| /* Generic implementation of the PACK intrinsic |
| Copyright (C) 2002-2024 Free Software Foundation, Inc. |
| Contributed by Paul Brook <paul@nowt.org> |
| |
| This file is part of the GNU Fortran runtime library (libgfortran). |
| |
| Libgfortran is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public |
| License as published by the Free Software Foundation; either |
| version 3 of the License, or (at your option) any later version. |
| |
| Ligbfortran is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "libgfortran.h" |
| #include <string.h> |
| |
| /* PACK is specified as follows: |
| |
| 13.14.80 PACK (ARRAY, MASK, [VECTOR]) |
| |
| Description: Pack an array into an array of rank one under the |
| control of a mask. |
| |
| Class: Transformational function. |
| |
| Arguments: |
| ARRAY may be of any type. It shall not be scalar. |
| MASK shall be of type LOGICAL. It shall be conformable with ARRAY. |
| VECTOR (optional) shall be of the same type and type parameters |
| as ARRAY. VECTOR shall have at least as many elements as |
| there are true elements in MASK. If MASK is a scalar |
| with the value true, VECTOR shall have at least as many |
| elements as there are in ARRAY. |
| |
| Result Characteristics: The result is an array of rank one with the |
| same type and type parameters as ARRAY. If VECTOR is present, the |
| result size is that of VECTOR; otherwise, the result size is the |
| number /t/ of true elements in MASK unless MASK is scalar with the |
| value true, in which case the result size is the size of ARRAY. |
| |
| Result Value: Element /i/ of the result is the element of ARRAY |
| that corresponds to the /i/th true element of MASK, taking elements |
| in array element order, for /i/ = 1, 2, ..., /t/. If VECTOR is |
| present and has size /n/ > /t/, element /i/ of the result has the |
| value VECTOR(/i/), for /i/ = /t/ + 1, ..., /n/. |
| |
| Examples: The nonzero elements of an array M with the value |
| | 0 0 0 | |
| | 9 0 0 | may be "gathered" by the function PACK. The result of |
| | 0 0 7 | |
| PACK (M, MASK = M.NE.0) is [9,7] and the result of PACK (M, M.NE.0, |
| VECTOR = (/ 2,4,6,8,10,12 /)) is [9,7,6,8,10,12]. |
| |
| There are two variants of the PACK intrinsic: one, where MASK is |
| array valued, and the other one where MASK is scalar. */ |
| |
| static void |
| pack_internal (gfc_array_char *ret, const gfc_array_char *array, |
| const gfc_array_l1 *mask, const gfc_array_char *vector, |
| index_type size) |
| { |
| /* r.* indicates the return array. */ |
| index_type rstride0; |
| char * restrict rptr; |
| /* s.* indicates the source array. */ |
| index_type sstride[GFC_MAX_DIMENSIONS]; |
| index_type sstride0; |
| const char *sptr; |
| /* m.* indicates the mask array. */ |
| index_type mstride[GFC_MAX_DIMENSIONS]; |
| index_type mstride0; |
| const GFC_LOGICAL_1 *mptr; |
| |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| bool zero_sized; |
| index_type n; |
| index_type dim; |
| index_type nelem; |
| index_type total; |
| int mask_kind; |
| |
| dim = GFC_DESCRIPTOR_RANK (array); |
| |
| sstride[0] = 0; /* Avoid warnings if not initialized. */ |
| mstride[0] = 0; |
| |
| sptr = array->base_addr; |
| mptr = mask->base_addr; |
| |
| /* Use the same loop for all logical types, by using GFC_LOGICAL_1 |
| and using shifting to address size and endian issues. */ |
| |
| mask_kind = GFC_DESCRIPTOR_SIZE (mask); |
| |
| if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8 |
| #ifdef HAVE_GFC_LOGICAL_16 |
| || mask_kind == 16 |
| #endif |
| ) |
| { |
| /* Don't convert a NULL pointer as we use test for NULL below. */ |
| if (mptr) |
| mptr = GFOR_POINTER_TO_L1 (mptr, mask_kind); |
| } |
| else |
| runtime_error ("Funny sized logical array"); |
| |
| zero_sized = false; |
| for (n = 0; n < dim; n++) |
| { |
| count[n] = 0; |
| extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); |
| if (extent[n] <= 0) |
| zero_sized = true; |
| sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n); |
| mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n); |
| } |
| if (sstride[0] == 0) |
| sstride[0] = size; |
| if (mstride[0] == 0) |
| mstride[0] = mask_kind; |
| |
| if (zero_sized) |
| sptr = NULL; |
| else |
| sptr = array->base_addr; |
| |
| if (ret->base_addr == NULL || unlikely (compile_options.bounds_check)) |
| { |
| /* Count the elements, either for allocating memory or |
| for bounds checking. */ |
| |
| if (vector != NULL) |
| { |
| /* The return array will have as many |
| elements as there are in VECTOR. */ |
| total = GFC_DESCRIPTOR_EXTENT(vector,0); |
| } |
| else |
| { |
| /* We have to count the true elements in MASK. */ |
| |
| total = count_0 (mask); |
| } |
| |
| if (ret->base_addr == NULL) |
| { |
| /* Setup the array descriptor. */ |
| GFC_DIMENSION_SET(ret->dim[0], 0, total-1, 1); |
| |
| ret->offset = 0; |
| /* xmallocarray allocates a single byte for zero size. */ |
| ret->base_addr = xmallocarray (total, size); |
| |
| if (total == 0) |
| return; /* In this case, nothing remains to be done. */ |
| } |
| else |
| { |
| /* We come here because of range checking. */ |
| index_type ret_extent; |
| |
| ret_extent = GFC_DESCRIPTOR_EXTENT(ret,0); |
| if (total != ret_extent) |
| runtime_error ("Incorrect extent in return value of PACK intrinsic;" |
| " is %ld, should be %ld", (long int) total, |
| (long int) ret_extent); |
| } |
| } |
| |
| rstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(ret,0); |
| if (rstride0 == 0) |
| rstride0 = size; |
| sstride0 = sstride[0]; |
| mstride0 = mstride[0]; |
| rptr = ret->base_addr; |
| |
| while (sptr && mptr) |
| { |
| /* Test this element. */ |
| if (*mptr) |
| { |
| /* Add it. */ |
| memcpy (rptr, sptr, size); |
| rptr += rstride0; |
| } |
| /* Advance to the next element. */ |
| sptr += sstride0; |
| mptr += mstride0; |
| count[0]++; |
| n = 0; |
| while (count[n] == extent[n]) |
| { |
| /* When we get to the end of a dimension, reset it and increment |
| the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a less |
| frequently used path so probably not worth it. */ |
| sptr -= sstride[n] * extent[n]; |
| mptr -= mstride[n] * extent[n]; |
| n++; |
| if (n >= dim) |
| { |
| /* Break out of the loop. */ |
| sptr = NULL; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| sptr += sstride[n]; |
| mptr += mstride[n]; |
| } |
| } |
| } |
| |
| /* Add any remaining elements from VECTOR. */ |
| if (vector) |
| { |
| n = GFC_DESCRIPTOR_EXTENT(vector,0); |
| nelem = ((rptr - ret->base_addr) / rstride0); |
| if (n > nelem) |
| { |
| sstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(vector,0); |
| if (sstride0 == 0) |
| sstride0 = size; |
| |
| sptr = vector->base_addr + sstride0 * nelem; |
| n -= nelem; |
| while (n--) |
| { |
| memcpy (rptr, sptr, size); |
| rptr += rstride0; |
| sptr += sstride0; |
| } |
| } |
| } |
| } |
| |
| extern void pack (gfc_array_char *, const gfc_array_char *, |
| const gfc_array_l1 *, const gfc_array_char *); |
| export_proto(pack); |
| |
| void |
| pack (gfc_array_char *ret, const gfc_array_char *array, |
| const gfc_array_l1 *mask, const gfc_array_char *vector) |
| { |
| index_type type_size; |
| index_type size; |
| |
| type_size = GFC_DTYPE_TYPE_SIZE(array); |
| |
| switch(type_size) |
| { |
| case GFC_DTYPE_LOGICAL_1: |
| case GFC_DTYPE_INTEGER_1: |
| pack_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) array, |
| (gfc_array_l1 *) mask, (gfc_array_i1 *) vector); |
| return; |
| |
| case GFC_DTYPE_LOGICAL_2: |
| case GFC_DTYPE_INTEGER_2: |
| pack_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array, |
| (gfc_array_l1 *) mask, (gfc_array_i2 *) vector); |
| return; |
| |
| case GFC_DTYPE_LOGICAL_4: |
| case GFC_DTYPE_INTEGER_4: |
| pack_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) array, |
| (gfc_array_l1 *) mask, (gfc_array_i4 *) vector); |
| return; |
| |
| case GFC_DTYPE_LOGICAL_8: |
| case GFC_DTYPE_INTEGER_8: |
| pack_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) array, |
| (gfc_array_l1 *) mask, (gfc_array_i8 *) vector); |
| return; |
| |
| #ifdef HAVE_GFC_INTEGER_16 |
| case GFC_DTYPE_LOGICAL_16: |
| case GFC_DTYPE_INTEGER_16: |
| pack_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array, |
| (gfc_array_l1 *) mask, (gfc_array_i16 *) vector); |
| return; |
| #endif |
| |
| case GFC_DTYPE_REAL_4: |
| pack_r4 ((gfc_array_r4 *) ret, (gfc_array_r4 *) array, |
| (gfc_array_l1 *) mask, (gfc_array_r4 *) vector); |
| return; |
| |
| case GFC_DTYPE_REAL_8: |
| pack_r8 ((gfc_array_r8 *) ret, (gfc_array_r8 *) array, |
| (gfc_array_l1 *) mask, (gfc_array_r8 *) vector); |
| return; |
| |
| /* FIXME: This here is a hack, which will have to be removed when |
| the array descriptor is reworked. Currently, we don't store the |
| kind value for the type, but only the size. Because on targets with |
| _Float128, we have sizeof(long double) == sizeof(_Float128), |
| we cannot discriminate here and have to fall back to the generic |
| handling (which is suboptimal). */ |
| #if !defined(GFC_REAL_16_IS_FLOAT128) |
| # ifdef HAVE_GFC_REAL_10 |
| case GFC_DTYPE_REAL_10: |
| pack_r10 ((gfc_array_r10 *) ret, (gfc_array_r10 *) array, |
| (gfc_array_l1 *) mask, (gfc_array_r10 *) vector); |
| return; |
| # endif |
| |
| # ifdef HAVE_GFC_REAL_16 |
| case GFC_DTYPE_REAL_16: |
| pack_r16 ((gfc_array_r16 *) ret, (gfc_array_r16 *) array, |
| (gfc_array_l1 *) mask, (gfc_array_r16 *) vector); |
| return; |
| # endif |
| #endif |
| |
| case GFC_DTYPE_COMPLEX_4: |
| pack_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) array, |
| (gfc_array_l1 *) mask, (gfc_array_c4 *) vector); |
| return; |
| |
| case GFC_DTYPE_COMPLEX_8: |
| pack_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array, |
| (gfc_array_l1 *) mask, (gfc_array_c8 *) vector); |
| return; |
| |
| /* FIXME: This here is a hack, which will have to be removed when |
| the array descriptor is reworked. Currently, we don't store the |
| kind value for the type, but only the size. Because on targets with |
| _Float128, we have sizeof(long double) == sizeof(_Float128), |
| we cannot discriminate here and have to fall back to the generic |
| handling (which is suboptimal). */ |
| #if !defined(GFC_REAL_16_IS_FLOAT128) |
| # ifdef HAVE_GFC_COMPLEX_10 |
| case GFC_DTYPE_COMPLEX_10: |
| pack_c10 ((gfc_array_c10 *) ret, (gfc_array_c10 *) array, |
| (gfc_array_l1 *) mask, (gfc_array_c10 *) vector); |
| return; |
| # endif |
| |
| # ifdef HAVE_GFC_COMPLEX_16 |
| case GFC_DTYPE_COMPLEX_16: |
| pack_c16 ((gfc_array_c16 *) ret, (gfc_array_c16 *) array, |
| (gfc_array_l1 *) mask, (gfc_array_c16 *) vector); |
| return; |
| # endif |
| #endif |
| } |
| |
| /* For other types, let's check the actual alignment of the data pointers. |
| If they are aligned, we can safely call the unpack functions. */ |
| |
| switch (GFC_DESCRIPTOR_SIZE (array)) |
| { |
| case 1: |
| pack_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) array, |
| (gfc_array_l1 *) mask, (gfc_array_i1 *) vector); |
| return; |
| |
| case 2: |
| if (GFC_UNALIGNED_2(ret->base_addr) || GFC_UNALIGNED_2(array->base_addr) |
| || (vector && GFC_UNALIGNED_2(vector->base_addr))) |
| break; |
| else |
| { |
| pack_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array, |
| (gfc_array_l1 *) mask, (gfc_array_i2 *) vector); |
| return; |
| } |
| |
| case 4: |
| if (GFC_UNALIGNED_4(ret->base_addr) || GFC_UNALIGNED_4(array->base_addr) |
| || (vector && GFC_UNALIGNED_4(vector->base_addr))) |
| break; |
| else |
| { |
| pack_i4 ((gfc_array_i4 *) ret, (gfc_array_i4 *) array, |
| (gfc_array_l1 *) mask, (gfc_array_i4 *) vector); |
| return; |
| } |
| |
| case 8: |
| if (GFC_UNALIGNED_8(ret->base_addr) || GFC_UNALIGNED_8(array->base_addr) |
| || (vector && GFC_UNALIGNED_8(vector->base_addr))) |
| break; |
| else |
| { |
| pack_i8 ((gfc_array_i8 *) ret, (gfc_array_i8 *) array, |
| (gfc_array_l1 *) mask, (gfc_array_i8 *) vector); |
| return; |
| } |
| |
| #ifdef HAVE_GFC_INTEGER_16 |
| case 16: |
| if (GFC_UNALIGNED_16(ret->base_addr) || GFC_UNALIGNED_16(array->base_addr) |
| || (vector && GFC_UNALIGNED_16(vector->base_addr))) |
| break; |
| else |
| { |
| pack_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array, |
| (gfc_array_l1 *) mask, (gfc_array_i16 *) vector); |
| return; |
| } |
| #endif |
| default: |
| break; |
| } |
| |
| size = GFC_DESCRIPTOR_SIZE (array); |
| pack_internal (ret, array, mask, vector, size); |
| } |
| |
| |
| extern void pack_char (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *, |
| const gfc_array_l1 *, const gfc_array_char *, |
| GFC_INTEGER_4, GFC_INTEGER_4); |
| export_proto(pack_char); |
| |
| void |
| pack_char (gfc_array_char *ret, |
| GFC_INTEGER_4 ret_length __attribute__((unused)), |
| const gfc_array_char *array, const gfc_array_l1 *mask, |
| const gfc_array_char *vector, GFC_INTEGER_4 array_length, |
| GFC_INTEGER_4 vector_length __attribute__((unused))) |
| { |
| pack_internal (ret, array, mask, vector, array_length); |
| } |
| |
| |
| extern void pack_char4 (gfc_array_char *, GFC_INTEGER_4, const gfc_array_char *, |
| const gfc_array_l1 *, const gfc_array_char *, |
| GFC_INTEGER_4, GFC_INTEGER_4); |
| export_proto(pack_char4); |
| |
| void |
| pack_char4 (gfc_array_char *ret, |
| GFC_INTEGER_4 ret_length __attribute__((unused)), |
| const gfc_array_char *array, const gfc_array_l1 *mask, |
| const gfc_array_char *vector, GFC_INTEGER_4 array_length, |
| GFC_INTEGER_4 vector_length __attribute__((unused))) |
| { |
| pack_internal (ret, array, mask, vector, array_length * sizeof (gfc_char4_t)); |
| } |
| |
| |
| static void |
| pack_s_internal (gfc_array_char *ret, const gfc_array_char *array, |
| const GFC_LOGICAL_4 *mask, const gfc_array_char *vector, |
| index_type size) |
| { |
| /* r.* indicates the return array. */ |
| index_type rstride0; |
| char *rptr; |
| /* s.* indicates the source array. */ |
| index_type sstride[GFC_MAX_DIMENSIONS]; |
| index_type sstride0; |
| const char *sptr; |
| |
| index_type count[GFC_MAX_DIMENSIONS]; |
| index_type extent[GFC_MAX_DIMENSIONS]; |
| index_type n; |
| index_type dim; |
| index_type ssize; |
| index_type nelem; |
| index_type total; |
| |
| dim = GFC_DESCRIPTOR_RANK (array); |
| /* Initialize sstride[0] to avoid -Wmaybe-uninitialized |
| complaints. */ |
| sstride[0] = size; |
| ssize = 1; |
| for (n = 0; n < dim; n++) |
| { |
| count[n] = 0; |
| extent[n] = GFC_DESCRIPTOR_EXTENT(array,n); |
| if (extent[n] < 0) |
| extent[n] = 0; |
| |
| sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,n); |
| ssize *= extent[n]; |
| } |
| if (sstride[0] == 0) |
| sstride[0] = size; |
| |
| sstride0 = sstride[0]; |
| |
| if (ssize != 0) |
| sptr = array->base_addr; |
| else |
| sptr = NULL; |
| |
| if (ret->base_addr == NULL) |
| { |
| /* Allocate the memory for the result. */ |
| |
| if (vector != NULL) |
| { |
| /* The return array will have as many elements as there are |
| in vector. */ |
| total = GFC_DESCRIPTOR_EXTENT(vector,0); |
| if (total <= 0) |
| { |
| total = 0; |
| vector = NULL; |
| } |
| } |
| else |
| { |
| if (*mask) |
| { |
| /* The result array will have as many elements as the input |
| array. */ |
| total = extent[0]; |
| for (n = 1; n < dim; n++) |
| total *= extent[n]; |
| } |
| else |
| /* The result array will be empty. */ |
| total = 0; |
| } |
| |
| /* Setup the array descriptor. */ |
| GFC_DIMENSION_SET(ret->dim[0],0,total-1,1); |
| |
| ret->offset = 0; |
| |
| ret->base_addr = xmallocarray (total, size); |
| |
| if (total == 0) |
| return; |
| } |
| |
| rstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(ret,0); |
| if (rstride0 == 0) |
| rstride0 = size; |
| rptr = ret->base_addr; |
| |
| /* The remaining possibilities are now: |
| If MASK is .TRUE., we have to copy the source array into the |
| result array. We then have to fill it up with elements from VECTOR. |
| If MASK is .FALSE., we have to copy VECTOR into the result |
| array. If VECTOR were not present we would have already returned. */ |
| |
| if (*mask && ssize != 0) |
| { |
| while (sptr) |
| { |
| /* Add this element. */ |
| memcpy (rptr, sptr, size); |
| rptr += rstride0; |
| |
| /* Advance to the next element. */ |
| sptr += sstride0; |
| count[0]++; |
| n = 0; |
| while (count[n] == extent[n]) |
| { |
| /* When we get to the end of a dimension, reset it and |
| increment the next dimension. */ |
| count[n] = 0; |
| /* We could precalculate these products, but this is a |
| less frequently used path so probably not worth it. */ |
| sptr -= sstride[n] * extent[n]; |
| n++; |
| if (n >= dim) |
| { |
| /* Break out of the loop. */ |
| sptr = NULL; |
| break; |
| } |
| else |
| { |
| count[n]++; |
| sptr += sstride[n]; |
| } |
| } |
| } |
| } |
| |
| /* Add any remaining elements from VECTOR. */ |
| if (vector) |
| { |
| n = GFC_DESCRIPTOR_EXTENT(vector,0); |
| nelem = ((rptr - ret->base_addr) / rstride0); |
| if (n > nelem) |
| { |
| sstride0 = GFC_DESCRIPTOR_STRIDE_BYTES(vector,0); |
| if (sstride0 == 0) |
| sstride0 = size; |
| |
| sptr = vector->base_addr + sstride0 * nelem; |
| n -= nelem; |
| while (n--) |
| { |
| memcpy (rptr, sptr, size); |
| rptr += rstride0; |
| sptr += sstride0; |
| } |
| } |
| } |
| } |
| |
| extern void pack_s (gfc_array_char *ret, const gfc_array_char *array, |
| const GFC_LOGICAL_4 *, const gfc_array_char *); |
| export_proto(pack_s); |
| |
| void |
| pack_s (gfc_array_char *ret, const gfc_array_char *array, |
| const GFC_LOGICAL_4 *mask, const gfc_array_char *vector) |
| { |
| pack_s_internal (ret, array, mask, vector, GFC_DESCRIPTOR_SIZE (array)); |
| } |
| |
| |
| extern void pack_s_char (gfc_array_char *ret, GFC_INTEGER_4, |
| const gfc_array_char *array, const GFC_LOGICAL_4 *, |
| const gfc_array_char *, GFC_INTEGER_4, |
| GFC_INTEGER_4); |
| export_proto(pack_s_char); |
| |
| void |
| pack_s_char (gfc_array_char *ret, |
| GFC_INTEGER_4 ret_length __attribute__((unused)), |
| const gfc_array_char *array, const GFC_LOGICAL_4 *mask, |
| const gfc_array_char *vector, GFC_INTEGER_4 array_length, |
| GFC_INTEGER_4 vector_length __attribute__((unused))) |
| { |
| pack_s_internal (ret, array, mask, vector, array_length); |
| } |
| |
| |
| extern void pack_s_char4 (gfc_array_char *ret, GFC_INTEGER_4, |
| const gfc_array_char *array, const GFC_LOGICAL_4 *, |
| const gfc_array_char *, GFC_INTEGER_4, |
| GFC_INTEGER_4); |
| export_proto(pack_s_char4); |
| |
| void |
| pack_s_char4 (gfc_array_char *ret, |
| GFC_INTEGER_4 ret_length __attribute__((unused)), |
| const gfc_array_char *array, const GFC_LOGICAL_4 *mask, |
| const gfc_array_char *vector, GFC_INTEGER_4 array_length, |
| GFC_INTEGER_4 vector_length __attribute__((unused))) |
| { |
| pack_s_internal (ret, array, mask, vector, |
| array_length * sizeof (gfc_char4_t)); |
| } |