Thomas Koenig | 49ad4d2 | 2021-12-06 19:57:32 +0100 | [diff] [blame] | 1 | /* Implementation of the RESHAPE intrinsic |
Jakub Jelinek | 83ffe9c | 2023-01-16 11:50:43 +0100 | [diff] [blame] | 2 | Copyright (C) 2002-2023 Free Software Foundation, Inc. |
Thomas Koenig | 49ad4d2 | 2021-12-06 19:57:32 +0100 | [diff] [blame] | 3 | Contributed by Paul Brook <paul@nowt.org> |
| 4 | |
| 5 | This file is part of the GNU Fortran runtime library (libgfortran). |
| 6 | |
| 7 | Libgfortran is free software; you can redistribute it and/or |
| 8 | modify it under the terms of the GNU General Public |
| 9 | License as published by the Free Software Foundation; either |
| 10 | version 3 of the License, or (at your option) any later version. |
| 11 | |
| 12 | Libgfortran is distributed in the hope that it will be useful, |
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | GNU General Public License for more details. |
| 16 | |
| 17 | Under Section 7 of GPL version 3, you are granted additional |
| 18 | permissions described in the GCC Runtime Library Exception, version |
| 19 | 3.1, as published by the Free Software Foundation. |
| 20 | |
| 21 | You should have received a copy of the GNU General Public License and |
| 22 | a copy of the GCC Runtime Library Exception along with this program; |
| 23 | see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 24 | <http://www.gnu.org/licenses/>. */ |
| 25 | |
| 26 | #include "libgfortran.h" |
| 27 | |
| 28 | |
| 29 | #if defined (HAVE_GFC_COMPLEX_17) |
| 30 | |
| 31 | typedef GFC_FULL_ARRAY_DESCRIPTOR(1, index_type) shape_type; |
| 32 | |
| 33 | |
| 34 | extern void reshape_c17 (gfc_array_c17 * const restrict, |
| 35 | gfc_array_c17 * const restrict, |
| 36 | shape_type * const restrict, |
| 37 | gfc_array_c17 * const restrict, |
| 38 | shape_type * const restrict); |
| 39 | export_proto(reshape_c17); |
| 40 | |
| 41 | void |
| 42 | reshape_c17 (gfc_array_c17 * const restrict ret, |
| 43 | gfc_array_c17 * const restrict source, |
| 44 | shape_type * const restrict shape, |
| 45 | gfc_array_c17 * const restrict pad, |
| 46 | shape_type * const restrict order) |
| 47 | { |
| 48 | /* r.* indicates the return array. */ |
| 49 | index_type rcount[GFC_MAX_DIMENSIONS]; |
| 50 | index_type rextent[GFC_MAX_DIMENSIONS]; |
| 51 | index_type rstride[GFC_MAX_DIMENSIONS]; |
| 52 | index_type rstride0; |
| 53 | index_type rdim; |
| 54 | index_type rsize; |
| 55 | index_type rs; |
| 56 | index_type rex; |
| 57 | GFC_COMPLEX_17 *rptr; |
| 58 | /* s.* indicates the source array. */ |
| 59 | index_type scount[GFC_MAX_DIMENSIONS]; |
| 60 | index_type sextent[GFC_MAX_DIMENSIONS]; |
| 61 | index_type sstride[GFC_MAX_DIMENSIONS]; |
| 62 | index_type sstride0; |
| 63 | index_type sdim; |
| 64 | index_type ssize; |
| 65 | const GFC_COMPLEX_17 *sptr; |
| 66 | /* p.* indicates the pad array. */ |
| 67 | index_type pcount[GFC_MAX_DIMENSIONS]; |
| 68 | index_type pextent[GFC_MAX_DIMENSIONS]; |
| 69 | index_type pstride[GFC_MAX_DIMENSIONS]; |
| 70 | index_type pdim; |
| 71 | index_type psize; |
| 72 | const GFC_COMPLEX_17 *pptr; |
| 73 | |
| 74 | const GFC_COMPLEX_17 *src; |
| 75 | int sempty, pempty, shape_empty; |
| 76 | index_type shape_data[GFC_MAX_DIMENSIONS]; |
| 77 | |
| 78 | rdim = GFC_DESCRIPTOR_EXTENT(shape,0); |
| 79 | /* rdim is always > 0; this lets the compiler optimize more and |
| 80 | avoids a potential warning. */ |
| 81 | GFC_ASSERT(rdim>0); |
| 82 | |
| 83 | if (rdim != GFC_DESCRIPTOR_RANK(ret)) |
| 84 | runtime_error("rank of return array incorrect in RESHAPE intrinsic"); |
| 85 | |
| 86 | shape_empty = 0; |
| 87 | |
| 88 | for (index_type n = 0; n < rdim; n++) |
| 89 | { |
| 90 | shape_data[n] = shape->base_addr[n * GFC_DESCRIPTOR_STRIDE(shape,0)]; |
| 91 | if (shape_data[n] <= 0) |
| 92 | { |
| 93 | shape_data[n] = 0; |
| 94 | shape_empty = 1; |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | if (ret->base_addr == NULL) |
| 99 | { |
| 100 | index_type alloc_size; |
| 101 | |
| 102 | rs = 1; |
| 103 | for (index_type n = 0; n < rdim; n++) |
| 104 | { |
| 105 | rex = shape_data[n]; |
| 106 | |
| 107 | GFC_DIMENSION_SET(ret->dim[n], 0, rex - 1, rs); |
| 108 | |
| 109 | rs *= rex; |
| 110 | } |
| 111 | ret->offset = 0; |
| 112 | |
| 113 | if (unlikely (rs < 1)) |
| 114 | alloc_size = 0; |
| 115 | else |
| 116 | alloc_size = rs; |
| 117 | |
| 118 | ret->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_17)); |
| 119 | ret->dtype.rank = rdim; |
| 120 | } |
| 121 | |
| 122 | if (shape_empty) |
| 123 | return; |
| 124 | |
| 125 | if (pad) |
| 126 | { |
| 127 | pdim = GFC_DESCRIPTOR_RANK (pad); |
| 128 | psize = 1; |
| 129 | pempty = 0; |
| 130 | for (index_type n = 0; n < pdim; n++) |
| 131 | { |
| 132 | pcount[n] = 0; |
| 133 | pstride[n] = GFC_DESCRIPTOR_STRIDE(pad,n); |
| 134 | pextent[n] = GFC_DESCRIPTOR_EXTENT(pad,n); |
| 135 | if (pextent[n] <= 0) |
| 136 | { |
| 137 | pempty = 1; |
| 138 | pextent[n] = 0; |
| 139 | } |
| 140 | |
| 141 | if (psize == pstride[n]) |
| 142 | psize *= pextent[n]; |
| 143 | else |
| 144 | psize = 0; |
| 145 | } |
| 146 | pptr = pad->base_addr; |
| 147 | } |
| 148 | else |
| 149 | { |
| 150 | pdim = 0; |
| 151 | psize = 1; |
| 152 | pempty = 1; |
| 153 | pptr = NULL; |
| 154 | } |
| 155 | |
| 156 | if (unlikely (compile_options.bounds_check)) |
| 157 | { |
| 158 | index_type ret_extent, source_extent; |
| 159 | |
| 160 | rs = 1; |
| 161 | for (index_type n = 0; n < rdim; n++) |
| 162 | { |
| 163 | rs *= shape_data[n]; |
| 164 | ret_extent = GFC_DESCRIPTOR_EXTENT(ret,n); |
| 165 | if (ret_extent != shape_data[n]) |
| 166 | runtime_error("Incorrect extent in return value of RESHAPE" |
| 167 | " intrinsic in dimension %ld: is %ld," |
| 168 | " should be %ld", (long int) n+1, |
| 169 | (long int) ret_extent, (long int) shape_data[n]); |
| 170 | } |
| 171 | |
| 172 | source_extent = 1; |
| 173 | sdim = GFC_DESCRIPTOR_RANK (source); |
| 174 | for (index_type n = 0; n < sdim; n++) |
| 175 | { |
| 176 | index_type se; |
| 177 | se = GFC_DESCRIPTOR_EXTENT(source,n); |
| 178 | source_extent *= se > 0 ? se : 0; |
| 179 | } |
| 180 | |
| 181 | if (rs > source_extent && (!pad || pempty)) |
| 182 | runtime_error("Incorrect size in SOURCE argument to RESHAPE" |
| 183 | " intrinsic: is %ld, should be %ld", |
| 184 | (long int) source_extent, (long int) rs); |
| 185 | |
| 186 | if (order) |
| 187 | { |
| 188 | int seen[GFC_MAX_DIMENSIONS]; |
| 189 | index_type v; |
| 190 | |
| 191 | for (index_type n = 0; n < rdim; n++) |
| 192 | seen[n] = 0; |
| 193 | |
| 194 | for (index_type n = 0; n < rdim; n++) |
| 195 | { |
| 196 | v = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1; |
| 197 | |
| 198 | if (v < 0 || v >= rdim) |
| 199 | runtime_error("Value %ld out of range in ORDER argument" |
| 200 | " to RESHAPE intrinsic", (long int) v + 1); |
| 201 | |
| 202 | if (seen[v] != 0) |
| 203 | runtime_error("Duplicate value %ld in ORDER argument to" |
| 204 | " RESHAPE intrinsic", (long int) v + 1); |
| 205 | |
| 206 | seen[v] = 1; |
| 207 | } |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | rsize = 1; |
| 212 | for (index_type n = 0; n < rdim; n++) |
| 213 | { |
| 214 | index_type dim; |
| 215 | if (order) |
| 216 | dim = order->base_addr[n * GFC_DESCRIPTOR_STRIDE(order,0)] - 1; |
| 217 | else |
| 218 | dim = n; |
| 219 | |
| 220 | rcount[n] = 0; |
| 221 | rstride[n] = GFC_DESCRIPTOR_STRIDE(ret,dim); |
| 222 | rextent[n] = GFC_DESCRIPTOR_EXTENT(ret,dim); |
| 223 | if (rextent[n] < 0) |
| 224 | rextent[n] = 0; |
| 225 | |
| 226 | if (rextent[n] != shape_data[dim]) |
| 227 | runtime_error ("shape and target do not conform"); |
| 228 | |
| 229 | if (rsize == rstride[n]) |
| 230 | rsize *= rextent[n]; |
| 231 | else |
| 232 | rsize = 0; |
| 233 | if (rextent[n] <= 0) |
| 234 | return; |
| 235 | } |
| 236 | |
| 237 | sdim = GFC_DESCRIPTOR_RANK (source); |
| 238 | |
| 239 | /* sdim is always > 0; this lets the compiler optimize more and |
| 240 | avoids a warning. */ |
| 241 | GFC_ASSERT(sdim>0); |
| 242 | |
| 243 | ssize = 1; |
| 244 | sempty = 0; |
| 245 | for (index_type n = 0; n < sdim; n++) |
| 246 | { |
| 247 | scount[n] = 0; |
| 248 | sstride[n] = GFC_DESCRIPTOR_STRIDE(source,n); |
| 249 | sextent[n] = GFC_DESCRIPTOR_EXTENT(source,n); |
| 250 | if (sextent[n] <= 0) |
| 251 | { |
| 252 | sempty = 1; |
| 253 | sextent[n] = 0; |
| 254 | } |
| 255 | |
| 256 | if (ssize == sstride[n]) |
| 257 | ssize *= sextent[n]; |
| 258 | else |
| 259 | ssize = 0; |
| 260 | } |
| 261 | |
| 262 | if (rsize != 0 && ssize != 0 && psize != 0) |
| 263 | { |
| 264 | rsize *= sizeof (GFC_COMPLEX_17); |
| 265 | ssize *= sizeof (GFC_COMPLEX_17); |
| 266 | psize *= sizeof (GFC_COMPLEX_17); |
| 267 | reshape_packed ((char *)ret->base_addr, rsize, (char *)source->base_addr, |
| 268 | ssize, pad ? (char *)pad->base_addr : NULL, psize); |
| 269 | return; |
| 270 | } |
| 271 | rptr = ret->base_addr; |
| 272 | src = sptr = source->base_addr; |
| 273 | rstride0 = rstride[0]; |
| 274 | sstride0 = sstride[0]; |
| 275 | |
| 276 | if (sempty && pempty) |
| 277 | abort (); |
| 278 | |
| 279 | if (sempty) |
| 280 | { |
| 281 | /* Pretend we are using the pad array the first time around, too. */ |
| 282 | src = pptr; |
| 283 | sptr = pptr; |
| 284 | sdim = pdim; |
| 285 | for (index_type dim = 0; dim < pdim; dim++) |
| 286 | { |
| 287 | scount[dim] = pcount[dim]; |
| 288 | sextent[dim] = pextent[dim]; |
| 289 | sstride[dim] = pstride[dim]; |
| 290 | sstride0 = pstride[0]; |
| 291 | } |
| 292 | } |
| 293 | |
| 294 | while (rptr) |
| 295 | { |
| 296 | /* Select between the source and pad arrays. */ |
| 297 | *rptr = *src; |
| 298 | /* Advance to the next element. */ |
| 299 | rptr += rstride0; |
| 300 | src += sstride0; |
| 301 | rcount[0]++; |
| 302 | scount[0]++; |
| 303 | |
| 304 | /* Advance to the next destination element. */ |
| 305 | index_type n = 0; |
| 306 | while (rcount[n] == rextent[n]) |
| 307 | { |
| 308 | /* When we get to the end of a dimension, reset it and increment |
| 309 | the next dimension. */ |
| 310 | rcount[n] = 0; |
| 311 | /* We could precalculate these products, but this is a less |
| 312 | frequently used path so probably not worth it. */ |
| 313 | rptr -= rstride[n] * rextent[n]; |
| 314 | n++; |
| 315 | if (n == rdim) |
| 316 | { |
| 317 | /* Break out of the loop. */ |
| 318 | rptr = NULL; |
| 319 | break; |
| 320 | } |
| 321 | else |
| 322 | { |
| 323 | rcount[n]++; |
| 324 | rptr += rstride[n]; |
| 325 | } |
| 326 | } |
| 327 | /* Advance to the next source element. */ |
| 328 | n = 0; |
| 329 | while (scount[n] == sextent[n]) |
| 330 | { |
| 331 | /* When we get to the end of a dimension, reset it and increment |
| 332 | the next dimension. */ |
| 333 | scount[n] = 0; |
| 334 | /* We could precalculate these products, but this is a less |
| 335 | frequently used path so probably not worth it. */ |
| 336 | src -= sstride[n] * sextent[n]; |
| 337 | n++; |
| 338 | if (n == sdim) |
| 339 | { |
| 340 | if (sptr && pad) |
| 341 | { |
| 342 | /* Switch to the pad array. */ |
| 343 | sptr = NULL; |
| 344 | sdim = pdim; |
| 345 | for (index_type dim = 0; dim < pdim; dim++) |
| 346 | { |
| 347 | scount[dim] = pcount[dim]; |
| 348 | sextent[dim] = pextent[dim]; |
| 349 | sstride[dim] = pstride[dim]; |
| 350 | sstride0 = sstride[0]; |
| 351 | } |
| 352 | } |
| 353 | /* We now start again from the beginning of the pad array. */ |
| 354 | src = pptr; |
| 355 | break; |
| 356 | } |
| 357 | else |
| 358 | { |
| 359 | scount[n]++; |
| 360 | src += sstride[n]; |
| 361 | } |
| 362 | } |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | #endif |