| /* Implementation of the degree trignometric functions COSD, SIND, TAND. |
| Copyright (C) 2020-2024 Free Software Foundation, Inc. |
| Contributed by Steven G. Kargl <kargl@gcc.gnu.org> |
| and Fritz Reese <foreese@gcc.gnu.org> |
| |
| This file is part of the GNU Fortran runtime library (libgfortran). |
| |
| Libgfortran is free software; you can redistribute it and/or |
| modify it under the terms of the GNU General Public |
| License as published by the Free Software Foundation; either |
| version 3 of the License, or (at your option) any later version. |
| |
| Libgfortran is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| |
| /* |
| |
| This file is included from both the FE and the runtime library code. |
| Operations are generalized using GMP/MPFR functions. When included from |
| libgfortran, these should be overridden using macros which will use native |
| operations conforming to the same API. From the FE, the GMP/MPFR functions can |
| be used as-is. |
| |
| The following macros are used and must be defined, unless listed as [optional]: |
| |
| FTYPE |
| Type name for the real-valued parameter. |
| Variables of this type are constructed/destroyed using mpfr_init() |
| and mpfr_clear. |
| |
| RETTYPE |
| Return type of the functions. |
| |
| RETURN(x) |
| Insert code to return a value. |
| The parameter x is the result variable, which was also the input parameter. |
| |
| ITYPE |
| Type name for integer types. |
| |
| SIND, COSD, TRIGD |
| Names for the degree-valued trig functions defined by this module. |
| |
| ENABLE_SIND, ENABLE_COSD, ENABLE_TAND |
| Whether the degree-valued trig functions can be enabled. |
| |
| ERROR_RETURN(f, k, x) |
| If ENABLE_<xxx>D is not defined, this is substituted to assert an |
| error condition for function f, kind k, and parameter x. |
| The function argument is one of {sind, cosd, tand}. |
| |
| ISFINITE(x) |
| Whether x is a regular number or zero (not inf or NaN). |
| |
| D2R(x) |
| Convert x from radians to degrees. |
| |
| SET_COSD30(x) |
| Set x to COSD(30), or equivalently, SIND(60). |
| |
| TINY_LITERAL [optional] |
| Value subtracted from 1 to cause raise INEXACT for COSD(x) for x << 1. |
| If not set, COSD(x) for x <= COSD_SMALL_LITERAL simply returns 1. |
| |
| COSD_SMALL_LITERAL [optional] |
| Value such that x <= COSD_SMALL_LITERAL implies COSD(x) = 1 to within the |
| precision of FTYPE. If not set, this condition is not checked. |
| |
| SIND_SMALL_LITERAL [optional] |
| Value such that x <= SIND_SMALL_LITERAL implies SIND(x) = D2R(x) to within |
| the precision of FTYPE. If not set, this condition is not checked. |
| |
| */ |
| |
| |
| #ifdef SIND |
| /* Compute sind(x) = sin(x * pi / 180). */ |
| |
| RETTYPE |
| SIND (FTYPE x) |
| { |
| #ifdef ENABLE_SIND |
| if (ISFINITE (x)) |
| { |
| FTYPE s, one; |
| |
| /* sin(-x) = - sin(x). */ |
| mpfr_init (s); |
| mpfr_init_set_ui (one, 1, GFC_RND_MODE); |
| mpfr_copysign (s, one, x, GFC_RND_MODE); |
| mpfr_clear (one); |
| |
| #ifdef SIND_SMALL_LITERAL |
| /* sin(x) = x as x -> 0; but only for some precisions. */ |
| FTYPE ax; |
| mpfr_init (ax); |
| mpfr_abs (ax, x, GFC_RND_MODE); |
| if (mpfr_cmp_ld (ax, SIND_SMALL_LITERAL) < 0) |
| { |
| D2R (x); |
| mpfr_clear (ax); |
| return x; |
| } |
| |
| mpfr_swap (x, ax); |
| mpfr_clear (ax); |
| |
| #else |
| mpfr_abs (x, x, GFC_RND_MODE); |
| #endif /* SIND_SMALL_LITERAL */ |
| |
| /* Reduce angle to x in [0,360]. */ |
| FTYPE period; |
| mpfr_init_set_ui (period, 360, GFC_RND_MODE); |
| mpfr_fmod (x, x, period, GFC_RND_MODE); |
| mpfr_clear (period); |
| |
| /* Special cases with exact results. */ |
| ITYPE n; |
| mpz_init (n); |
| if (mpfr_get_z (n, x, GFC_RND_MODE) == 0 && mpz_divisible_ui_p (n, 30)) |
| { |
| /* Flip sign for odd n*pi (x is % 360 so this is only for 180). |
| This respects sgn(sin(x)) = sgn(d/dx sin(x)) = sgn(cos(x)). */ |
| if (mpz_divisible_ui_p (n, 180)) |
| { |
| mpfr_set_ui (x, 0, GFC_RND_MODE); |
| if (mpz_cmp_ui (n, 180) == 0) |
| mpfr_neg (s, s, GFC_RND_MODE); |
| } |
| else if (mpz_divisible_ui_p (n, 90)) |
| mpfr_set_si (x, (mpz_cmp_ui (n, 90) == 0 ? 1 : -1), GFC_RND_MODE); |
| else if (mpz_divisible_ui_p (n, 60)) |
| { |
| SET_COSD30 (x); |
| if (mpz_cmp_ui (n, 180) >= 0) |
| mpfr_neg (x, x, GFC_RND_MODE); |
| } |
| else |
| mpfr_set_ld (x, (mpz_cmp_ui (n, 180) < 0 ? 0.5L : -0.5L), |
| GFC_RND_MODE); |
| } |
| |
| /* Fold [0,360] into the range [0,45], and compute either SIN() or |
| COS() depending on symmetry of shifting into the [0,45] range. */ |
| else |
| { |
| bool fold_cos = false; |
| if (mpfr_cmp_ui (x, 180) <= 0) |
| { |
| if (mpfr_cmp_ui (x, 90) <= 0) |
| { |
| if (mpfr_cmp_ui (x, 45) > 0) |
| { |
| /* x = COS(D2R(90 - x)) */ |
| mpfr_ui_sub (x, 90, x, GFC_RND_MODE); |
| fold_cos = true; |
| } |
| } |
| else |
| { |
| if (mpfr_cmp_ui (x, 135) <= 0) |
| { |
| mpfr_sub_ui (x, x, 90, GFC_RND_MODE); |
| fold_cos = true; |
| } |
| else |
| mpfr_ui_sub (x, 180, x, GFC_RND_MODE); |
| } |
| } |
| |
| else if (mpfr_cmp_ui (x, 270) <= 0) |
| { |
| if (mpfr_cmp_ui (x, 225) <= 0) |
| mpfr_sub_ui (x, x, 180, GFC_RND_MODE); |
| else |
| { |
| mpfr_ui_sub (x, 270, x, GFC_RND_MODE); |
| fold_cos = true; |
| } |
| mpfr_neg (s, s, GFC_RND_MODE); |
| } |
| |
| else |
| { |
| if (mpfr_cmp_ui (x, 315) <= 0) |
| { |
| mpfr_sub_ui (x, x, 270, GFC_RND_MODE); |
| fold_cos = true; |
| } |
| else |
| mpfr_ui_sub (x, 360, x, GFC_RND_MODE); |
| mpfr_neg (s, s, GFC_RND_MODE); |
| } |
| |
| D2R (x); |
| |
| if (fold_cos) |
| mpfr_cos (x, x, GFC_RND_MODE); |
| else |
| mpfr_sin (x, x, GFC_RND_MODE); |
| } |
| |
| mpfr_mul (x, x, s, GFC_RND_MODE); |
| mpz_clear (n); |
| mpfr_clear (s); |
| } |
| |
| /* Return NaN for +-Inf and NaN and raise exception. */ |
| else |
| mpfr_sub (x, x, x, GFC_RND_MODE); |
| |
| RETURN (x); |
| |
| #else |
| ERROR_RETURN(sind, KIND, x); |
| #endif // ENABLE_SIND |
| } |
| #endif // SIND |
| |
| |
| #ifdef COSD |
| /* Compute cosd(x) = cos(x * pi / 180). */ |
| |
| RETTYPE |
| COSD (FTYPE x) |
| { |
| #ifdef ENABLE_COSD |
| #if defined(TINY_LITERAL) && defined(COSD_SMALL_LITERAL) |
| static const volatile FTYPE tiny = TINY_LITERAL; |
| #endif |
| |
| if (ISFINITE (x)) |
| { |
| #ifdef COSD_SMALL_LITERAL |
| FTYPE ax; |
| mpfr_init (ax); |
| |
| mpfr_abs (ax, x, GFC_RND_MODE); |
| /* No spurious underflows!. In radians, cos(x) = 1-x*x/2 as x -> 0. */ |
| if (mpfr_cmp_ld (ax, COSD_SMALL_LITERAL) <= 0) |
| { |
| mpfr_set_ui (x, 1, GFC_RND_MODE); |
| #ifdef TINY_LITERAL |
| /* Cause INEXACT. */ |
| if (!mpfr_zero_p (ax)) |
| mpfr_sub_d (x, x, tiny, GFC_RND_MODE); |
| #endif |
| |
| mpfr_clear (ax); |
| return x; |
| } |
| |
| mpfr_swap (x, ax); |
| mpfr_clear (ax); |
| #else |
| mpfr_abs (x, x, GFC_RND_MODE); |
| #endif /* COSD_SMALL_LITERAL */ |
| |
| /* Reduce angle to ax in [0,360]. */ |
| FTYPE period; |
| mpfr_init_set_ui (period, 360, GFC_RND_MODE); |
| mpfr_fmod (x, x, period, GFC_RND_MODE); |
| mpfr_clear (period); |
| |
| /* Special cases with exact results. |
| Return negative zero for cosd(270) for consistency with libm cos(). */ |
| ITYPE n; |
| mpz_init (n); |
| if (mpfr_get_z (n, x, GFC_RND_MODE) == 0 && mpz_divisible_ui_p (n, 30)) |
| { |
| if (mpz_divisible_ui_p (n, 180)) |
| mpfr_set_si (x, (mpz_cmp_ui (n, 180) == 0 ? -1 : 1), |
| GFC_RND_MODE); |
| else if (mpz_divisible_ui_p (n, 90)) |
| mpfr_set_zero (x, 0); |
| else if (mpz_divisible_ui_p (n, 60)) |
| { |
| mpfr_set_ld (x, 0.5, GFC_RND_MODE); |
| if (mpz_cmp_ui (n, 60) != 0 && mpz_cmp_ui (n, 300) != 0) |
| mpfr_neg (x, x, GFC_RND_MODE); |
| } |
| else |
| { |
| SET_COSD30 (x); |
| if (mpz_cmp_ui (n, 30) != 0 && mpz_cmp_ui (n, 330) != 0) |
| mpfr_neg (x, x, GFC_RND_MODE); |
| } |
| } |
| |
| /* Fold [0,360] into the range [0,45], and compute either SIN() or |
| COS() depending on symmetry of shifting into the [0,45] range. */ |
| else |
| { |
| bool neg = false; |
| bool fold_sin = false; |
| if (mpfr_cmp_ui (x, 180) <= 0) |
| { |
| if (mpfr_cmp_ui (x, 90) <= 0) |
| { |
| if (mpfr_cmp_ui (x, 45) > 0) |
| { |
| mpfr_ui_sub (x, 90, x, GFC_RND_MODE); |
| fold_sin = true; |
| } |
| } |
| else |
| { |
| if (mpfr_cmp_ui (x, 135) <= 0) |
| { |
| mpfr_sub_ui (x, x, 90, GFC_RND_MODE); |
| fold_sin = true; |
| } |
| else |
| mpfr_ui_sub (x, 180, x, GFC_RND_MODE); |
| neg = true; |
| } |
| } |
| |
| else if (mpfr_cmp_ui (x, 270) <= 0) |
| { |
| if (mpfr_cmp_ui (x, 225) <= 0) |
| mpfr_sub_ui (x, x, 180, GFC_RND_MODE); |
| else |
| { |
| mpfr_ui_sub (x, 270, x, GFC_RND_MODE); |
| fold_sin = true; |
| } |
| neg = true; |
| } |
| |
| else |
| { |
| if (mpfr_cmp_ui (x, 315) <= 0) |
| { |
| mpfr_sub_ui (x, x, 270, GFC_RND_MODE); |
| fold_sin = true; |
| } |
| else |
| mpfr_ui_sub (x, 360, x, GFC_RND_MODE); |
| } |
| |
| D2R (x); |
| |
| if (fold_sin) |
| mpfr_sin (x, x, GFC_RND_MODE); |
| else |
| mpfr_cos (x, x, GFC_RND_MODE); |
| |
| if (neg) |
| mpfr_neg (x, x, GFC_RND_MODE); |
| } |
| |
| mpz_clear (n); |
| } |
| |
| /* Return NaN for +-Inf and NaN and raise exception. */ |
| else |
| mpfr_sub (x, x, x, GFC_RND_MODE); |
| |
| RETURN (x); |
| |
| #else |
| ERROR_RETURN(cosd, KIND, x); |
| #endif // ENABLE_COSD |
| } |
| #endif // COSD |
| |
| |
| #ifdef TAND |
| /* Compute tand(x) = tan(x * pi / 180). */ |
| |
| RETTYPE |
| TAND (FTYPE x) |
| { |
| #ifdef ENABLE_TAND |
| if (ISFINITE (x)) |
| { |
| FTYPE s, one; |
| |
| /* tan(-x) = - tan(x). */ |
| mpfr_init (s); |
| mpfr_init_set_ui (one, 1, GFC_RND_MODE); |
| mpfr_copysign (s, one, x, GFC_RND_MODE); |
| mpfr_clear (one); |
| |
| #ifdef SIND_SMALL_LITERAL |
| /* tan(x) = x as x -> 0; but only for some precisions. */ |
| FTYPE ax; |
| mpfr_init (ax); |
| mpfr_abs (ax, x, GFC_RND_MODE); |
| if (mpfr_cmp_ld (ax, SIND_SMALL_LITERAL) < 0) |
| { |
| D2R (x); |
| mpfr_clear (ax); |
| return x; |
| } |
| |
| mpfr_swap (x, ax); |
| mpfr_clear (ax); |
| |
| #else |
| mpfr_abs (x, x, GFC_RND_MODE); |
| #endif /* SIND_SMALL_LITERAL */ |
| |
| /* Reduce angle to x in [0,360]. */ |
| FTYPE period; |
| mpfr_init_set_ui (period, 360, GFC_RND_MODE); |
| mpfr_fmod (x, x, period, GFC_RND_MODE); |
| mpfr_clear (period); |
| |
| /* Special cases with exact results. */ |
| ITYPE n; |
| mpz_init (n); |
| if (mpfr_get_z (n, x, GFC_RND_MODE) == 0 && mpz_divisible_ui_p (n, 45)) |
| { |
| if (mpz_divisible_ui_p (n, 180)) |
| mpfr_set_zero (x, 0); |
| |
| /* Though mathematically NaN is more appropriate for tan(n*90), |
| returning +/-Inf offers the advantage that 1/tan(n*90) returns 0, |
| which is mathematically sound. In fact we rely on this behavior |
| to implement COTAND(x) = 1 / TAND(x). |
| */ |
| else if (mpz_divisible_ui_p (n, 90)) |
| mpfr_set_inf (x, mpz_cmp_ui (n, 90) == 0 ? 0 : 1); |
| |
| else |
| { |
| mpfr_set_ui (x, 1, GFC_RND_MODE); |
| if (mpz_cmp_ui (n, 45) != 0 && mpz_cmp_ui (n, 225) != 0) |
| mpfr_neg (x, x, GFC_RND_MODE); |
| } |
| } |
| |
| else |
| { |
| /* Fold [0,360] into the range [0,90], and compute TAN(). */ |
| if (mpfr_cmp_ui (x, 180) <= 0) |
| { |
| if (mpfr_cmp_ui (x, 90) > 0) |
| { |
| mpfr_ui_sub (x, 180, x, GFC_RND_MODE); |
| mpfr_neg (s, s, GFC_RND_MODE); |
| } |
| } |
| else |
| { |
| if (mpfr_cmp_ui (x, 270) <= 0) |
| { |
| mpfr_sub_ui (x, x, 180, GFC_RND_MODE); |
| } |
| else |
| { |
| mpfr_ui_sub (x, 360, x, GFC_RND_MODE); |
| mpfr_neg (s, s, GFC_RND_MODE); |
| } |
| } |
| |
| D2R (x); |
| mpfr_tan (x, x, GFC_RND_MODE); |
| } |
| |
| mpfr_mul (x, x, s, GFC_RND_MODE); |
| mpz_clear (n); |
| mpfr_clear (s); |
| } |
| |
| /* Return NaN for +-Inf and NaN and raise exception. */ |
| else |
| mpfr_sub (x, x, x, GFC_RND_MODE); |
| |
| RETURN (x); |
| |
| #else |
| ERROR_RETURN(tand, KIND, x); |
| #endif // ENABLE_TAND |
| } |
| #endif // TAND |
| |
| /* vim: set ft=c: */ |