || \
defined (L_umoddi3) || defined (L_moddi3) || \
defined (L_divmoddi4))
#define L_udivmoddi4
#endif
#ifdef L_clz
const UQItype __clz_tab[256] =
{
0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
};
#endif
#ifdef L_clzsi2
#undef int
int
__clzSI2 (UWtype x)
{
Wtype ret;
count_leading_zeros (ret, x);
return ret;
}
#endif
#ifdef L_clzdi2
#undef int
int
__clzDI2 (UDWtype x)
{
const DWunion uu = {.ll = x};
UWtype word;
Wtype ret, add;
if (uu.s.high)
word = uu.s.high, add = 0;
else
word = uu.s.low, add = W_TYPE_SIZE;
count_leading_zeros (ret, word);
return ret + add;
}
#endif
#ifdef L_ctzsi2
#undef int
int
__ctzSI2 (UWtype x)
{
Wtype ret;
count_trailing_zeros (ret, x);
return ret;
}
#endif
#ifdef L_ctzdi2
#undef int
int
__ctzDI2 (UDWtype x)
{
const DWunion uu = {.ll = x};
UWtype word;
Wtype ret, add;
if (uu.s.low)
word = uu.s.low, add = 0;
else
word = uu.s.high, add = W_TYPE_SIZE;
count_trailing_zeros (ret, word);
return ret + add;
}
#endif
#ifdef L_clrsbsi2
#undef int
int
__clrsbSI2 (Wtype x)
{
Wtype ret;
if (x < 0)
x = ~x;
if (x == 0)
return W_TYPE_SIZE - 1;
count_leading_zeros (ret, x);
return ret - 1;
}
#endif
#ifdef L_clrsbdi2
#undef int
int
__clrsbDI2 (DWtype x)
{
const DWunion uu = {.ll = x};
UWtype word;
Wtype ret, add;
if (uu.s.high == 0)
word = uu.s.low, add = W_TYPE_SIZE;
else if (uu.s.high == -1)
word = ~uu.s.low, add = W_TYPE_SIZE;
else if (uu.s.high >= 0)
word = uu.s.high, add = 0;
else
word = ~uu.s.high, add = 0;
if (word == 0)
ret = W_TYPE_SIZE;
else
count_leading_zeros (ret, word);
return ret + add - 1;
}
#endif
#ifdef L_popcount_tab
const UQItype __popcount_tab[256] =
{
0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
};
#endif
#if defined(L_popcountsi2) || defined(L_popcountdi2)
#define POPCOUNTCST2(x) (((UWtype) x << __CHAR_BIT__) | x)
#define POPCOUNTCST4(x) (((UWtype) x << (2 * __CHAR_BIT__)) | x)
#define POPCOUNTCST8(x) (((UWtype) x << (4 * __CHAR_BIT__)) | x)
#if W_TYPE_SIZE == __CHAR_BIT__
#define POPCOUNTCST(x) x
#elif W_TYPE_SIZE == 2 * __CHAR_BIT__
#define POPCOUNTCST(x) POPCOUNTCST2 (x)
#elif W_TYPE_SIZE == 4 * __CHAR_BIT__
#define POPCOUNTCST(x) POPCOUNTCST4 (POPCOUNTCST2 (x))
#elif W_TYPE_SIZE == 8 * __CHAR_BIT__
#define POPCOUNTCST(x) POPCOUNTCST8 (POPCOUNTCST4 (POPCOUNTCST2 (x)))
#endif
#endif
#ifdef L_popcountsi2
#undef int
int
__popcountSI2 (UWtype x)
{
/* Force table lookup on targets like AVR and RL78 which only
pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
have 1, and other small word targets. */
#if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
x = x - ((x >> 1) & POPCOUNTCST (0x55));
x = (x & POPCOUNTCST (0x33)) + ((x >> 2) & POPCOUNTCST (0x33));
x = (x + (x >> 4)) & POPCOUNTCST (0x0F);
return (x * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__);
#else
int i, ret = 0;
for (i = 0; i < W_TYPE_SIZE; i += 8)
ret += __popcount_tab[(x >> i) & 0xff];
return ret;
#endif
}
#endif
#ifdef L_popcountdi2
#undef int
int
__popcountDI2 (UDWtype x)
{
/* Force table lookup on targets like AVR and RL78 which only
pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
have 1, and other small word targets. */
#if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
const DWunion uu = {.ll = x};
UWtype x1 = uu.s.low, x2 = uu.s.high;
x1 = x1 - ((x1 >> 1) & POPCOUNTCST (0x55));
x2 = x2 - ((x2 >> 1) & POPCOUNTCST (0x55));
x1 = (x1 & POPCOUNTCST (0x33)) + ((x1 >> 2) & POPCOUNTCST (0x33));
x2 = (x2 & POPCOUNTCST (0x33)) + ((x2 >> 2) & POPCOUNTCST (0x33));
x1 = (x1 + (x1 >> 4)) & POPCOUNTCST (0x0F);
x2 = (x2 + (x2 >> 4)) & POPCOUNTCST (0x0F);
x1 += x2;
return (x1 * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__);
#else
int i, ret = 0;
for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
ret += __popcount_tab[(x >> i) & 0xff];
return ret;
#endif
}
#endif
#ifdef L_paritysi2
#undef int
int
__paritySI2 (UWtype x)
{
#if W_TYPE_SIZE > 64
# error "fill out the table"
#endif
#if W_TYPE_SIZE > 32
x ^= x >> 32;
#endif
#if W_TYPE_SIZE > 16
x ^= x >> 16;
#endif
x ^= x >> 8;
x ^= x >> 4;
x &= 0xf;
return (0x6996 >> x) & 1;
}
#endif
#ifdef L_paritydi2
#undef int
int
__parityDI2 (UDWtype x)
{
const DWunion uu = {.ll = x};
UWtype nx = uu.s.low ^ uu.s.high;
#if W_TYPE_SIZE > 64
# error "fill out the table"
#endif
#if W_TYPE_SIZE > 32
nx ^= nx >> 32;
#endif
#if W_TYPE_SIZE > 16
nx ^= nx >> 16;
#endif
nx ^= nx >> 8;
nx ^= nx >> 4;
nx &= 0xf;
return (0x6996 >> nx) & 1;
}
#endif
#ifdef L_udivmoddi4
#ifdef TARGET_HAS_NO_HW_DIVIDE
#if (defined (L_udivdi3) || defined (L_divdi3) || \
defined (L_umoddi3) || defined (L_moddi3) || \
defined (L_divmoddi4))
static inline __attribute__ ((__always_inline__))
#endif
UDWtype
__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
{
UDWtype q = 0, r = n, y = d;
UWtype lz1, lz2, i, k;
/* Implements align divisor shift dividend method. This algorithm
aligns the divisor under the dividend and then perform number of
test-subtract iterations which shift the dividend left. Number of
iterations is k + 1 where k is the number of bit positions the
divisor must be shifted left to align it under the dividend.
quotient bits can be saved in the rightmost positions of the dividend
as it shifts left on each test-subtract iteration. */
if (y <= r)
{
lz1 = __builtin_clzll (d);
lz2 = __builtin_clzll (n);
k = lz1 - lz2;
y = (y << k);
/* Dividend can exceed 2 ^ (width - 1) - 1 but still be less than the
aligned divisor. Normal iteration can drops the high order bit
of the dividend. Therefore, first test-subtract iteration is a
special case, saving its quotient bit in a separate location and
not shifting the dividend. */
if (r >= y)
{
r = r - y;
q = (1ULL << k);
}
if (k > 0)
{
y = y >> 1;
/* k additional iterations where k regular test subtract shift
dividend iterations are done. */
i = k;
do
{
if (r >= y)
r = ((r - y) << 1) + 1;
else
r = (r << 1);
i = i - 1;
} while (i != 0);
/* First quotient bit is combined with the quotient bits resulting
from the k regular iterations. */
q = q + r;
r = r >> k;
q = q - (r << k);
}
}
if (rp)
*rp = r;
return q;
}
#else
#if (defined (L_udivdi3) || defined (L_divdi3) || \
defined (L_umoddi3) || defined (L_moddi3) || \
defined (L_divmoddi4))
static inline __attribute__ ((__always_inline__))
#endif
UDWtype
__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
{
const DWunion nn = {.ll = n};
const DWunion dd = {.ll = d};
DWunion rr;
UWtype d0, d1, n0, n1, n2;
UWtype q0, q1;
UWtype b, bm;
d0 = dd.s.low;
d1 = dd.s.high;
n0 = nn.s.low;
n1 = nn.s.high;
#if !UDIV_NEEDS_NORMALIZATION
if (d1 == 0)
{
if (d0 > n1)
{
/* 0q = nn / 0D */
udiv_qrnnd (q0, n0, n1, n0, d0);
q1 = 0;
/* Remainder in n0. */
}
else
{
/* qq = NN / 0d */
if (d0 == 0)
d0 = 1 / d0; /* Divide intentionally by zero. */
udiv_qrnnd (q1, n1, 0, n1, d0);
udiv_qrnnd (q0, n0, n1, n0, d0);
/* Remainder in n0. */
}
if (rp != 0)
{
rr.s.low = n0;
rr.s.high = 0;
*rp = rr.ll;
}
}
#else /* UDIV_NEEDS_NORMALIZATION */
if (d1 == 0)
{
if (d0 > n1)
{
/* 0q = nn / 0D */
count_leading_zeros (bm, d0);
if (bm != 0)
{
/* Normalize, i.e. make the most significant bit of the
denominator set. */
d0 = d0 << bm;
n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
n0 = n0 << bm;
}
udiv_qrnnd (q0, n0, n1, n0, d0);
q1 = 0;
/* Remainder in n0 >> bm. */
}
else
{
/* qq = NN / 0d */
if (d0 == 0)
d0 = 1 / d0; /* Divide intentionally by zero. */
count_leading_zeros (bm, d0);
if (bm == 0)
{
/* From (n1 >= d0) /\ (the most significant bit of d0 is set),
conclude (the most significant bit of n1 is set) /\ (the
leading quotient digit q1 = 1).
This special case is necessary, not an optimization.
(Shifts counts of W_TYPE_SIZE are undefined.) */
n1 -= d0;
q1 = 1;
}
else
{
/* Normalize. */
b = W_TYPE_SIZE - bm;
d0 = d0 << bm;
n2 = n1 >> b;
n1 = (n1 << bm) | (n0 >> b);
n0 = n0 << bm;
udiv_qrnnd (q1, n1, n2, n1, d0);
}
/* n1 != d0... */
udiv_qrnnd (q0, n0, n1, n0, d0);
/* Remainder in n0 >> bm. */
}
if (rp != 0)
{
rr.s.low = n0 >> bm;
rr.s.high = 0;
*rp = rr.ll;
}
}
#endif /* UDIV_NEEDS_NORMALIZATION */
else
{
if (d1 > n1)
{
/* 00 = nn / DD */
q0 = 0;
q1 = 0;
/* Remainder in n1n0. */
if (rp != 0)
{
rr.s.low = n0;
rr.s.high = n1;
*rp = rr.ll;
}
}
else
{
/* 0q = NN / dd */
count_leading_zeros (bm, d1);
if (bm == 0)
{
/* From (n1 >= d1) /\ (the most significant bit of d1 is set),
conclude (the most significant bit of n1 is set) /\ (the
quotient digit q0 = 0 or 1).
This special case is necessary, not an optimization. */
/* The condition on the next line takes advantage of that
n1 >= d1 (true due to program flow). */
if (n1 > d1 || n0 >= d0)
{
q0 = 1;
sub_ddmmss (n1, n0, n1, n0, d1, d0);
}
else
q0 = 0;
q1 = 0;
if (rp != 0)
{
rr.s.low = n0;
rr.s.high = n1;
*rp = rr.ll;
}
}
else
{
UWtype m1, m0;
/* Normalize. */
b = W_TYPE_SIZE - bm;
d1 = (d1 << bm) | (d0 >> b);
d0 = d0 << bm;
n2 = n1 >> b;
n1 = (n1 << bm) | (n0 >> b);
n0 = n0 << bm;
udiv_qrnnd (q0, n1, n2, n1, d1);
umul_ppmm (m1, m0, q0, d0);
if (m1 > n1 || (m1 == n1 && m0 > n0))
{
q0--;
sub_ddmmss (m1, m0, m1, m0, d1, d0);
}
q1 = 0;
/* Remainder in (n1n0 - m1m0) >> bm. */
if (rp != 0)
{
sub_ddmmss (n1, n0, n1, n0, m1, m0);
rr.s.low = (n1 << b) | (n0 >> bm);
rr.s.high = n1 >> bm;
*rp = rr.ll;
}
}
}
}
const DWunion ww = {{.low = q0, .high = q1}};
return ww.ll;
}
#endif
#endif
#ifdef L_divdi3
DWtype
__divdi3 (DWtype u, DWtype v)
{
Wtype c = 0;
DWunion uu = {.ll = u};
DWunion vv = {.ll = v};
DWtype w;
if (uu.s.high < 0)
c = ~c,
uu.ll = -uu.ll;
if (vv.s.high < 0)
c = ~c,
vv.ll = -vv.ll;
w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
if (c)
w = -w;
return w;
}
#endif
#ifdef L_moddi3
DWtype
__moddi3 (DWtype u, DWtype v)
{
Wtype c = 0;
DWunion uu = {.ll = u};
DWunion vv = {.ll = v};
DWtype w;
if (uu.s.high < 0)
c = ~c,
uu.ll = -uu.ll;
if (vv.s.high < 0)
vv.ll = -vv.ll;
(void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
if (c)
w = -w;
return w;
}
#endif
#ifdef L_divmoddi4
DWtype
__divmoddi4 (DWtype u, DWtype v, DWtype *rp)
{
Wtype c1 = 0, c2 = 0;
DWunion uu = {.ll = u};
DWunion vv = {.ll = v};
DWtype w;
DWtype r;
if (uu.s.high < 0)
c1 = ~c1, c2 = ~c2,
uu.ll = -uu.ll;
if (vv.s.high < 0)
c1 = ~c1,
vv.ll = -vv.ll;
w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&r);
if (c1)
w = -w;
if (c2)
r = -r;
*rp = r;
return w;
}
#endif
#ifdef L_umoddi3
UDWtype
__umoddi3 (UDWtype u, UDWtype v)
{
UDWtype w;
(void) __udivmoddi4 (u, v, &w);
return w;
}
#endif
#ifdef L_udivdi3
UDWtype
__udivdi3 (UDWtype n, UDWtype d)
{
return __udivmoddi4 (n, d, (UDWtype *) 0);
}
#endif
#if (defined(__BITINT_MAXWIDTH__) \
&& (defined(L_mulbitint3) || defined(L_divmodbitint4)))
/* _BitInt support. */
/* If *P is zero or sign extended (the latter only for PREC < 0) from
some narrower _BitInt value, reduce precision. */
static inline __attribute__((__always_inline__)) SItype
bitint_reduce_prec (const UBILtype **p, SItype prec)
{
UWtype mslimb;
SItype i;
if (prec < 0)
{
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
i = 0;
#else
i = ((USItype) -1 - prec) / W_TYPE_SIZE;
#endif
mslimb = (*p)[i];
if (mslimb & ((UWtype) 1 << (((USItype) -1 - prec) % W_TYPE_SIZE)))
{
SItype n = ((USItype) -prec) % W_TYPE_SIZE;
if (n)
{
mslimb |= ((UWtype) -1 << (((USItype) -1 - prec) % W_TYPE_SIZE));
if (mslimb == (UWtype) -1)
{
prec += n;
if (prec >= -1)
return -2;
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
++p;
#else
--i;
#endif
mslimb = (*p)[i];
n = 0;
}
}
while (mslimb == (UWtype) -1)
{
prec += W_TYPE_SIZE;
if (prec >= -1)
return -2;
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
++p;
#else
--i;
#endif
mslimb = (*p)[i];
}
if (n == 0)
{
if ((Wtype) mslimb >= 0)
{
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
--p;
#endif
return prec - 1;
}
}
return prec;
}
else
prec = -prec;
}
else
{
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
i = 0;
#else
i = ((USItype) prec - 1) / W_TYPE_SIZE;
#endif
mslimb = (*p)[i];
}
SItype n = ((USItype) prec) % W_TYPE_SIZE;
if (n)
{
mslimb &= ((UWtype) 1 << (((USItype) prec) % W_TYPE_SIZE)) - 1;
if (mslimb == 0)
{
prec -= n;
if (prec == 0)
return 1;
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
++p;
#else
--i;
#endif
mslimb = (*p)[i];
}
}
while (mslimb == 0)
{
prec -= W_TYPE_SIZE;
if (prec == 0)
return 1;
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
++p;
#else
--i;
#endif
mslimb = (*p)[i];
}
return prec;
}
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
# define BITINT_INC -1
# define BITINT_END(be, le) (be)
#else
# define BITINT_INC 1
# define BITINT_END(be, le) (le)
#endif
#ifdef L_mulbitint3
/* D = S * L. */
static UWtype
bitint_mul_1 (UBILtype *d, const UBILtype *s, UWtype l, SItype n)
{
UWtype sv, hi, lo, c = 0;
do
{
sv = *s;
s += BITINT_INC;
umul_ppmm (hi, lo, sv, l);
c = __builtin_add_overflow (lo, c, &lo) + hi;
*d = lo;
d += BITINT_INC;
}
while (--n);
return c;
}
/* D += S * L. */
static UWtype
bitint_addmul_1 (UBILtype *d, const UBILtype *s, UWtype l, SItype n)
{
UWtype sv, hi, lo, c = 0;
do
{
sv = *s;
s += BITINT_INC;
umul_ppmm (hi, lo, sv, l);
hi += __builtin_add_overflow (lo, *d, &lo);
c = __builtin_add_overflow (lo, c, &lo) + hi;
*d = lo;
d += BITINT_INC;
}
while (--n);
return c;
}
/* If XPREC is positive, it is precision in bits
of an unsigned _BitInt operand (which has XPREC/W_TYPE_SIZE
full limbs and if Xprec%W_TYPE_SIZE one partial limb.
If Xprec is negative, -XPREC is precision in bits
of a signed _BitInt operand. RETPREC should be always
positive. */
void
__mulbitint3 (UBILtype *ret, SItype retprec,
const UBILtype *u, SItype uprec,
const UBILtype *v, SItype vprec)
{
uprec = bitint_reduce_prec (&u, uprec);
vprec = bitint_reduce_prec (&v, vprec);
USItype auprec = uprec < 0 ? -uprec : uprec;
USItype avprec = vprec < 0 ? -vprec : vprec;
/* Prefer non-negative U.
Otherwise make sure V doesn't have higher precision than U. */
if ((uprec < 0 && vprec >= 0)
|| (avprec > auprec && !(uprec >= 0 && vprec < 0)))
{
SItype p;
const UBILtype *t;
p = uprec; uprec = vprec; vprec = p;
p = auprec; auprec = avprec; avprec = p;
t = u; u = v; v = t;
}
USItype un = auprec / W_TYPE_SIZE;
USItype un2 = (auprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
USItype vn = avprec / W_TYPE_SIZE;
USItype vn2 = (avprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
USItype retn = ((USItype) retprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
USItype retidx, uidx, vidx;
UWtype vv;
/* Indexes of least significant limb. */
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
retidx = retn - 1;
uidx = un2 - 1;
vidx = vn2 - 1;
#else
retidx = 0;
uidx = 0;
vidx = 0;
#endif
if (__builtin_expect (auprec <= W_TYPE_SIZE, 0) && vprec < 0)
{
UWtype uu = u[uidx];
if (__builtin_expect (auprec < W_TYPE_SIZE, 0))
uu &= ((UWtype) 1 << (auprec % W_TYPE_SIZE)) - 1;
if (uu == 0)
{
/* 0 * negative would be otherwise mishandled below, so
handle it specially. */
__builtin_memset (ret, 0, retn * sizeof (UWtype));
return;
}
}
vv = v[vidx];
if (__builtin_expect (avprec < W_TYPE_SIZE, 0))
{
if (vprec > 0)
vv &= ((UWtype) 1 << (avprec % W_TYPE_SIZE)) - 1;
else
vv |= (UWtype) -1 << (avprec % W_TYPE_SIZE);
}
USItype n = un > retn ? retn : un;
USItype n2 = n;
USItype retidx2 = retidx + n * BITINT_INC;
UWtype c = 0, uv = 0;
if (n)
c = bitint_mul_1 (ret + retidx, u + uidx, vv, n);
if (retn > un && un2 != un)
{
UWtype hi, lo;
uv = u[uidx + n * BITINT_INC];
if (uprec > 0)
uv &= ((UWtype) 1 << (auprec % W_TYPE_SIZE)) - 1;
else
uv |= (UWtype) -1 << (auprec % W_TYPE_SIZE);
umul_ppmm (hi, lo, uv, vv);
c = __builtin_add_overflow (lo, c, &lo) + hi;
ret[retidx2] = lo;
retidx2 += BITINT_INC;
++n2;
}
if (retn > un2)
{
if (uprec < 0)
{
while (n2 < retn)
{
if (n2 >= un2 + vn2)
break;
UWtype hi, lo;
umul_ppmm (hi, lo, (UWtype) -1, vv);
c = __builtin_add_overflow (lo, c, &lo) + hi;
ret[retidx2] = lo;
retidx2 += BITINT_INC;
++n2;
}
}
else
{
ret[retidx2] = c;
retidx2 += BITINT_INC;
++n2;
}
/* If RET has more limbs than U after precision reduction,
fill in the remaining limbs. */
while (n2 < retn)
{
if (n2 < un2 + vn2 || (uprec ^ vprec) >= 0)
c = 0;
else
c = (UWtype) -1;
ret[retidx2] = c;
retidx2 += BITINT_INC;
++n2;
}
}
/* N is now number of possibly non-zero limbs in RET (ignoring
limbs above UN2 + VN2 which if any have been finalized already). */
USItype end = vprec < 0 ? un2 + vn2 : vn2;
if (retn > un2 + vn2) retn = un2 + vn2;
if (end > retn) end = retn;
for (USItype m = 1; m < end; ++m)
{
retidx += BITINT_INC;
vidx += BITINT_INC;
if (m < vn2)
{
vv = v[vidx];
if (__builtin_expect (m == vn, 0))
{
if (vprec > 0)
vv &= ((UWtype) 1 << (avprec % W_TYPE_SIZE)) - 1;
else
vv |= (UWtype) -1 << (avprec % W_TYPE_SIZE);
}
}
else
vv = (UWtype) -1;
if (m + n > retn)
n = retn - m;
c = 0;
if (n)
c = bitint_addmul_1 (ret + retidx, u + uidx, vv, n);
n2 = m + n;
retidx2 = retidx + n * BITINT_INC;
if (n2 < retn && un2 != un)
{
UWtype hi, lo;
umul_ppmm (hi, lo, uv, vv);
hi += __builtin_add_overflow (lo, ret[retidx2], &lo);
c = __builtin_add_overflow (lo, c, &lo) + hi;
ret[retidx2] = lo;
retidx2 += BITINT_INC;
++n2;
}
if (uprec < 0)
while (n2 < retn)
{
UWtype hi, lo;
umul_ppmm (hi, lo, (UWtype) -1, vv);
hi += __builtin_add_overflow (lo, ret[retidx2], &lo);
c = __builtin_add_overflow (lo, c, &lo) + hi;
ret[retidx2] = lo;
retidx2 += BITINT_INC;
++n2;
}
else if (n2 < retn)
{
ret[retidx2] = c;
retidx2 += BITINT_INC;
}
}
}
#endif
#ifdef L_divmodbitint4
/* D = -S. */
static UWtype
bitint_negate (UBILtype *d, const UBILtype *s, SItype n)
{
UWtype c = 1;
UWtype r = 0;
do
{
UWtype sv = *s, lo;
r |= sv;
s += BITINT_INC;
c = __builtin_add_overflow (~sv, c, &lo);
*d = lo;
d += BITINT_INC;
}
while (--n);
return r;
}
/* D -= S * L. */
static UWtype
bitint_submul_1 (UBILtype *d, const UBILtype *s, UWtype l, SItype n)
{
UWtype sv, hi, lo, c = 0;
do
{
sv = *s;
s += BITINT_INC;
umul_ppmm (hi, lo, sv, l);
hi += __builtin_sub_overflow (*d, lo, &lo);
c = __builtin_sub_overflow (lo, c, &lo) + hi;
*d = lo;
d += BITINT_INC;
}
while (--n);
return c;
}
/* If XPREC is positive, it is precision in bits
of an unsigned _BitInt operand (which has XPREC/W_TYPE_SIZE
full limbs and if Xprec%W_TYPE_SIZE one partial limb.
If Xprec is negative, -XPREC is precision in bits
of a signed _BitInt operand. QPREC and RPREC should be
always non-negative. If either Q or R is NULL (at least
one should be non-NULL), then corresponding QPREC or RPREC
should be 0. */
void
__divmodbitint4 (UBILtype *q, SItype qprec,
UBILtype *r, SItype rprec,
const UBILtype *u, SItype uprec,
const UBILtype *v, SItype vprec)
{
uprec = bitint_reduce_prec (&u, uprec);
vprec = bitint_reduce_prec (&v, vprec);
USItype auprec = uprec < 0 ? -uprec : uprec;
USItype avprec = vprec < 0 ? -vprec : vprec;
USItype un = (auprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
USItype vn = (avprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
USItype qn = ((USItype) qprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
USItype rn = ((USItype) rprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
USItype up = auprec % W_TYPE_SIZE;
USItype vp = avprec % W_TYPE_SIZE;
if (__builtin_expect (un < vn, 0))
{
/* If abs(v) > abs(u), then q is 0 and r is u.
Unfortunately un < vn doesn't always mean abs(v) > abs(u).
If uprec > 0 and vprec < 0 and vn == un + 1, if the
top limb of v is all ones and the second most significant
limb has most significant bit clear, then just decrease
vn/avprec/vp and continue, after negation both numbers
will have the same number of limbs. */
if (un + 1 == vn
&& uprec >= 0
&& vprec < 0
&& ((v[BITINT_END (0, vn - 1)] | (vp ? ((UWtype) -1 << vp) : 0))
== (UWtype) -1)
&& (Wtype) v[BITINT_END (1, vn - 2)] >= 0)
{
vp = 0;
--vn;
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
++v;
#endif
}
else
{
/* q is 0 and r is u. */
if (q)
__builtin_memset (q, 0, qn * sizeof (UWtype));
if (r == NULL)
return;
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
r += rn - 1;
u += un - 1;
#endif
if (up)
--un;
if (rn < un)
un = rn;
for (rn -= un; un; --un)
{
*r = *u;
r += BITINT_INC;
u += BITINT_INC;
}
if (!rn)
return;
if (up)
{
if (uprec > 0)
*r = *u & (((UWtype) 1 << up) - 1);
else
*r = *u | ((UWtype) -1 << up);
r += BITINT_INC;
if (!--rn)
return;
}
UWtype c = uprec < 0 ? (UWtype) -1 : (UWtype) 0;
for (; rn; --rn)
{
*r = c;
r += BITINT_INC;
}
return;
}
}
USItype qn2 = un - vn + 1;
if (qn >= qn2)
qn2 = 0;
USItype sz = un + 1 + vn + qn2;
UBILtype *buf = __builtin_alloca (sz * sizeof (UWtype));
USItype uidx, vidx;
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
uidx = un - 1;
vidx = vn - 1;
#else
uidx = 0;
vidx = 0;
#endif
if (uprec < 0)
bitint_negate (buf + BITINT_END (uidx + 1, 0), u + uidx, un);
else
__builtin_memcpy (buf + BITINT_END (1, 0), u, un * sizeof (UWtype));
if (up)
buf[BITINT_END (1, un - 1)] &= (((UWtype) 1 << up) - 1);
if (vprec < 0)
bitint_negate (buf + un + 1 + vidx, v + vidx, vn);
else
__builtin_memcpy (buf + un + 1, v, vn * sizeof (UWtype));
if (vp)
buf[un + 1 + BITINT_END (0, vn - 1)] &= (((UWtype) 1 << vp) - 1);
UBILtype *u2 = buf;
UBILtype *v2 = u2 + un + 1;
UBILtype *q2 = v2 + vn;
if (!qn2)
q2 = q + BITINT_END (qn - (un - vn + 1), 0);
/* Knuth's algorithm. See also ../gcc/wide-int.cc (divmod_internal_2). */
#ifndef UDIV_NEEDS_NORMALIZATION
/* Handle single limb divisor first. */
if (vn == 1)
{
UWtype vv = v2[0];
if (vv == 0)
vv = 1 / vv; /* Divide intentionally by zero. */
UWtype k = 0;
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
for (SItype i = 0; i <= un - 1; ++i)
#else
for (SItype i = un - 1; i >= 0; --i)
#endif
udiv_qrnnd (q2[i], k, k, u2[BITINT_END (i + 1, i)], vv);
if (r != NULL)
r[BITINT_END (rn - 1, 0)] = k;
}
else
#endif
{
SItype s;
#ifdef UDIV_NEEDS_NORMALIZATION
if (vn == 1 && v2[0] == 0)
s = 0;
else
#endif
if (sizeof (0U) == sizeof (UWtype))
s = __builtin_clz (v2[BITINT_END (0, vn - 1)]);
else if (sizeof (0UL) == sizeof (UWtype))
s = __builtin_clzl (v2[BITINT_END (0, vn - 1)]);
else
s = __builtin_clzll (v2[BITINT_END (0, vn - 1)]);
if (s)
{
/* Normalize by shifting v2 left so that it has msb set. */
const SItype n = sizeof (UWtype) * __CHAR_BIT__;
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
for (SItype i = 0; i < vn - 1; ++i)
#else
for (SItype i = vn - 1; i > 0; --i)
#endif
v2[i] = (v2[i] << s) | (v2[i - BITINT_INC] >> (n - s));
v2[vidx] = v2[vidx] << s;
/* And shift u2 left by the same amount. */
u2[BITINT_END (0, un)] = u2[BITINT_END (1, un - 1)] >> (n - s);
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
for (SItype i = 1; i < un; ++i)
#else
for (SItype i = un - 1; i > 0; --i)
#endif
u2[i] = (u2[i] << s) | (u2[i - BITINT_INC] >> (n - s));
u2[BITINT_END (un, 0)] = u2[BITINT_END (un, 0)] << s;
}
else
u2[BITINT_END (0, un)] = 0;
#ifdef UDIV_NEEDS_NORMALIZATION
/* Handle single limb divisor first. */
if (vn == 1)
{
UWtype vv = v2[0];
if (vv == 0)
vv = 1 / vv; /* Divide intentionally by zero. */
UWtype k = u2[BITINT_END (0, un)];
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
for (SItype i = 0; i <= un - 1; ++i)
#else
for (SItype i = un - 1; i >= 0; --i)
#endif
udiv_qrnnd (q2[i], k, k, u2[BITINT_END (i + 1, i)], vv);
if (r != NULL)
r[BITINT_END (rn - 1, 0)] = k >> s;
}
else
#endif
{
UWtype vv1 = v2[BITINT_END (0, vn - 1)];
UWtype vv0 = v2[BITINT_END (1, vn - 2)];
/* Main loop. */
for (SItype j = un - vn; j >= 0; --j)
{
/* Compute estimate in qhat. */
UWtype uv1 = u2[BITINT_END (un - j - vn, j + vn)];
UWtype uv0 = u2[BITINT_END (un - j - vn + 1, j + vn - 1)];
UWtype qhat, rhat, hi, lo, c;
if (uv1 >= vv1)
{
/* udiv_qrnnd doesn't support quotients which don't
fit into UWtype, while Knuth's algorithm originally
uses a double-word by word to double-word division.
Fortunately, the algorithm guarantees that uv1 <= vv1,
because if uv1 > vv1, then even if v would have all
bits in all words below vv1 set, the previous iteration
would be supposed to use qhat larger by 1 and subtract
v. With uv1 == vv1 and uv0 >= vv1 the double-word
qhat in Knuth's algorithm would be 1 in the upper word
and 1 in the lower word, say for
uv1 0x8000000000000000ULL
uv0 0xffffffffffffffffULL
vv1 0x8000000000000000ULL
0x8000000000000000ffffffffffffffffuwb
/ 0x8000000000000000uwb == 0x10000000000000001uwb, and
exactly like that also for any other value
> 0x8000000000000000ULL in uv1 and vv1 and uv0 >= uv1.
So we need to subtract one or at most two vv1s from
uv1:uv0 (qhat because of that decreases by 1 or 2 and
is then representable in UWtype) and need to increase
rhat by vv1 once or twice because of that. Now, if
we need to subtract 2 vv1s, i.e. if
uv1 == vv1 && uv0 >= vv1, then rhat (which is uv0 - vv1)
+ vv1 computation can't overflow, because it is equal
to uv0 and therefore the original algorithm in that case
performs goto again, but the second vv1 addition must
overflow already because vv1 has msb set from the
canonicalization. */
uv1 -= __builtin_sub_overflow (uv0, vv1, &uv0);
if (uv1 >= vv1)
{
uv1 -= __builtin_sub_overflow (uv0, vv1, &uv0);
udiv_qrnnd (qhat, rhat, uv1, uv0, vv1);
rhat += 2 * vv1;
}
else
{
udiv_qrnnd (qhat, rhat, uv1, uv0, vv1);
if (!__builtin_add_overflow (rhat, vv1, &rhat))
goto again;
}
}
else
{
udiv_qrnnd (qhat, rhat, uv1, uv0, vv1);
again:
umul_ppmm (hi, lo, qhat, vv0);
if (hi > rhat
|| (hi == rhat
&& lo > u2[BITINT_END (un - j - vn + 2,
j + vn - 2)]))
{
--qhat;
if (!__builtin_add_overflow (rhat, vv1, &rhat))
goto again;
}
}
c = bitint_submul_1 (u2 + BITINT_END (un - j, j),
v2 + BITINT_END (vn - 1, 0), qhat, vn);
u2[BITINT_END (un - j - vn, j + vn)] -= c;
/* If we've subtracted too much, decrease qhat and
and add back. */
if ((Wtype) u2[BITINT_END (un - j - vn, j + vn)] < 0)
{
--qhat;
c = 0;
for (USItype i = 0; i < vn; ++i)
{
UWtype s = v2[BITINT_END (vn - 1 - i, i)];
UWtype d = u2[BITINT_END (un - i - j, i + j)];
UWtype c1 = __builtin_add_overflow (d, s, &d);
UWtype c2 = __builtin_add_overflow (d, c, &d);
c = c1 + c2;
u2[BITINT_END (un - i - j, i + j)] = d;
}
u2[BITINT_END (un - j - vn, j + vn)] += c;
}
q2[BITINT_END (un - vn - j, j)] = qhat;
}
if (r != NULL)
{
if (s)
{
const SItype n = sizeof (UWtype) * __CHAR_BIT__;
/* Unnormalize remainder. */
USItype i;
for (i = 0; i < vn && i < rn; ++i)
r[BITINT_END (rn - 1 - i, i)]
= ((u2[BITINT_END (un - i, i)] >> s)
| (u2[BITINT_END (un - i - 1, i + 1)] << (n - s)));
if (i < rn)
r[BITINT_END (rn - vn, vn - 1)]
= u2[BITINT_END (un - vn + 1, vn - 1)] >> s;
}
else if (rn > vn)
__builtin_memcpy (&r[BITINT_END (rn - vn, 0)],
&u2[BITINT_END (un + 1 - vn, 0)],
vn * sizeof (UWtype));
else
__builtin_memcpy (&r[0], &u2[BITINT_END (un + 1 - rn, 0)],
rn * sizeof (UWtype));
}
}
}
if (q != NULL)
{
if ((uprec < 0) ^ (vprec < 0))
{
/* Negative quotient. */
USItype n;
if (un - vn + 1 > qn)
n = qn;
else
n = un - vn + 1;
SItype c = bitint_negate (q + BITINT_END (qn - 1, 0),
q2 + BITINT_END (un - vn, 0), n) ? -1 : 0;
if (qn > n)
__builtin_memset (q + BITINT_END (0, n), c,
(qn - n) * sizeof (UWtype));
}
else
{
/* Positive quotient. */
if (qn2)
__builtin_memcpy (q, q2 + BITINT_END (un - vn + 1 - qn, 0),
qn * sizeof (UWtype));
else if (qn > un - vn + 1)
__builtin_memset (q + BITINT_END (0, un - vn + 1), 0,
(qn - (un - vn + 1)) * sizeof (UWtype));
}
}
if (r != NULL)
{
if (uprec < 0)
{
/* Negative remainder. */
SItype c = bitint_negate (r + BITINT_END (rn - 1, 0),
r + BITINT_END (rn - 1, 0),
rn > vn ? vn : rn) ? -1 : 0;
if (rn > vn)
__builtin_memset (r + BITINT_END (0, vn), c,
(rn - vn) * sizeof (UWtype));
}
else
{
/* Positive remainder. */
if (rn > vn)
__builtin_memset (r + BITINT_END (0, vn), 0,
(rn - vn) * sizeof (UWtype));
}
}
}
#endif
#endif
#ifdef L_cmpdi2
cmp_return_type
__cmpdi2 (DWtype a, DWtype b)
{
return (a > b) - (a < b) + 1;
}
#endif
#ifdef L_ucmpdi2
cmp_return_type
__ucmpdi2 (UDWtype a, UDWtype b)
{
return (a > b) - (a < b) + 1;
}
#endif
#if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
UDWtype
__fixunstfDI (TFtype a)
{
if (a < 0)
return 0;
/* Compute high word of result, as a flonum. */
const TFtype b = (a / Wtype_MAXp1_F);
/* Convert that to fixed (but not to DWtype!),
and shift it into the high word. */
UDWtype v = (UWtype) b;
v <<= W_TYPE_SIZE;
/* Remove high part from the TFtype, leaving the low part as flonum. */
a -= (TFtype)v;
/* Convert that to fixed (but not to DWtype!) and add it in.
Sometimes A comes out negative. This is significant, since
A has more bits than a long int does. */
if (a < 0)
v -= (UWtype) (- a);
else
v += (UWtype) a;
return v;
}
#endif
#if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
DWtype
__fixtfdi (TFtype a)
{
if (a < 0)
return - __fixunstfDI (-a);
return __fixunstfDI (a);
}
#endif
#if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
UDWtype
__fixunsxfDI (XFtype a)
{
if (a < 0)
return 0;
/* Compute high word of result, as a flonum. */
const XFtype b = (a / Wtype_MAXp1_F);
/* Convert that to fixed (but not to DWtype!),
and shift it into the high word. */
UDWtype v = (UWtype) b;
v <<= W_TYPE_SIZE;
/* Remove high part from the XFtype, leaving the low part as flonum. */
a -= (XFtype)v;
/* Convert that to fixed (but not to DWtype!) and add it in.
Sometimes A comes out negative. This is significant, since
A has more bits than a long int does. */
if (a < 0)
v -= (UWtype) (- a);
else
v += (UWtype) a;
return v;
}
#endif
#if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
DWtype
__fixxfdi (XFtype a)
{
if (a < 0)
return - __fixunsxfDI (-a);
return __fixunsxfDI (a);
}
#endif
#if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
UDWtype
__fixunsdfDI (DFtype a)
{
/* Get high part of result. The division here will just moves the radix
point and will not cause any rounding. Then the conversion to integral
type chops result as desired. */
const UWtype hi = a / Wtype_MAXp1_F;
/* Get low part of result. Convert `hi' to floating type and scale it back,
then subtract this from the number being converted. This leaves the low
part. Convert that to integral type. */
const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
/* Assemble result from the two parts. */
return ((UDWtype) hi << W_TYPE_SIZE) | lo;
}
#endif
#if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
DWtype
__fixdfdi (DFtype a)
{
if (a < 0)
return - __fixunsdfDI (-a);
return __fixunsdfDI (a);
}
#endif
#if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
UDWtype
__fixunssfDI (SFtype a)
{
#if LIBGCC2_HAS_DF_MODE
/* Convert the SFtype to a DFtype, because that is surely not going
to lose any bits. Some day someone else can write a faster version
that avoids converting to DFtype, and verify it really works right. */
const DFtype dfa = a;
/* Get high part of result. The division here will just moves the radix
point and will not cause any rounding. Then the conversion to integral
type chops result as desired. */
const UWtype hi = dfa / Wtype_MAXp1_F;
/* Get low part of result. Convert `hi' to floating type and scale it back,
then subtract this from the number being converted. This leaves the low
part. Convert that to integral type. */
const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
/* Assemble result from the two parts. */
return ((UDWtype) hi << W_TYPE_SIZE) | lo;
#elif FLT_MANT_DIG < W_TYPE_SIZE
if (a < 1)
return 0;
if (a < Wtype_MAXp1_F)
return (UWtype)a;
if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
{
/* Since we know that there are fewer significant bits in the SFmode
quantity than in a word, we know that we can convert out all the
significant bits in one step, and thus avoid losing bits. */
/* ??? This following loop essentially performs frexpf. If we could
use the real libm function, or poke at the actual bits of the fp
format, it would be significantly faster. */
UWtype shift = 0, counter;
SFtype msb;
a /= Wtype_MAXp1_F;
for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
{
SFtype counterf = (UWtype)1 << counter;
if (a >= counterf)
{
shift |= counter;
a /= counterf;
}
}
/* Rescale into the range of one word, extract the bits of that
one word, and shift the result into position. */
a *= Wtype_MAXp1_F;
counter = a;
return (DWtype)counter << shift;
}
return -1;
#else
# error
#endif
}
#endif
#if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
DWtype
__fixsfdi (SFtype a)
{
if (a < 0)
return - __fixunssfDI (-a);
return __fixunssfDI (a);
}
#endif
#if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
XFtype
__floatdixf (DWtype u)
{
#if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
# error
#endif
XFtype d = (Wtype) (u >> W_TYPE_SIZE);
d *= Wtype_MAXp1_F;
d += (UWtype)u;
return d;
}
#endif
#if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
XFtype
__floatundixf (UDWtype u)
{
#if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
# error
#endif
XFtype d = (UWtype) (u >> W_TYPE_SIZE);
d *= Wtype_MAXp1_F;
d += (UWtype)u;
return d;
}
#endif
#if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
TFtype
__floatditf (DWtype u)
{
#if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
# error
#endif
TFtype d = (Wtype) (u >> W_TYPE_SIZE);
d *= Wtype_MAXp1_F;
d += (UWtype)u;
return d;
}
#endif
#if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
TFtype
__floatunditf (UDWtype u)
{
#if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
# error
#endif
TFtype d = (UWtype) (u >> W_TYPE_SIZE);
d *= Wtype_MAXp1_F;
d += (UWtype)u;
return d;
}
#endif
#if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \
|| (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
#define DI_SIZE (W_TYPE_SIZE * 2)
#define F_MODE_OK(SIZE) \
(SIZE < DI_SIZE \
&& SIZE > (DI_SIZE - SIZE + FSSIZE) \
&& !AVOID_FP_TYPE_CONVERSION(SIZE))
#if defined(L_floatdisf)
#define FUNC __floatdisf
#define FSTYPE SFtype
#define FSSIZE __LIBGCC_SF_MANT_DIG__
#else
#define FUNC __floatdidf
#define FSTYPE DFtype
#define FSSIZE __LIBGCC_DF_MANT_DIG__
#endif
FSTYPE
FUNC (DWtype u)
{
#if FSSIZE >= W_TYPE_SIZE
/* When the word size is small, we never get any rounding error. */
FSTYPE f = (Wtype) (u >> W_TYPE_SIZE);
f *= Wtype_MAXp1_F;
f += (UWtype)u;
return f;
#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \
|| (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \
|| (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
# define FSIZE __LIBGCC_DF_MANT_DIG__
# define FTYPE DFtype
#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
# define FSIZE __LIBGCC_XF_MANT_DIG__
# define FTYPE XFtype
#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
# define FSIZE __LIBGCC_TF_MANT_DIG__
# define FTYPE TFtype
#else
# error
#endif
#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
/* Protect against double-rounding error.
Represent any low-order bits, that might be truncated by a bit that
won't be lost. The bit can go in anywhere below the rounding position
of the FSTYPE. A fixed mask and bit position handles all usual
configurations. */
if (! (- ((DWtype) 1 << FSIZE) < u
&& u < ((DWtype) 1 << FSIZE)))
{
if ((UDWtype) u & (REP_BIT - 1))
{
u &= ~ (REP_BIT - 1);
u |= REP_BIT;
}
}
/* Do the calculation in a wider type so that we don't lose any of
the precision of the high word while multiplying it. */
FTYPE f = (Wtype) (u >> W_TYPE_SIZE);
f *= Wtype_MAXp1_F;
f += (UWtype)u;
return (FSTYPE) f;
#else
#if FSSIZE >= W_TYPE_SIZE - 2
# error
#endif
/* Finally, the word size is larger than the number of bits in the
required FSTYPE, and we've got no suitable wider type. The only
way to avoid double rounding is to special case the
extraction. */
/* If there are no high bits set, fall back to one conversion. */
if ((Wtype)u == u)
return (FSTYPE)(Wtype)u;
/* Otherwise, find the power of two. */
Wtype hi = u >> W_TYPE_SIZE;
if (hi < 0)
hi = -(UWtype) hi;
UWtype count, shift;
#if !defined (COUNT_LEADING_ZEROS_0) || COUNT_LEADING_ZEROS_0 != W_TYPE_SIZE
if (hi == 0)
count = W_TYPE_SIZE;
else
#endif
count_leading_zeros (count, hi);
/* No leading bits means u == minimum. */
if (count == 0)
return Wtype_MAXp1_F * (FSTYPE) (hi | ((UWtype) u != 0));
shift = 1 + W_TYPE_SIZE - count;
/* Shift down the most significant bits. */
hi = u >> shift;
/* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
if ((UWtype)u << (W_TYPE_SIZE - shift))
hi |= 1;
/* Convert the one word of data, and rescale. */
FSTYPE f = hi, e;
if (shift == W_TYPE_SIZE)
e = Wtype_MAXp1_F;
/* The following two cases could be merged if we knew that the target
supported a native unsigned->float conversion. More often, we only
have a signed conversion, and have to add extra fixup code. */
else if (shift == W_TYPE_SIZE - 1)
e = Wtype_MAXp1_F / 2;
else
e = (Wtype)1 << shift;
return f * e;
#endif
}
#endif
#if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \
|| (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
#define DI_SIZE (W_TYPE_SIZE * 2)
#define F_MODE_OK(SIZE) \
(SIZE < DI_SIZE \
&& SIZE > (DI_SIZE - SIZE + FSSIZE) \
&& !AVOID_FP_TYPE_CONVERSION(SIZE))
#if defined(L_floatundisf)
#define FUNC __floatundisf
#define FSTYPE SFtype
#define FSSIZE __LIBGCC_SF_MANT_DIG__
#else
#define FUNC __floatundidf
#define FSTYPE DFtype
#define FSSIZE __LIBGCC_DF_MANT_DIG__
#endif
FSTYPE
FUNC (UDWtype u)
{
#if FSSIZE >= W_TYPE_SIZE
/* When the word size is small, we never get any rounding error. */
FSTYPE f = (UWtype) (u >> W_TYPE_SIZE);
f *= Wtype_MAXp1_F;
f += (UWtype)u;
return f;
#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \
|| (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \
|| (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
# define FSIZE __LIBGCC_DF_MANT_DIG__
# define FTYPE DFtype
#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
# define FSIZE __LIBGCC_XF_MANT_DIG__
# define FTYPE XFtype
#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
# define FSIZE __LIBGCC_TF_MANT_DIG__
# define FTYPE TFtype
#else
# error
#endif
#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
/* Protect against double-rounding error.
Represent any low-order bits, that might be truncated by a bit that
won't be lost. The bit can go in anywhere below the rounding position
of the FSTYPE. A fixed mask and bit position handles all usual
configurations. */
if (u >= ((UDWtype) 1 << FSIZE))
{
if ((UDWtype) u & (REP_BIT - 1))
{
u &= ~ (REP_BIT - 1);
u |= REP_BIT;
}
}
/* Do the calculation in a wider type so that we don't lose any of
the precision of the high word while multiplying it. */
FTYPE f = (UWtype) (u >> W_TYPE_SIZE);
f *= Wtype_MAXp1_F;
f += (UWtype)u;
return (FSTYPE) f;
#else
#if FSSIZE == W_TYPE_SIZE - 1
# error
#endif
/* Finally, the word size is larger than the number of bits in the
required FSTYPE, and we've got no suitable wider type. The only
way to avoid double rounding is to special case the
extraction. */
/* If there are no high bits set, fall back to one conversion. */
if ((UWtype)u == u)
return (FSTYPE)(UWtype)u;
/* Otherwise, find the power of two. */
UWtype hi = u >> W_TYPE_SIZE;
UWtype count, shift;
count_leading_zeros (count, hi);
shift = W_TYPE_SIZE - count;
/* Shift down the most significant bits. */
hi = u >> shift;
/* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
if ((UWtype)u << (W_TYPE_SIZE - shift))
hi |= 1;
/* Convert the one word of data, and rescale. */
FSTYPE f = hi, e;
if (shift == W_TYPE_SIZE)
e = Wtype_MAXp1_F;
/* The following two cases could be merged if we knew that the target
supported a native unsigned->float conversion. More often, we only
have a signed conversion, and have to add extra fixup code. */
else if (shift == W_TYPE_SIZE - 1)
e = Wtype_MAXp1_F / 2;
else
e = (Wtype)1 << shift;
return f * e;
#endif
}
#endif
#if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
UWtype
__fixunsxfSI (XFtype a)
{
if (a >= - (DFtype) Wtype_MIN)
return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
return (Wtype) a;
}
#endif
#if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
UWtype
__fixunsdfSI (DFtype a)
{
if (a >= - (DFtype) Wtype_MIN)
return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
return (Wtype) a;
}
#endif
#if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
UWtype
__fixunssfSI (SFtype a)
{
if (a >= - (SFtype) Wtype_MIN)
return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
return (Wtype) a;
}
#endif
/* Integer power helper used from __builtin_powi for non-constant
exponents. */
#if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
|| (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
|| (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
|| (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
# if defined(L_powisf2)
# define TYPE SFtype
# define NAME __powisf2
# elif defined(L_powidf2)
# define TYPE DFtype
# define NAME __powidf2
# elif defined(L_powixf2)
# define TYPE XFtype
# define NAME __powixf2
# elif defined(L_powitf2)
# define TYPE TFtype
# define NAME __powitf2
# endif
#undef int
#undef unsigned
TYPE
NAME (TYPE x, int m)
{
unsigned int n = m < 0 ? -(unsigned int) m : (unsigned int) m;
TYPE y = n % 2 ? x : 1;
while (n >>= 1)
{
x = x * x;
if (n % 2)
y = y * x;
}
return m < 0 ? 1/y : y;
}
#endif
#if((defined(L_mulhc3) || defined(L_divhc3)) && LIBGCC2_HAS_HF_MODE) \
|| ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
|| ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
|| ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
|| ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
#undef float
#undef double
#undef long
#if defined(L_mulhc3) || defined(L_divhc3)
# define MTYPE HFtype
# define CTYPE HCtype
# define AMTYPE SFtype
# define MODE hc
# define CEXT __LIBGCC_HF_FUNC_EXT__
# define NOTRUNC (!__LIBGCC_HF_EXCESS_PRECISION__)
#elif defined(L_mulsc3) || defined(L_divsc3)
# define MTYPE SFtype
# define CTYPE SCtype
# define AMTYPE DFtype
# define MODE sc
# define CEXT __LIBGCC_SF_FUNC_EXT__
# define NOTRUNC (!__LIBGCC_SF_EXCESS_PRECISION__)
# define RBIG (__LIBGCC_SF_MAX__ / 2)
# define RMIN (__LIBGCC_SF_MIN__)
# define RMIN2 (__LIBGCC_SF_EPSILON__)
# define RMINSCAL (1 / __LIBGCC_SF_EPSILON__)
# define RMAX2 (RBIG * RMIN2)
#elif defined(L_muldc3) || defined(L_divdc3)
# define MTYPE DFtype
# define CTYPE DCtype
# define MODE dc
# define CEXT __LIBGCC_DF_FUNC_EXT__
# define NOTRUNC (!__LIBGCC_DF_EXCESS_PRECISION__)
# define RBIG (__LIBGCC_DF_MAX__ / 2)
# define RMIN (__LIBGCC_DF_MIN__)
# define RMIN2 (__LIBGCC_DF_EPSILON__)
# define RMINSCAL (1 / __LIBGCC_DF_EPSILON__)
# define RMAX2 (RBIG * RMIN2)
#elif defined(L_mulxc3) || defined(L_divxc3)
# define MTYPE XFtype
# define CTYPE XCtype
# define MODE xc
# define CEXT __LIBGCC_XF_FUNC_EXT__
# define NOTRUNC (!__LIBGCC_XF_EXCESS_PRECISION__)
# define RBIG (__LIBGCC_XF_MAX__ / 2)
# define RMIN (__LIBGCC_XF_MIN__)
# define RMIN2 (__LIBGCC_XF_EPSILON__)
# define RMINSCAL (1 / __LIBGCC_XF_EPSILON__)
# define RMAX2 (RBIG * RMIN2)
#elif defined(L_multc3) || defined(L_divtc3)
# define MTYPE TFtype
# define CTYPE TCtype
# define MODE tc
# define CEXT __LIBGCC_TF_FUNC_EXT__
# define NOTRUNC (!__LIBGCC_TF_EXCESS_PRECISION__)
# if __LIBGCC_TF_MANT_DIG__ == 106
# define RBIG (__LIBGCC_DF_MAX__ / 2)
# define RMIN (__LIBGCC_DF_MIN__)
# define RMIN2 (__LIBGCC_DF_EPSILON__)
# define RMINSCAL (1 / __LIBGCC_DF_EPSILON__)
# else
# define RBIG (__LIBGCC_TF_MAX__ / 2)
# define RMIN (__LIBGCC_TF_MIN__)
# define RMIN2 (__LIBGCC_TF_EPSILON__)
# define RMINSCAL (1 / __LIBGCC_TF_EPSILON__)
# endif
# define RMAX2 (RBIG * RMIN2)
#else
# error
#endif
#define CONCAT3(A,B,C) _CONCAT3(A,B,C)
#define _CONCAT3(A,B,C) A##B##C
#define CONCAT2(A,B) _CONCAT2(A,B)
#define _CONCAT2(A,B) A##B
#define isnan(x) __builtin_isnan (x)
#define isfinite(x) __builtin_isfinite (x)
#define isinf(x) __builtin_isinf (x)
#define INFINITY CONCAT2(__builtin_huge_val, CEXT) ()
#define I 1i
/* Helpers to make the following code slightly less gross. */
#define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
#define FABS CONCAT2(__builtin_fabs, CEXT)
/* Verify that MTYPE matches up with CEXT. */
extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
/* Ensure that we've lost any extra precision. */
#if NOTRUNC
# define TRUNC(x)
#else
# define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
#endif
#if defined(L_mulhc3) || defined(L_mulsc3) || defined(L_muldc3) \
|| defined(L_mulxc3) || defined(L_multc3)
CTYPE
CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
{
MTYPE ac, bd, ad, bc, x, y;
CTYPE res;
ac = a * c;
bd = b * d;
ad = a * d;
bc = b * c;
TRUNC (ac);
TRUNC (bd);
TRUNC (ad);
TRUNC (bc);
x = ac - bd;
y = ad + bc;
if (isnan (x) && isnan (y))
{
/* Recover infinities that computed as NaN + iNaN. */
_Bool recalc = 0;
if (isinf (a) || isinf (b))
{
/* z is infinite. "Box" the infinity and change NaNs in
the other factor to 0. */
a = COPYSIGN (isinf (a) ? 1 : 0, a);
b = COPYSIGN (isinf (b) ? 1 : 0, b);
if (isnan (c)) c = COPYSIGN (0, c);
if (isnan (d)) d = COPYSIGN (0, d);
recalc = 1;
}
if (isinf (c) || isinf (d))
{
/* w is infinite. "Box" the infinity and change NaNs in
the other factor to 0. */
c = COPYSIGN (isinf (c) ? 1 : 0, c);
d = COPYSIGN (isinf (d) ? 1 : 0, d);
if (isnan (a)) a = COPYSIGN (0, a);
if (isnan (b)) b = COPYSIGN (0, b);
recalc = 1;
}
if (!recalc
&& (isinf (ac) || isinf (bd)
|| isinf (ad) || isinf (bc)))
{
/* Recover infinities from overflow by changing NaNs to 0. */
if (isnan (a)) a = COPYSIGN (0, a);
if (isnan (b)) b = COPYSIGN (0, b);
if (isnan (c)) c = COPYSIGN (0, c);
if (isnan (d)) d = COPYSIGN (0, d);
recalc = 1;
}
if (recalc)
{
x = INFINITY * (a * c - b * d);
y = INFINITY * (a * d + b * c);
}
}
__real__ res = x;
__imag__ res = y;
return res;
}
#endif /* complex multiply */
#if defined(L_divhc3) || defined(L_divsc3) || defined(L_divdc3) \
|| defined(L_divxc3) || defined(L_divtc3)
CTYPE
CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
{
#if defined(L_divhc3) \
|| (defined(L_divsc3) && defined(__LIBGCC_HAVE_HWDBL__) )
/* Half precision is handled with float precision.
float is handled with double precision when double precision
hardware is available.
Due to the additional precision, the simple complex divide
method (without Smith's method) is sufficient to get accurate
answers and runs slightly faster than Smith's method. */
AMTYPE aa, bb, cc, dd;
AMTYPE denom;
MTYPE x, y;
CTYPE res;
aa = a;
bb = b;
cc = c;
dd = d;
denom = (cc * cc) + (dd * dd);
x = ((aa * cc) + (bb * dd)) / denom;
y = ((bb * cc) - (aa * dd)) / denom;
#else
MTYPE denom, ratio, x, y;
CTYPE res;
/* double, extended, long double have significant potential
underflow/overflow errors that can be greatly reduced with
a limited number of tests and adjustments. float is handled
the same way when no HW double is available.
*/
/* Scale by max(c,d) to reduce chances of denominator overflowing. */
if (FABS (c) < FABS (d))
{
/* Prevent underflow when denominator is near max representable. */
if (FABS (d) >= RBIG)
{
a = a / 2;
b = b / 2;
c = c / 2;
d = d / 2;
}
/* Avoid overflow/underflow issues when c and d are small.
Scaling up helps avoid some underflows.
No new overflow possible since c&d < RMIN2. */
if (FABS (d) < RMIN2)
{
a = a * RMINSCAL;
b = b * RMINSCAL;
c = c * RMINSCAL;
d = d * RMINSCAL;
}
else
{
if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (d) < RMAX2))
|| ((FABS (b) < RMIN) && (FABS (a) < RMAX2)
&& (FABS (d) < RMAX2)))
{
a = a * RMINSCAL;
b = b * RMINSCAL;
c = c * RMINSCAL;
d = d * RMINSCAL;
}
}
ratio = c / d;
denom = (c * ratio) + d;
/* Choose alternate order of computation if ratio is subnormal. */
if (FABS (ratio) > RMIN)
{
x = ((a * ratio) + b) / denom;
y = ((b * ratio) - a) / denom;
}
else
{
x = ((c * (a / d)) + b) / denom;
y = ((c * (b / d)) - a) / denom;
}
}
else
{
/* Prevent underflow when denominator is near max representable. */
if (FABS (c) >= RBIG)
{
a = a / 2;
b = b / 2;
c = c / 2;
d = d / 2;
}
/* Avoid overflow/underflow issues when both c and d are small.
Scaling up helps avoid some underflows.
No new overflow possible since both c&d are less than RMIN2. */
if (FABS (c) < RMIN2)
{
a = a * RMINSCAL;
b = b * RMINSCAL;
c = c * RMINSCAL;
d = d * RMINSCAL;
}
else
{
if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (c) < RMAX2))
|| ((FABS (b) < RMIN) && (FABS (a) < RMAX2)
&& (FABS (c) < RMAX2)))
{
a = a * RMINSCAL;
b = b * RMINSCAL;
c = c * RMINSCAL;
d = d * RMINSCAL;
}
}
ratio = d / c;
denom = (d * ratio) + c;
/* Choose alternate order of computation if ratio is subnormal. */
if (FABS (ratio) > RMIN)
{
x = ((b * ratio) + a) / denom;
y = (b - (a * ratio)) / denom;
}
else
{
x = (a + (d * (b / c))) / denom;
y = (b - (d * (a / c))) / denom;
}
}
#endif
/* Recover infinities and zeros that computed as NaN+iNaN; the only
cases are nonzero/zero, infinite/finite, and finite/infinite. */
if (isnan (x) && isnan (y))
{
if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b)))
{
x = COPYSIGN (INFINITY, c) * a;
y = COPYSIGN (INFINITY, c) * b;
}
else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
{
a = COPYSIGN (isinf (a) ? 1 : 0, a);
b = COPYSIGN (isinf (b) ? 1 : 0, b);
x = INFINITY * (a * c + b * d);
y = INFINITY * (b * c - a * d);
}
else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
{
c = COPYSIGN (isinf (c) ? 1 : 0, c);
d = COPYSIGN (isinf (d) ? 1 : 0, d);
x = 0.0 * (a * c + b * d);
y = 0.0 * (b * c - a * d);
}
}
__real__ res = x;
__imag__ res = y;
return res;
}
#endif /* complex divide */
#endif /* all complex float routines */
/* From here on down, the routines use normal data types. */
#define SItype bogus_type
#define USItype bogus_type
#define DItype bogus_type
#define UDItype bogus_type
#define SFtype bogus_type
#define DFtype bogus_type
#undef Wtype
#undef UWtype
#undef HWtype
#undef UHWtype
#undef DWtype
#undef UDWtype
#undef char
#undef short
#undef int
#undef long
#undef unsigned
#undef float
#undef double
#ifdef L__gcc_bcmp
/* Like bcmp except the sign is meaningful.
Result is negative if S1 is less than S2,
positive if S1 is greater, 0 if S1 and S2 are equal. */
int
__gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
{
while (size > 0)
{
const unsigned char c1 = *s1++, c2 = *s2++;
if (c1 != c2)
return c1 - c2;
size--;
}
return 0;
}